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t. Latti
e redu
tion algorithms su
h as LLL and its �oating-point variants have a very wide range of appli
ations in 
omputationalmathemati
s and in 
omputer s
ien
e: polynomial fa
torization, 
ryptol-ogy, integer linear programming, et
. It 
an o

ur that the latti
e to beredu
ed has a dimension whi
h is small with respe
t to the dimension ofthe spa
e in whi
h it lies. This happens within LLL itself. We des
ribea randomized algorithm spe
i�
ally designed for su
h re
tangular matri-
es. It 
omputes bases satisfying, with very high probability, propertiessimilar to those returned by LLL. It signi�
antly de
reases the 
omplex-ity dependen
e in the dimension of the embedding spa
e. Our te
hniquemainly 
onsists in randomly proje
ting the latti
e on a lower dimensionalspa
e, by using two di�erent distributions of random matri
es.1 Introdu
tionA latti
e L is a set of integer linear 
ombinations of some linearly independentve
tors b1, . . . , bd ∈ R
n. These ve
tors are 
alled a basis of the latti
e. A givenlatti
e has in�nitely many bases, but their 
ardinality d is always the same: itis 
alled the latti
e dimension. The dimension n of the basis ve
tors is 
alledthe degree of the latti
e. The degree of a given latti
e 
annot be smaller than itsdimension. In this arti
le, we are interested in latti
es whose degrees are mu
hhigher than their dimensions: we will informally 
all re
tangular su
h latti
es.When the degree and the dimension mat
h, the latti
e is full-dimensional.Latti
es are an algorithmi
 tool that proved 
ru
ial in many areas in 
omputers
ien
e and mathemati
s, ranging from 
ryptology [12, 1, 19℄ to 
omputer arith-meti
 [6, 7, 24℄ and algorithmi
 number theory [20, 11℄. They be
ame popularin 1982, when Arjen Lenstra, Hendrik Lenstra Jr, and László Lovász introdu
edthe renowned algorithm now known under the a
ronym LLL [17℄. Given a lat-ti
e basis made of integer ve
tors, the LLL algorithm dis
loses a short non-zerolatti
e ve
tor in time polynomial in the bit-size of the input. This algorithm has
omplexity O(d5n log3 B), where B is the maximum of the norms of the inputve
tors. The pra
ti
al variants of LLL rely on �oating-point arithmeti
 (for theunderlying Gram-S
hmidt orthogonalization), and the best fully proved su
hvariant is due to Nguyen and Stehlé [18℄. The so-
alled L2 algorithm has bit-
omplexity O(d4n log B(d + log B)). We will 
onsider this variant here, thoughthe te
hnique we introdu
e works with any other variant of LLL.



Our main result is to provide a randomized algorithm taking as input a latti
ebasis and 
omputing another basis su
h that with overwhelming probability (e.g.,as d grows to in�nity) this basis satis�es properties similar to those returned byLLL. If one negle
ts all terms polynomial in log d, log n and log log B, then it runsin time Õ(d2(d3 + n) log B(d + log B)): the 
ost dependen
e in the degree of thelatti
e is 
onsiderably weakened. Moreover, the bit-size of the integers involvedin the algorithm is essentially the same as the bit-size of the initial basis. Asimpler strategy than the one we develop is based on the Gram matrix (thesymmetri
 matrix of the pairwise inner-produ
ts): one 
an 
ompute the LLL-transformation by redu
ing the Gram matrix. It is deterministi
 and de
reasesthe 
ost dependen
e in n, but it su�ers from two drawba
ks: the bit-sizes of theentries of the Gram matrix are essentially twi
e bigger than the ones of the inputbasis and the �oating-point ina

ura
ies 
an be signi�
antly larger if we startfrom the Gram matrix. Strong heuristi
s [22℄ tend to show that one 
an use halfthe pre
ision required by the L2 algorithm by disregarding the Gram matrix.Re
tangular latti
es arise in the two following situations. First of all, theysometimes o

