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Abstract. Lattice reduction algorithms such as LLL and its floating-
point variants have a very wide range of applications in computational
mathematics and in computer science: polynomial factorization, cryptol-
ogy, integer linear programming, etc. It can occur that the lattice to be
reduced has a dimension which is small with respect to the dimension of
the space in which it lies. This happens within LLL itself. We describe
a randomized algorithm specifically designed for such rectangular matri-
ces. It computes bases satisfying, with very high probability, properties
similar to those returned by LLL. It significantly decreases the complex-
ity dependence in the dimension of the embedding space. Our technique
mainly consists in randomly projecting the lattice on a lower dimensional
space, by using two different distributions of random matrices.

1 Introduction

A lattice L is a set of integer linear combinations of some linearly independent
vectors by, ...,bg € R™. These vectors are called a basis of the lattice. A given
lattice has infinitely many bases, but their cardinality d is always the same: it
is called the lattice dimension. The dimension n of the basis vectors is called
the degree of the lattice. The degree of a given lattice cannot be smaller than its
dimension. In this article, we are interested in lattices whose degrees are much
higher than their dimensions: we will informally call rectangular such lattices.
When the degree and the dimension match, the lattice is full-dimensional.

Lattices are an algorithmic tool that proved crucial in many areas in computer
science and mathematics, ranging from cryptology [12,1,19] to computer arith-
metic [6,7,24] and algorithmic number theory [20,11]. They became popular
in 1982, when Arjen Lenstra, Hendrik Lenstra Jr, and Laszl6 Lovész introduced
the renowned algorithm now known under the acronym LLL [17]. Given a lat-
tice basis made of integer vectors, the LLL algorithm discloses a short non-zero
lattice vector in time polynomial in the bit-size of the input. This algorithm has
complexity O(d°nlog® B), where B is the maximum of the norms of the input
vectors. The practical variants of LLL rely on floating-point arithmetic (for the
underlying Gram-Schmidt orthogonalization), and the best fully proved such
variant is due to Nguyen and Stehlé [18]. The so-called L? algorithm has bit-
complexity O(d*nlog B(d + log B)). We will consider this variant here, though
the technique we introduce works with any other variant of LLL.



Our main result is to provide a randomized algorithm taking as input a lattice
basis and computing another basis such that with overwhelming probability (e.g.,
as d grows to infinity) this basis satisfies properties similar to those returned by
LLL. If one neglects all terms polynomial in log d, log n and loglog B, then it runs
in time O(d?(d® 4+ n)log B(d 4 log B)): the cost dependence in the degree of the
lattice is considerably weakened. Moreover, the bit-size of the integers involved
in the algorithm is essentially the same as the bit-size of the initial basis. A
simpler strategy than the one we develop is based on the Gram matrix (the
symmetric matrix of the pairwise inner-products): one can compute the LLL-
transformation by reducing the Gram matrix. It is deterministic and decreases
the cost dependence in n, but it suffers from two drawbacks: the bit-sizes of the
entries of the Gram matrix are essentially twice bigger than the ones of the input
basis and the floating-point inaccuracies can be significantly larger if we start
from the Gram matrix. Strong heuristics [22] tend to show that one can use half
the precision required by the L2 algorithm by disregarding the Gram matrix.

Rectangular lattices arise in the two following situations. First of all, they
sometimes occur in Coppersmith’s methods to find small roots of polynomials
over the integers and modulo an integer [12]. These methods have numerous
applications in cryptology. The involved lattice bases are full-dimensional but
highly structured. This structure sometimes creates situations where subsets of
the input basis vectors suffice to provide the short vectors found by LLL. The
number of vectors to be considered can be drastically decreased, while their
embedding dimension remains constant, thus creating rectangular lattices. This
arises in [4], where Coppersmith’s method is used to cryptanalyse RSA when
the secret exponent is unusually small, and in [23], where it is used to find
bad cases for the rounding of mathematical functions, in the field of computer
arithmetic. In [4], the ratio between the degree and the dimension is constant,
while in [23] the degree grows as the square of the dimension. Another con-
text where rectangular lattices arise is the LLL algorithm itself (and most of
its variants, including L?), even for full-dimensional lattices. In LLL, the basis
is reduced incrementally. There is a main loop whose main parameter is an in-
dex k. The meaning of this index is that in the current basis (by,...,bq), the
vectors by, ...,bip_1 are already LLL-reduced and one is trying to extend this
property to by, ..., bg. At the beginning of the execution, the index k is set to 2,
while at the end it reaches d + 1. As long as the index & has not been beyond
some arbitrary ko, we are in fact applying LLL to the vectors by, ..., by, € Z".
The smaller the considered kg, the more rectangular the lattice being reduced.
Our technique may be used within LLL to speed it up by a constant factor.