ur in Coppersmith's methods to �nd small roots of polynomialsover the integers and modulo an integer [12℄. These methods have numerousappli
ations in 
ryptology. The involved latti
e bases are full-dimensional buthighly stru
tured. This stru
ture sometimes 
reates situations where subsets ofthe input basis ve
tors su�
e to provide the short ve
tors found by LLL. Thenumber of ve
tors to be 
onsidered 
an be drasti
ally de
reased, while theirembedding dimension remains 
onstant, thus 
reating re
tangular latti
es. Thisarises in [4℄, where Coppersmith's method is used to 
ryptanalyse RSA whenthe se
ret exponent is unusually small, and in [23℄, where it is used to �ndbad 
ases for the rounding of mathemati
al fun
tions, in the �eld of 
omputerarithmeti
. In [4℄, the ratio between the degree and the dimension is 
onstant,while in [23℄ the degree grows as the square of the dimension. Another 
on-text where re
tangular latti
es arise is the LLL algorithm itself (and most ofits variants, in
luding L2), even for full-dimensional latti
es. In LLL, the basisis redu
ed in
rementally. There is a main loop whose main parameter is an in-dex k. The meaning of this index is that in the 
urrent basis (b1, . . . , bd), theve
tors b1, . . . , bk−1 are already LLL-redu
ed and one is trying to extend thisproperty to b1, . . . , bk. At the beginning of the exe
ution, the index k is set to 2,while at the end it rea
hes d + 1. As long as the index k has not been beyondsome arbitrary k0, we are in fa
t applying LLL to the ve
tors b1, . . . , bk0 ∈ Z
n.The smaller the 
onsidered k0, the more re
tangular the latti
e being redu
ed.Our te
hnique may be used within LLL to speed it up by a 
onstant fa
tor.To a
hieve the result, we develop a few tools, whi
h may be of independentinterest. Firstly, we de
rease the degree of the latti
e by applying a random pro-je
tion te
hnique: we multiply the n × d input basis matrix by a random d × nmatrix, and show that by redu
ing the randomly proje
ted latti
e we get usefulinformation for the initial latti
e with very high probability. This resembles thefamous Johnson-Lindenstrauss theorem [15℄, whi
h shows that one 
an randomlymap N ve
tors in a O(log N)-dimensional spa
e without modifying signi�
antly



the pairwise distan
es between the ve
tors. We 
annot dire
tly apply su
h amethod sin
e we do not 
onsider the input ve
tors solely, but their in�nitelymany integer linear 
ombinations (i.e., in our 
ase N would be in�nite). More-over, we need to keep the Eu
lidean stru
ture of the initially spanned ve
torspa
e. In parti
ular, we do not de
rease the degree of our latti
e below its di-mension.In this paper we 
onsider two random proje
tions. In both models ea
h rowof the proje
tion matrix are 
hosen independently with a 
ommon distribution
µn. In the �rst model, 
alled the Gaussian model, νn = N (0, In), the stan-dard normal distribution. In other words, ea
h entry of the proje
tion matrixis sampled independently with the standard normal distribution N (0, 1). Theserandom matri
es have been studied extensively and we will rely on a resultabout their 
ondition numbers, due to Chen and Dongarra [9℄. In the se
ondrandom model, 
alled the unit ball model, νn is the uniform distribution inside
Bn(0, 1), the n-dimensional ball of radius 1 that is 
entered in 0. So ea
h row ofthe proje
tion matrix is sampled uniformly and independently inside Bn(0, 1).Su
h random matri
es have been already studied in [13, 2, 3℄. We will rely onsome of the results of these papers. Noti
e that Rouault [21℄ re
ently studied theasymptoti
 behavior of the determinant of the latti
e generated by the rows ofa re
tangular random matrix with both distributions that we 
onsider here.All the proofs in this paper are done in 
ontinuous random models, i.e. en-tries of our random matri
es are real numbers, whi
h is unsuitable to devisean algorithm. In pra
ti
e, random matri
es are generated with the asso
iateddis
retised law. Due to spa
e limitation, we 
hose to skip these di�
ulties andto to des
ribe them in the full version of the paper.We performed tests on our redu
tion te
hnique. They worked very well formany di�erent 
lasses of random proje
tions, in
luding easily samplable ones(su
h as entries 
hosen independently and uniformly in {−1, 0, 1}). As theoret-i
ally predi
ted, the speed-ups 
an be made arbitrarily large by in
reasing theratio between the latti
e degree and the latti
e dimension.Related work. Chen and Storjohann [10℄ introdu
ed in 2005 a probabilisti
te
hnique to 
ompute a redu
ed basis of a latti
e given by a generating family:one is given more ve
tors than the latti
e dimension. Our work 
an be seen asdual to theirs. We deal with verti
ally re
tangular matri
es by multiplying themon the left by a random matrix, whereas they deal with horizontally re
tangularmatri
es by multiplying them on the right by a random matrix. They use thearithmeti
 stru
ture of the latti
e whereas we 
onsider its geometri
 embedding.The two te
hniques may be used together.Road-map of the paper. In Se
tion 2, we provide the ne
essary ba
kgroundon latti
es. In Se
tion 3, the 
ore of the paper, we des
ribe our randomizedalgorithm and perform its 
omplexity analysis. Se
tion 4 is devoted to show its
orre
tness with two di�erent sour
es of random matri
es. Finally, in Se
tion 5,we des
ribe our experiments.Notations. All 
osts are given for the bit-
omplexity model and we assumethat we have a perfe
t sour
e of random bits. We use only naive arithmeti
 and