To achieve the result, we develop a few tools, which may be of independent
interest. Firstly, we decrease the degree of the lattice by applying a random pro-
jection technique: we multiply the n X d input basis matrix by a random d x n
matrix, and show that by reducing the randomly projected lattice we get useful
information for the initial lattice with very high probability. This resembles the
famous Johnson-Lindenstrauss theorem [15], which shows that one can randomly
map N vectors in a O(log N)-dimensional space without modifying significantly



the pairwise distances between the vectors. We cannot directly apply such a
method since we do not consider the input vectors solely, but their infinitely
many integer linear combinations (i.e., in our case N would be infinite). More-
over, we need to keep the Euclidean structure of the initially spanned vector
space. In particular, we do not decrease the degree of our lattice below its di-
mension.

In this paper we consider two random projections. In both models each row
of the projection matrix are chosen independently with a common distribution
fn. In the first model, called the Gaussian model, v, = N(0,1,), the stan-
dard normal distribution. In other words, each entry of the projection matrix
is sampled independently with the standard normal distribution A/(0,1). These
random matrices have been studied extensively and we will rely on a result
about their condition numbers, due to Chen and Dongarra [9]. In the second
random model, called the unit ball model, v, is the uniform distribution inside
B,,(0,1), the n-dimensional ball of radius 1 that is centered in 0. So each row of
the projection matrix is sampled uniformly and independently inside 5,,(0,1).
Such random matrices have been already studied in [13,2,3]. We will rely on
some of the results of these papers. Notice that Rouault [21] recently studied the
asymptotic behavior of the determinant of the lattice generated by the rows of
a rectangular random matrix with both distributions that we consider here.

All the proofs in this paper are done in continuous random models, i.e. en-
tries of our random matrices are real numbers, which is unsuitable to devise
an algorithm. In practice, random matrices are generated with the associated
discretised law. Due to space limitation, we chose to skip these difficulties and
to to describe them in the full version of the paper.

We performed tests on our reduction technique. They worked very well for
many different classes of random projections, including easily samplable ones
(such as entries chosen independently and uniformly in {—1,0,1}). As theoret-
ically predicted, the speed-ups can be made arbitrarily large by increasing the
ratio between the lattice degree and the lattice dimension.

RELATED WORK. Chen and Storjohann [10] introduced in 2005 a probabilistic
technique to compute a reduced basis of a lattice given by a generating family:
one is given more vectors than the lattice dimension. Our work can be seen as
dual to theirs. We deal with vertically rectangular matrices by multiplying them
on the left by a random matrix, whereas they deal with horizontally rectangular
matrices by multiplying them on the right by a random matrix. They use the
arithmetic structure of the lattice whereas we consider its geometric embedding.
The two techniques may be used together.

ROAD-MAP OF THE PAPER. In Section 2, we provide the necessary background
on lattices. In Section 3, the core of the paper, we describe our randomized
algorithm and perform its complexity analysis. Section 4 is devoted to show its
correctness with two different sources of random matrices. Finally, in Section 5,
we describe our experiments.

NoOTATIONS. All costs are given for the bit-complexity model and we assume
that we have a perfect source of random bits. We use only naive arithmetic and



naive linear algebra. The results may be improved by using fast arithmetic and
fast linear algebra. We let B, (a, R) denote the n-dimensional ball of radius R
centered in a. If B is a matrix, we denote by L(B) the lattice spanned by its
columns. We denote by || B||2 the matrix norm induced by the Euclidean norm,
also called the spectral. The maximum of the absolute values of B’s entries is
the usual max norm denoted by || B||.

2 Some Reminders on Lattices

We refer to [8] and [11] for comprehensive introductions to lattices and their
computational aspects. We give below only the material that is necessary to the
description and proof of our probabilistic reduction technique.

Let by,...,bg € R™ be linearly independent vectors. Their Gram-Schmidt
orthogonalization is defined as follows: the vector b} is the component of the

vector b; which is orthogonal to the linear span of the vectors by,...,b;—1. We
* __ . i—1 Tj,i pok R (bmb’f) . .
have bf =b; — >, b} where ;; = To: |]| .If B is a full-rank n x d matrix,

its QR-factorization is the unique pair of matrices (@, R) such that B = Q - R,
Q@ is an n X d matrix made of orthonormal column vectors and R is an upper
triangular d x d matrix with positive diagonal coefficients. The Gram-Schmidt
orthogonalization and the QR-factorization of the matrix made of the b;’s are
closely related: the i-th column of @ is ”g—;,:” and the matrix R is made of the r; ;’s.

k3

Let by,...,bs and ¢y, ...,cq be two bases of the same lattice. If B and C
are the matrices whose columns are the b;’s and ¢;’s, then there exists a d x d
integer matrix T of determinant +1 such that B = C - T. Such a matrix is
called unimodular. Moreover, if two matrices can be obtained one another by
unimodular matrices, their columns span the same lattice. Let L be a lattice.
The length of any shortest non-zero vector is called the lattice minimum and
denoted by \(L).

Consider the b;’s as a basis of a lattice L. The determinant of L is de-
fined by det L = H?Zl |bZ]|. This does not depend on the choice of the basis.
Hadamard’s inequality gives that det L < Hle |b;]|. Let § € (1/4,1] and 5 €
[1/2,V/3). The b;’s are said (8,1)-LLL-reduced if for any i < j, we have |r; ;| <
173, and for any i, we have -7 |, | <717, +77 When introduced in [17],

i—1,2"

LLL-reduction referred to the pair (3/4,1/2). The vectors of a LLL-reduced

basis are relatively short. In particular, we have ||b1] < (6 — nQ)*%(det L)a
_d(d=1)

and H?:l [bi]] < (8§ —n?*)~~ 7 (det L). We refer to [18] for a proof of this fact
and for the cost of the algorithm mentioned in the following theorem. The prop-
erty on the unimodular transformation matrix is classical and a proof can be
found in [16].

Theorem 1. Let n € (1/2,1) and & € (n*,1). There exists an algorithm such
that when given as input any linearly independent vectors by,..., by € Z™ it
computes a (8,m)-LLL-reduced basis of the lattice they span in time O(d*n(d +
log B) log B), where B = max; ||b;||. Furthermore, the bit-lengths of the entries
of the transformation matriz are bounded by O(dlog B).



3 Probabilistic Reduction of Rectangular Lattices
3.1 High-Level Description of the Algorithm

We are given an n x d integer matrix B and try to find a small integer linear
combination of its columns. Instead of applying an LLL-type algorithm directly,
we apply a random d X n dimensional projection P to the matrix and LLL-
reduce the d x d projected matrix B’ = P - B. By doing so, we decrease the cost
with respect to n. We wish that with high probability the unimodular transfor-
mation T obtained by LLL-reducing B’ somehow reduces B as well. Figure 1
sums up the general method. The top arrow is computationally expensive and
is approximately and probabilistically simulated by the succession of plain ar-
rows, that are cheaper. The main result of the paper is the theorem following
the description of the algorithm.

Direct LLL

LLL
B'=P.-B —p (' =BT

Fig. 1. High-level description of the algorithm of Figure 2

Input: A lattice basis B = (by,...,by) € Z™*%.

Output: Another basis of the same lattice, hopefully made of short vectors.
Parameters: (§,7) such that n € (1/2,1) and § € (2, 1).

1. Generate a random d X n matrix P with a fixed distribution.

2. Compute B’ = P - B.

3. Compute C' = LLLs ,,(B’).

4. Compute T = (B")™* - C’.

5. Return B - T.

Fig. 2. Probabilistic reduction of a rectangular lattice

Theorem 2. Let (by,...,by) € Z"*? be a basis of a lattice L with B =
max ||b;||. The algorithm of Figure 2 will compute a basis (¢1,...,cq) of L with
the expected running time:

O (d°lognB(d + lognB) + d*nlognB(lognB + dloglognB)) .