naive linear algebra. The results may be improved by using fast arithmeti
 andfast linear algebra. We let Bn(a, R) denote the n-dimensional ball of radius R
entered in a. If B is a matrix, we denote by L(B) the latti
e spanned by its
olumns. We denote by ‖B‖2 the matrix norm indu
ed by the Eu
lidean norm,also 
alled the spe
tral. The maximum of the absolute values of B's entries isthe usual max norm denoted by ‖B‖.2 Some Reminders on Latti
esWe refer to [8℄ and [11℄ for 
omprehensive introdu
tions to latti
es and their
omputational aspe
ts. We give below only the material that is ne
essary to thedes
ription and proof of our probabilisti
 redu
tion te
hnique.Let b1, . . . , bd ∈ R
n be linearly independent ve
tors. Their Gram-S
hmidtorthogonalization is de�ned as follows: the ve
tor b∗i is the 
omponent of theve
tor bi whi
h is orthogonal to the linear span of the ve
tors b1, . . . , bi−1. Wehave b∗

i = bi −
∑i−1

j=1
rj,i

rj,j
b∗j where rj,i =

〈bi,b
∗

j 〉
‖b∗

j‖ . If B is a full-rank n× d matrix,its QR-fa
torization is the unique pair of matri
es (Q, R) su
h that B = Q · R,
Q is an n × d matrix made of orthonormal 
olumn ve
tors and R is an uppertriangular d × d matrix with positive diagonal 
oe�
ients. The Gram-S
hmidtorthogonalization and the QR-fa
torization of the matrix made of the bi's are
losely related: the i-th 
olumn of Q is b

∗

i

‖b∗

i ‖
and the matrix R is made of the ri,j 's.Let b1, . . . , bd and c1, . . . , cd be two bases of the same latti
e. If B and Care the matri
es whose 
olumns are the bi's and ci's, then there exists a d × dinteger matrix T of determinant ±1 su
h that B = C · T . Su
h a matrix is
alled unimodular. Moreover, if two matri
es 
an be obtained one another byunimodular matri
es, their 
olumns span the same latti
e. Let L be a latti
e.The length of any shortest non-zero ve
tor is 
alled the latti
e minimum anddenoted by λ(L).Consider the bi's as a basis of a latti
e L. The determinant of L is de-�ned by det L =

∏d
i=1 ‖b∗i ‖. This does not depend on the 
hoi
e of the basis.Hadamard's inequality gives that detL ≤ ∏d

i=1 ‖bi‖. Let δ ∈ (1/4, 1] and η ∈
[1/2,

√
δ). The bi's are said (δ, η)-LLL-redu
ed if for any i < j, we have |ri,j | ≤

η · ri,i, and for any i, we have δ · r2
i−1,i−1 ≤ r2

i,i + r2
i−1,i. When introdu
ed in [17℄,LLL-redu
tion referred to the pair (3/4, 1/2). The ve
tors of a LLL-redu
edbasis are relatively short. In parti
ular, we have ‖b1‖ ≤ (δ − η2)−

d−1
4 (detL)

1
dand ∏d

i=1 ‖bi‖ ≤ (δ − η2)−
d(d−1)

4 (det L). We refer to [18℄ for a proof of this fa
tand for the 
ost of the algorithm mentioned in the following theorem. The prop-erty on the unimodular transformation matrix is 
lassi
al and a proof 
an befound in [16℄.Theorem 1. Let η ∈ (1/2, 1) and δ ∈ (η2, 1). There exists an algorithm su
hthat when given as input any linearly independent ve
tors b1, . . . , bd ∈ Z
n it
omputes a (δ, η)-LLL-redu
ed basis of the latti
e they span in time O(d4n(d +

log B) log B), where B = maxi ‖bi‖. Furthermore, the bit-lengths of the entriesof the transformation matrix are bounded by O(d log B).



3 Probabilisti
 Redu
tion of Re
tangular Latti
es3.1 High-Level Des
ription of the AlgorithmWe are given an n × d integer matrix B and try to �nd a small integer linear
ombination of its 
olumns. Instead of applying an LLL-type algorithm dire
tly,we apply a random d × n dimensional proje
tion P to the matrix and LLL-redu
e the d× d proje
ted matrix B′ = P ·B. By doing so, we de
rease the 
ostwith respe
t to n. We wish that with high probability the unimodular transfor-mation T obtained by LLL-redu
ing B′ somehow redu
es B as well. Figure 1sums up the general method. The top arrow is 
omputationally expensive andis approximately and probabilisti
ally simulated by the su

ession of plain ar-rows, that are 
heaper. The main result of the paper is the theorem followingthe des
ription of the algorithm.PSfrag repla
ements B

B′ = P · B C′ = B′
· T

C = B · T

LLLDire
t LLL
Fig. 1. High-level des
ription of the algorithm of Figure 2Input: A latti
e basis B = (b1, . . . , bd) ∈ Z

n×d.Output: Another basis of the same latti
e, hopefully made of short ve
tors.Parameters: (δ, η) su
h that η ∈ (1/2, 1) and δ ∈ (η2, 1).1. Generate a random d × n matrix P with a �xed distribution.2. Compute B′ = P · B.3. Compute C′ = LLLδ,η(B′).4. Compute T = (B′)−1
· C′.5. Return B · T .Fig. 2. Probabilisti
 redu
tion of a re
tangular latti
eTheorem 2. Let (b1, . . . , bd) ∈ Z

n×d be a basis of a latti
e L with B =
max ‖bi‖. The algorithm of Figure 2 will 
ompute a basis (c1, . . . , cd) of L withthe expe
ted running time:

O
(

d5 log nB(d + log nB) + d2n log nB(log nB + d log log nB)
)

.If the entries of the random matrix P are independent Gaussian randomvariables, then for all x < 1 then with probability greater than 1 − x,1. The ve
tor c1 satis�es ‖c1‖ ≤ 28d2

x3 (δ − η2)−
d−1
4 · (detL)

1
d .2. The basis (c1, . . . , cd) satis�es ∏

i≤d ‖ci‖ ≤
(

28d2

x3 (δ − η2)−
d−1
4

)d

· (detL).



If the rows of the random matrix P are independent random ve
tors ea
hone pi
ked up uniformly inside the n dimensional unit ball then for any d, thereexists n0(d) su
h that for any n ≥ n0(d), with probability greater than 1 − 2−d,1. The ve
tor c1 satis�es ‖c1‖ ≤ 24d(det L)1/d.2. The basis (c1, . . . , cd) satis�es ∏

i≤d ‖ci‖ ≤ 24d2

(det L).Noti
e that one 
an take x = 2−d and obtain that with probability exponen-tially 
lose to 1 the output still satis�es properties similar to what would havebeen returned by LLL. On both model the length of the �rst ve
tor may alsobe expressed as an approximation of the �rst minimum of the latti
e by a fa
torsimilar to what would have been returned by LLL. Subse
tion 3.2 proves the
omplexity statement and Se
tion 4 the 
orre
tness in the 
ontinuous models.3.2 Complexity AnalysisWe now prove the 
omplexity statements of Theorem 2. We assume the reader isfamiliar with the Chinese Remainder Theorem (CRT for short). We refer to [14℄for an introdu
tion to the CRT.From the previous subse
tion, we know that Step 1 of the algorithm of Fig-ure 2 
osts O(dn log n) bit operations. Step 2 is a multipli
ation of a d × n ma-trix whose entries have length O(log n) with an n× d matrix whose entries havelength O(log B). The entries of the d× d matrix B′ have length O(log nB). Thematrix multipli
ation is performed with the CRT. One takes O
(

log nB
log log nB

) primenumbers, ea
h of them of length O(log log nB). The 
onstru
tion of the primesis 
omputationally negligible. The matrix multipli
ations modulo the primes
ost O(d2n log nB log log nB). The 
onversions of the input matri
es into matri-
es modulo the primes 
ost O(dn log2 nB), whereas the 
onversion of the outputmatri
es modulo the primes into the integer matrix B′ 
osts O(d2 log2 nB). The-orem 1 gives us that Step 3 
osts O
(

d5 log nB(d + log nB)
). At Step 4, we useagain the CRT. Thanks to Theorem 1, we know that the entries of the matrix Thave length O(d log nB). By an analysis similar to the one developed for Step 2,we get that the 
ost is bounded byO