If the entries of the random matriz P are independent Gaussian random
variables, then for all x < 1 then with probability greater than 1 — x,

1. The vector ¢y satisfies ||c1]] <

2. The basis (c1,...,cq) satisfies Higd lei|l < (2822

x

25— n?) T - (det L)a.
d—1 d
(6 — )~ ) (et L).




If the rows of the random matriz P are independent random vectors each
one picked up uniformly inside the n dimensional unit ball then for any d, there
exists no(d) such that for any n > ng(d), with probability greater than 1 — 277,

1. The vector ¢, satisfies ||cy|| < 2*¢(det L)/
2. The basis (c1,...,cq) satisfies [[;qlleill < 249 (det L).

Notice that one can take 2 = 2~¢ and obtain that with probability exponen-
tially close to 1 the output still satisfies properties similar to what would have
been returned by LLL. On both model the length of the first vector may also
be expressed as an approximation of the first minimum of the lattice by a factor
similar to what would have been returned by LLL. Subsection 3.2 proves the
complexity statement and Section 4 the correctness in the continuous models.

3.2 Complexity Analysis

We now prove the complexity statements of Theorem 2. We assume the reader is
familiar with the Chinese Remainder Theorem (CRT for short). We refer to [14]
for an introduction to the CRT.

From the previous subsection, we know that Step 1 of the algorithm of Fig-
ure 2 costs O(dnlogn) bit operations. Step 2 is a multiplication of a d x n ma-
trix whose entries have length O(logn) with an n x d matrix whose entries have
length O(log B). The entries of the d x d matrix B’ have length O(lognB). The

lognB -
log lognB ) prime

matrix multiplication is performed with the CRT. One takes O (
numbers, each of them of length O(loglognB). The construction of the primes
is computationally negligible. The matrix multiplications modulo the primes
cost O(d?nlognBloglognB). The conversions of the input matrices into matri-
ces modulo the primes cost O(dn log2 nB), whereas the conversion of the output
matrices modulo the primes into the integer matrix B’ costs O(d? log® nB). The-
orem 1 gives us that Step 3 costs O (d5 lognB(d + log nB)) At Step 4, we use
again the CRT. Thanks to Theorem 1, we know that the entries of the matrix T’
have length O(dlognB). By an analysis similar to the one developed for Step 2,
we get that the cost is bounded by O (d* log nB(log d + loglog n.B) + d* log? nB).
At Step 5, we have to multiply an n x d matrix whose entries have length O(log B)
with a d x d matrix whose entries have length O(dlognB). We split each entry of
the matrix 7T into d blocks of roughly ©@(log nB) bits, which gives rise to d matri-
ces of dimensions d x d and whose entries have length O(log nB). We thus have d
balanced matrix multiplications to perform. For each of them we use the CRT.
The overall bit-cost of this step is O (d3nlog nBloglognB + d*nlog? nB). This
concludes the proof for the bit-complexity bound of the algorithm of Figure 2
claimed by Theorem 2.

4 Probabilistic correctness in two continuous models

We consider an input basis (by,...,bs) given by an n x d matrix B. Let B =
QpRp be its QR-factorization. Let P be a d x n random matrix, either from
the Gaussian model or from the unit ball model. Let B’ = P-B and P’ the d x d



matrix P - Qp. We are to show that, with high probability, if an integer linear
combination of the columns of B’ = P'Rp is a short vector of the lattice L(B’),
then the same combination of columns of B will be a short vector in L(B).
Let ¢’ € L(B’) be defined by ¢’ = B'x = P'Rpz, with & € Z%. Let ¢ be defined
by the same linear combination of the b;’s: ¢ = Bx = QpRpx.

Our goal is to compare the ratios (dctL”(cB”’))l/d and Lll(cg))l/d' Lemma 1

provides an upper bound to det L(B’)/det L(B) which holds with high proba-
bility. Moreover if ¢/ € L(B’) is the first vector of the basis output by LLL,
then |c|| < 29 (det L(B’))7. To compare ||| and ||¢||, we proceed as follows.

Since the columns of Qp are orthonormal, we have ||c| = ||Rpz|. We
get [le] = (P~ |l < ||(P)7], - I¢]l. Lemma 3 provides an upper bound
to ||(P")~! ||2 which also holds with high probability in the Gaussian model.