(

d4 log nB(log d + log log nB) + d4 log2 nB
).At Step 5, we have to multiply an n×d matrix whose entries have length O(log B)with a d×d matrix whose entries have length O(d log nB). We split ea
h entry ofthe matrix T into d blo
ks of roughly Θ(log nB) bits, whi
h gives rise to d matri-
es of dimensions d×d and whose entries have length O(log nB). We thus have dbalan
ed matrix multipli
ations to perform. For ea
h of them we use the CRT.The overall bit-
ost of this step is O

(

d3n log nB log log nB + d2n log2 nB
). This
on
ludes the proof for the bit-
omplexity bound of the algorithm of Figure 2
laimed by Theorem 2.4 Probabilisti
 
orre
tness in two 
ontinuous modelsWe 
onsider an input basis (b1, . . . , bd) given by an n × d matrix B. Let B =

QBRB be its QR-fa
torization. Let P be a d × n random matrix, either fromthe Gaussian model or from the unit ball model. Let B′ = P ·B and P ′ the d×d



matrix P · QB. We are to show that, with high probability, if an integer linear
ombination of the 
olumns of B′ = P ′RB is a short ve
tor of the latti
e L(B′),then the same 
ombination of 
olumns of B will be a short ve
tor in L(B).Let c′ ∈ L(B′) be de�ned by c′ = B′x = P ′RBx, with x ∈ Z
d. Let c be de�nedby the same linear 
ombination of the bi's: c = Bx = QBRBx.Our goal is to 
ompare the ratios ‖c

′‖
(detL(B′))1/d and ‖c‖

(det L(B))1/d . Lemma 1provides an upper bound to detL(B′)/detL(B) whi
h holds with high proba-bility. Moreover if c′ ∈ L(B′) is the �rst ve
tor of the basis output by LLL,then ‖c‖ ≤ 2O(d)(det L(B′))
1
d . To 
ompare ‖c′‖ and ‖c‖, we pro
eed as follows.Sin
e the 
olumns of QB are orthonormal, we have ‖c‖ = ‖RBx‖. Weget ‖c‖ = ‖(P ′)−1c′‖ ≤

∥

∥(P ′)−1
∥

∥

2
· ‖c′‖. Lemma 3 provides an upper boundto ∥

∥(P ′)−1
∥

∥

2
whi
h also holds with high probability in the Gaussian model.Similarly, if (c′1, . . . , c

′
d) is an LLL-redu
ed basis of L(B′), then ∏

i≤d ‖c′i‖ ≤
2O(d2) detL(B′). If (c1, . . . , cd) is the basis of L(B) where any ci is expressed interms of the input basis B with the same integer linear 
ombination than c′i interms of B′, then: ∏d

i=1 ‖ci‖ =
∏d

i=1 ‖(P ′)−1c′i‖ ≤
∥

∥(P ′)−1
∥

∥

d

2
· ∏d

i=1 ‖c′i‖.To a
hieve 
omputations in the unit ball model, we de
ompose on
e morethe matrix P ′: let P ′ = RP ′QP ′ be the transpose of the QR-de
ompositionof (P ′)t. Sin
e the rows of QP ′ are orthonormal, we have ‖c‖ = ‖QP ′RBx‖. Weget ‖c‖ = ‖(RP ′)−1y‖ ≤ d
∥

∥(RP ′)−1
∥

∥ · ‖c′‖. Analogously to the previous 
ase,Lemma 5 provides an upper bound to ∥

∥(RP ′)−1
∥

∥ in the unit ball model. Thereis also an analogous upper bound for ∏d
i=1 ‖ci‖ that is dd

∥

∥(RP ′ )−1
∥

∥

d ∏d
i=1 ‖ci‖.Noti
e that in Theorem 2, one 
ould also 
ompare the �rst ve
tor output byour algorithm with the �rst minimum of the latti
e (as it is usually done in theLLL 
ase): we use the fa
ts that |c1‖ ≤ ‖(P ′)−1‖2 · ‖c′1‖, ‖c′1‖ ≤ 2O(d) ·λ(L′(B))and λ(L′(B)) ≤ ‖P ′‖2 · λ(L(B)). For the last inequality, 
onsider s ∈ Z

d su
hthat ‖Bs‖ = λ(L(B)). For the same reasons as above, ‖B′s‖ ≤ ‖P ′‖2 · ‖Bs‖. Itnow su�
es to see that λ(L(B′)) ≤ ‖B′s‖.Lemma 1. For any λ > 1, the following holds with probability at least 1−1/λ2:(i) In the Gaussian model, (detL(B′))2 ≤ dd · (1 + 3λ) · (det L(B))2.(ii) In the unit ball model, (det L(B′))2 ≤ d!
(n+2)d · (1 + 2dλ) · (detL(B))2.Proof. We have B′ = P ·B = P ·QB ·RB, whi
h gives that detL(B′) = det(P ·

QB) detRB = det(P ·QB) detL(B). It thus su�
es to fo
us on the determinantof the d × d matrix P ′ = P · QB.Noti
e �rst that the matrix QB 
an be extended to an n × n orthogonalmatrix Q′
B = (QB|·). We are interested in P ·QB, i.e., the d× d left sub-matrixof P ·Q′

B . Sin
e the both distributions of P that we 
onsider are invariant underright multipli
ation by an orthonormal matrix, the randommatri
es P and P ·Q′
Bfollow the same distribution. The distribution of P ·QB is thus the same as thedistribution of the left d × d sub-matrix of P , denoted by Pl.Proof of (i). The random matrix P is Gaussian. Let the rows of the d × d leftsub-matrix of P be denoted by p1, . . . , pd. Thanks to Hadamard's inequality, wehave det P ′ (d)

= detPl ≤
∏d

i=1 ‖pi‖. Let X be ∏d
i=1 ‖pi‖.



Any ‖pi‖2 is the sum of d squared independent Gaussians. Thus E(‖pi‖2) = dand E(‖pi‖4
) = d(d + 2). Sin
e they are independent, one gets:

E(X2) = dd and σ(X2) = E(X2) ·
√

f(d),where f(d) =
(

d+2
d

)d − 1 ≤ 9. Chebyshev's inequality gives that for λ > 0:
P

{

X2 − E(X2) > 3λE(X2)
}

≤ 1/λ2.Proof of (ii). Now P is distributed under the unit ball model. Let H be a d-dimensional linear subspa
e. Consider the distribution of the orthogonal pro-je
tions of the rows of P onto H . Sin
e the distribution of the rows of P isinvariant under rotation, the distribution of their orthogonal proje
tions is thesame no matter onto whi
h subspa
e H the proje
tion is performed. Let uspi
k up n− d additional ve
tors p1, . . . , pn−d in the n-dimensional unit ball andlet H be the orthogonal 
oset of the (almost surely (n − d)-dimensional) spa
espanned by these additional ve
tors: H =< p1, . . . , pn−d >⊥. Let the rows of Pbe denoted by pn−d+1, . . . , pn. Let us denote by p∗
1, . . . , p

∗
n the Gram-S
hmidtorthogonalization of the random ve
tors p1, . . . , pn. We then have det(P ·QB) =

∏n
i=n−d+1 ‖p∗

i ‖. Let X be the random variable 
orresponding to det(P · Q). Itis proved in [13℄ that the ‖p∗
i ‖2's are independent random variables and thattheir distribution is given by ‖p∗

i ‖2 (d)
= β

(

n−i+1
2 , i+1

2

). The Beta law is 
lassi
alin probability theory and its moments are well known:
E(‖p∗

i ‖2) = n−i+1
n+2 and E(‖p∗

i ‖4) = (n−i+1)(n−i+3)
(n+4)(n+2) .Then the independen
e of ‖p∗

i ‖2's leads to:
E(X2) = d!/(n + 2)d and σ2(X2) = E(X2) ·

√

f(d, n),where f(d, n) = (d+1)(d+2)
2

(

n+2
n+4

)d

− 1. By routine 
omputation, one seesthat √

f(d, n) ≤ 2d and 
on
lude thanks to Bienaymé's inequality. ⊓⊔4.1 Probabilisti
 
orre
tness in the Gaussian modelThe 
orre
tness 
laims of Theorem 2 derive from Lemmas 1 and 3. To boundthe quantity ‖(P ′)−1‖, we use the following result on the 
ondition number of aGaussian random matrix.Lemma 2 ([9℄). Let κ be the 
ondition number of the matrix P ′, i.e., ‖P ′‖ ·
‖(P ′)−1‖. Then for any λ ≥ 1, the probability that κ > λd is smaller than 4/λ.The last ingredient to the proof of 
orre
tness of theorem 2 is the following.Lemma 3. Let t < 1. Then ∥