Similarly, if (¢, ..., ) is an LLL-reduced basis of L(B’), then [],_, [Ici|| <
20(4*) det L(B'). If (¢1,...,cq) is the basis of L(B) where any ¢; is expressed in
terms of the input basis B with the same integer linear combination than ¢ in
terms of B, then: [Ti_, lled] =TTy I (P) " efll < || () |3 Ty flll

To achieve computations in the unit ball model, we decompose once more
the matrix P’: let P’ = Rp/Qp/ be the transpose of the QR-decomposition
of (P')!. Since the rows of @ p: are orthonormal, we have ||c|| = ||Qp Rpz||. We
get |l = [[(Rp) 'yl < d||(Rp)7Y| - [|¢/]|- Analogously to the previous case,
Lemma 5 provides an upper bound to ||(Rp/)’1|| in the unit ball model. There

is also an analogous upper bound for H?:l |ci that is d? ||(Rp/)~* ||d H?:l leill-

Notice that in Theorem 2, one could also compare the first vector output by
our algorithm with the first minimum of the lattice (as it is usually done in the
LLL case): we use the facts that |c1|| < ||(P) " 2- |t ll€)] < 29D - \(L/(B))
and A(L'(B)) < ||P'||2 - M(L(B)). For the last inequality, consider s € Z¢ such
that | Bs|| = M(L(B)). For the same reasons as above, ||B’s|| < |[|P’||2 - ||Bs||. It
now suffices to see that \(L(B')) < || B’s]].

Lemma 1. For any \ > 1, the following holds with probability at least 1 —1/)\2:

(i) In the Gaussian model, (det L(B’))? < d?- (1 +3)) - (det L(B))2.

(ii) In the unit ball model, (det L(B'))? < # - (1+42dX) - (det L(B))*.

Proof. We have B'=P-B = P-Qp - Rp, which gives that det L(B’) = det(P -
Qp)det Rp = det(P - Qp)det L(B). It thus suffices to focus on the determinant
of the d X d matrix P’ = P - Qp.

Notice first that the matrix @p can be extended to an n x n orthogonal
matrix Qs = (Qpl-). We are interested in P - Qp, i.e., the d X d left sub-matrix
of P-Q’. Since the both distributions of P that we consider are invariant under
right multiplication by an orthonormal matrix, the random matrices P and P-Q’5
follow the same distribution. The distribution of P - Qg is thus the same as the
distribution of the left d x d sub-matrix of P, denoted by P;.

Proof of (i). The random matrix P is Gaussian. Let the rows of the d x d left

sub-matrix of P be denoted by p1,...,pq. Thanks to Hadamard’s inequality, we

have det P' 2 det P < T, [|pill. Let X be [T, [|pill-



Any ||p;||2 is the sum of d squared independent Gaussians. Thus E(||p;||*) = d

and E(||p;||*) = d(d + 2). Since they are independent, one gets:
E(X?) =d? and o(X?) =E(X?) /f(d),

where f(d) = (d%f)d — 1 < 9. Chebyshev’s inequality gives that for A > 0:
]P’{X2 - E(X?) > 3/\E(X2)} <1/)%

Proof of (ii). Now P is distributed under the unit ball model. Let H be a d-
dimensional linear subspace. Consider the distribution of the orthogonal pro-
jections of the rows of P onto H. Since the distribution of the rows of P is
invariant under rotation, the distribution of their orthogonal projections is the
same no matter onto which subspace H the projection is performed. Let us
pick up n — d additional vectors p1, ..., Pn—g in the n-dimensional unit ball and
let H be the orthogonal coset of the (almost surely (n — d)-dimensional) space
spanned by these additional vectors: H =< p1,...,pn—q >. Let the rows of P
be denoted by pp—_d+1,...,Pn- Let us denote by pj,...,p; the Gram-Schmidt
orthogonalization of the random vectors p1, ..., p,. We then have det(P-Qg) =
ITi—,_ar1 D]l Let X be the random variable corresponding to det(P - Q). It
is proved in [13] that the |p}||?’s are independent random variables and that

d . .
their distribution is given by ||p}||? @ B (2=l 1) The Beta law is classical
in probability theory and its moments are well known:

E(llp; ) = "ot and E(Ip; ") = “Gimtirs -

Then the independence of ||pf|*’s leads to:
E(X?) =d!/(n+2)% and ¢*(X?) =E(X?)-\/f(d,n),

d
where f(d,n) = w (Z—IZ) — 1. By routine computation, one sees

that /f(d,n) < 2d and conclude thanks to Bienaymé’s inequality. a

4.1 Probabilistic correctness in the Gaussian model

The correctness claims of Theorem 2 derive from Lemmas 1 and 3. To bound
the quantity ||(P’)~!||, we use the following result on the condition number of a
Gaussian random matrix.