∥(P ′)−1
∥

∥ ≤ 32d/t2 holds with probability greaterthan 1 − t.Proof. Let x < 1/2. We upper-bound by 1 the density fun
tion of the �rst entryof P ′. So with probability greater than 1 − 2x, we have ‖P ′‖2 ≥ ‖P ′‖2 ≥ x. Byusing Lemma 2, we obtain that with probability greater than 1 − 2x − 4/λ wehave ‖(P ′)−1‖2 ≤ λd/x. Setting x = t/4 and λ = 8/t provides the result. ⊓⊔



By using Lemmas 1 and 3, we see that, with probability greater than 1− t−
1/λ2, the �rst ve
tor 
omputed by the algorithm of Figure 2 satis�es:

‖c1‖ ≤ (δ − η2)−
d−1
4

32 · d 3
2 (1 + 3λ)

1
2d

t2
· (det L(B))

1
d .By 
hoosing λ =

√

2/x and t = x/2, we obtain the result 
laimed in Theorem 2.4.2 Probabilisti
 
orre
tness in the unit ball modelThe 
orre
tness 
laims of Theorem 2 derive from Lemmas 1 and 5.Lemma 4. Suppose that p1, . . . , pn are n ve
tors 
hosen independently and uni-formly in the n-dimensional unit ball. Then for any d ≤ n and any v < 1
4
√

n
:

P{min1≤k≤d ‖p∗
n−d+k‖ ≤ v} ≤ 4

√
nv.Proof. Let ℓi = ‖p∗

i ‖. The distributions of the ℓi's are given by [13℄:
P[ln−d+k ≤ v] =

2

B
(

d−k+1
2 , n−d+k+1

2

)

∫ v

0

ud−k(1 − u2)
n−d+k−1

2 du.Sin
e 1 − u2 ≤ 1, the integral smaller than vd−k+1. Rewriting the denominatorin terms of the Gamma fun
tion, we get P[ℓn−d+k ≤ v] ≤ 2 Γ(n+2
2 ) vd−k+1

Γ( d−k+1
2 )Γ( n−d+k+1

2 )
.Using 
lassi
al properties of the Gamma fun
tion, we obtain

P[ℓn−d+k ≤ v] ≤ 2

(

nv2

2

)

d−k+1
2 and P[ min

1≤k≤d
ℓn−d+k ≤ v] ≤ 2

d
∑

k=1

(

n v2

2

)

d−k+1
2

.Finally, if nv2 ≤ 1/2, we have P [min1≤k≤d ℓn−d+k ≤ v] ≤ 4
√

nv. ⊓⊔Lemma 5. Let P be a random matrix 
hosen as previously. Let P = RQ bethe transpose of the QR-de
omposition of P t. Let u and v be two reals satisfying
u < 1

√
3 and v < 1

4
√

n
. For any d there exists n1 su
h that for all n ≥ n1(d, u),with probability greater than 1 − d2( u2

1+u2 )d − 4
√

nv, we have:
∥

∥R−1
∥

∥ ≤ 1

v
(1 +

1

u
)d.Proof (Sket
h). First, noti
e that as explained in the proof of Lemma 1, the rowsof P ′ = P ·QB have the same distributions as the proje
tions p∗

n−d+1, pn−d+2[n−
d+1], . . . , pn[n−d+1] of n ve
tors p1, . . . , pn 
hosen independently and uniformlyin Bn(0, 1) in the orthogonal of the span of the n− d �rst ones. Let us denote ℓithe norm of p∗

i . The proof, available in the full version, the previous lemma and
lassi
al bounds on the Gamma and Beta fun
tions together with the followingtools:



� an asymptoti
 equivalent for P[ℓn+j/ℓn+i < v] when n grows to in�nity and
i and j are two 
onstants. This is available in [2℄(using the Lapla
e methodfor evaluating integrals asymptoti
ally)� an expli
it expression of the 
oe�
ients of R−1

P as a fun
tion of the 
oe�-
ients ri,j (using the fa
t that the matrix RP is lower triangular and so is
R−1