Lemma 2 (|9]). Let x be the condition number of the matriz P’, i.e., ||P'| -
|(P")~1||. Then for any X > 1, the probability that k > \d is smaller than 4/X.

The last ingredient to the proof of correctness of theorem 2 is the following.

Lemma 3. Let t < 1. Then |[(P")~!| < 32d/t* holds with probability greater
than 1 —t.

Proof. Let © < 1/2. We upper-bound by 1 the density function of the first entry
of P’. So with probability greater than 1 — 2z, we have |P’||2 > ||P’|l2 > =. By
using Lemma 2, we obtain that with probability greater than 1 — 2z — 4/ we
have [|(P")7!||2 < Ad/x. Setting z = t/4 and A\ = 8/t provides the result. O



By using Lemmas 1 and 3, we see that, with probability greater than 1 —¢ —
1/)2, the first vector computed by the algorithm of Figure 2 satisfies:

_a132-d3(143))%

2 (det L(B))7.

lexll < (6 —n*)

By choosing A = y/2/2 and t = x/2, we obtain the result claimed in Theorem 2.

4.2 Probabilistic correctness in the unit ball model

The correctness claims of Theorem 2 derive from Lemmas 1 and 5.

Lemma 4. Suppose that p1,...,p, are n vectors chosen independently and uni-
formly in the n-dimensional unit ball. Then for any d < n and any v < ﬁﬁ:

P{mini<r<a [|P},—qrill < v} < 4V/nv.
Proof. Let ¢; = ||pf]|. The distributions of the ¢;’s are given by [13]:

n—d+k—1

2 Yo
Plln—a+x <v] = B (dkarl nfd+k+1) /0 u k(l - UQ) > du.
2 2

Since 1 — u? < 1, the integral smaller than v?~**1. Rewriting the denominator
. . or n+2 ,Udfk:+l
in terms of the Gamma function, we get P[l,,_ 44 < v] < F(d7§(+12’)F)( =TTy

Using classical properties of the Gamma function, we obtain

—k+1 d—k+1

nv

2 2
Plln—gir <v] <2 (T) nu

d 2 2
i _ < < _
and P[lrgnklrgldfn dtk <] < 2; ( 5 )

Finally, if nv? < 1/2, we have P [mini<g<q ln—at+r < v] < 4y/no. O

Lemma 5. Let P be a random matriz chosen as previously. Let P = RQ be
the transpose of the QR-decomposition of Pt. Let u and v be two reals satisfying
u < 13 and v < X=. For any d there exists ny such that for all n > ny(d,u),

vn
with probability greater than 1 — d?( 1112 Y4 — 4y/nv, we have:
1 1
RY <=1+
IR <tasd

Proof (Sketch). First, notice that as explained in the proof of Lemma 1, the rows
of P = P-Qp have the same distributions as the projections py ;. |, Pn—ay2[n—
d+1],...,pn[n—d+1] of n vectors p1, . . ., p, chosen independently and uniformly
in B,,(0,1) in the orthogonal of the span of the n — d first ones. Let us denote ¢;
the norm of p}. The proof, available in the full version, the previous lemma and
classical bounds on the Gamma and Beta functions together with the following
tools:



— an asymptotic equivalent for P[{,,1;/¢,1; < v] when n grows to infinity and
1 and j are two constants. This is available in [2](using the Laplace method
for evaluating integrals asymptotically)

— an explicit expression of the coefficients of R;l as a function of the coeffi-
cients r; ; (using the fact that the matrix Rp is lower triangular and so is
R3' as well) O

By using Lemmas 1 and 5 after routine computations we see that, with
2
probability greater than 1 —4/nv — d*(z )4 — X\~2 the first vector computed
by the algorithm of Figure 2 satisfies:

ol

L 1\ 4.4% A=
< (5 — N <1_|__) -
||cl||_( 77) v u \/n——i-2

Finally we choose A\ = 24/2, u = ,/1/8, v =1/(2%/n).

(det L(B)).

5 Experimental Data

In this section, we report experiments supporting the validity of our method.
The experiments are very promising in the sense that the random projection
technique seems to work with a wide range of random matrices and seems to
perform better than what we proved. Indeed, the output bases are not only made
of vectors of small lengths, but LLL terminates very quickly given them as input.

The experiments were performed using Magma [5] V2.14 on an AMD Opteron
2.40GHz. Each figure corresponds to an average over at least ten samples. We
used the LLL routine with the default options (6 = 0.75,7 = 0.51). Magma’s LLL
is based on the floating-point L? algorithm [18]. The Magma code corresponding
to our experiments is available under the GPL at: http://perso.ens-1lyon.
fr/damien.stehle/DIMREDUCTION.html. We considered the following families
of random projections.

— R1(N): each vector is sampled independently in the sphere B, (0, 10N). The
computations are performed with decimal precision N. The sampling would
be uniform if the computations were performed with infinite precision.

— R2(N): each entry is Gaussian variate approximated to decimal precision N.

— R3(N): each entry is taken uniformly and independently in Z N [-2V,2%).

— R4: each matrix entry is taken uniformly and independently in {—1,1}.

The matrices to be reduced are generated in the following way. We first create
a d x d random matrix of the following shape:

T1 T2 Td
01...0
00...1

where the z;’s are chosen uniformly and independently in [0, B] for some fixed B.
When B is large enough, the columns form lattice bases that are far from being



reduced. To obtain n x d lattice bases, we multiply them by matrices sampled
from R3(100). This provides rectangular bases that are far from being reduced
with large and balanced entries. We tested our technique with varying param-
eters d,n and B and for the classes of random projections described above.
We also measured the time LLL takes on the output basis. We compared our
technique with the direct LLL approach and with the Gram matrix approach
described in the introduction (LLL-reducing the Gram matrix and applying the
computed transformation to the input basis). We also compared the lengths of
the first vectors of the outputs. The results are described in Figures 3 and 4.

d 20 | 30 | 40 [ 50 | 20 | 30 | 40 | 50
Direct LLL 0.62 |8.47 |13.6 |23.9{|1.30{15.8]92.7 |341.0
Gram-based approach 0.40 (2.26 | 8.41 {25.3]|0.52|3.70| 16.3 | 70.7

Random projection approach |/0.22[1.19|4.20(13.1]{0.25(1.42|5.19 | 24.8
Direct LLL on the output basis|| 0.01 | 0.03|0.07|0.10}{0.02|0.09| 0.41 | 1.22

Fig. 3. Timings in seconds of the different LLL approaches for rectangular lattices,
when the random matrix is chosen from R4 and n = 5d, B = 2'%%¢, (first four columns)
and n = d?/2, B = 2'°%¢ (last four columns).

Figure 3 shows that the random projection technique can be significantly
faster than the direct technique, in particular when n is much larger than d,
even if one includes the running-time of LLL on the output basis. Figure 4
shows that the output quality is similar to that of the direct LLL approach. The
vector found by the random projection method is most often longer than the
one computed by the direct LLL approach, but the ratio remains small. The
technique seems to provide reasonably short vectors for all the afore-mentioned
families of projections.

d 10 20 30 40 50
R1(100) |[2.34/0.99 |3.24/1.06 |2.95/1.18 |3.90/0.99 |5.55/0.88
R2(100) |[3.04/1.02 [12.9/1.00 |4.13/0.98 [4.57/1.00 |4.19/0.94
R2(1000)|[3.02/1.04 [3.07/0.87 |4.40/1.12 |5.55/1.16 |5.02/1.07
Rs(3) ||3.54/1.03 |6.67/1.04 [3.10/1.02 |6.52/0.98 |6.21/0.95
Rs(10) [[2.98/0.96 2.97/0.99 [4.37/1.09 |5.58/1.03 |3.70/0.99
Ra  ||3.91/0.96 |3.73/1.06 |7.00/1.00 |4.20/1.03 |3.49/1.00

Fig. 4. Ratios between the lengths of the first output vectors after the random projec-
tion technique (respectively after LLL on the output basis) and after the direct LLL ap-
proach (left of each entry, respectively right of each entry), with n = 3d and B = 2'0%?,
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