P as well) ⊓⊔By using Lemmas 1 and 5 after routine 
omputations we see that, withprobability greater than 1− 4
√

nv − d2( u2

1+u2 )d −λ−2, the �rst ve
tor 
omputedby the algorithm of Figure 2 satis�es:
‖c1‖ ≤ (δ − η2)−

d−1
4 · v ·

(

1 +
1

u

)d−1
4 · d 3

2 · λ 1
2d√

n + 2
(det L(B))

1
d .Finally we 
hoose λ = 2d/2, u =

√

1/8, v = 1/(2d√n).5 Experimental DataIn this se
tion, we report experiments supporting the validity of our method.The experiments are very promising in the sense that the random proje
tionte
hnique seems to work with a wide range of random matri
es and seems toperform better than what we proved. Indeed, the output bases are not only madeof ve
tors of small lengths, but LLL terminates very qui
kly given them as input.The experiments were performed using Magma [5℄ V2.14 on an AMD Opteron2.40GHz. Ea
h �gure 
orresponds to an average over at least ten samples. Weused the LLL routine with the default options (δ = 0.75, η = 0.51). Magma's LLLis based on the �oating-point L2 algorithm [18℄. The Magma 
ode 
orrespondingto our experiments is available under the GPL at: http://perso.ens-lyon.fr/damien.stehle/DIMREDUCTION.html. We 
onsidered the following familiesof random proje
tions.� R1(N): ea
h ve
tor is sampled independently in the sphere Bn

(

0, 10N
). The
omputations are performed with de
imal pre
ision N . The sampling wouldbe uniform if the 
omputations were performed with in�nite pre
ision.� R2(N): ea
h entry is Gaussian variate approximated to de
imal pre
ision N .� R3(N): ea
h entry is taken uniformly and independently in Z ∩

[

−2N , 2N
).� R4: ea
h matrix entry is taken uniformly and independently in {−1, 1}.The matri
es to be redu
ed are generated in the following way. We �rst 
reatea d × d random matrix of the following shape:

0

B

B

B

@

x1 x2 . . . xd

0 1 . . . 0... ... . . . ...
0 0 . . . 1

1

C

C

C

A

,where the xi's are 
hosen uniformly and independently in [0, B] for some �xed B.When B is large enough, the 
olumns form latti
e bases that are far from being



redu
ed. To obtain n × d latti
e bases, we multiply them by matri
es sampledfrom R3(100). This provides re
tangular bases that are far from being redu
edwith large and balan
ed entries. We tested our te
hnique with varying param-eters d, n and B and for the 
lasses of random proje
tions des
ribed above.We also measured the time LLL takes on the output basis. We 
ompared ourte
hnique with the dire
t LLL approa
h and with the Gram matrix approa
hdes
ribed in the introdu
tion (LLL-redu
ing the Gram matrix and applying the
omputed transformation to the input basis). We also 
ompared the lengths ofthe �rst ve
tors of the outputs. The results are des
ribed in Figures 3 and 4.
d 20 30 40 50 20 30 40 50Dire
t LLL 0.62 8.47 13.6 23.9 1.30 15.8 92.7 341.0Gram-based approa
h 0.40 2.26 8.41 25.3 0.52 3.70 16.3 70.7Random proje
tion approa
h 0.22 1.19 4.20 13.1 0.25 1.42 5.19 24.8Dire
t LLL on the output basis 0.01 0.03 0.07 0.10 0.02 0.09 0.41 1.22Fig. 3. Timings in se
onds of the di�erent LLL approa
hes for re
tangular latti
es,when the random matrix is 
hosen from R4 and n = 5d, B = 2100·d, (�rst four 
olumns)and n = d2/2, B = 2100·d (last four 
olumns).Figure 3 shows that the random proje
tion te
hnique 
an be signi�
antlyfaster than the dire
t te
hnique, in parti
ular when n is mu
h larger than d,even if one in
ludes the running-time of LLL on the output basis. Figure 4shows that the output quality is similar to that of the dire
t LLL approa
h. Theve
tor found by the random proje
tion method is most often longer than theone 
omputed by the dire
t LLL approa
h, but the ratio remains small. Thete
hnique seems to provide reasonably short ve
tors for all the afore-mentionedfamilies of proje
tions.

d 10 20 30 40 50
R1(100) 2.34/0.99 3.24/1.06 2.95/1.18 3.90/0.99 5.55/0.88
R2(100) 3.04/1.02 12.9/1.00 4.13/0.98 4.57/1.00 4.19/0.94
R2(1000) 3.02/1.04 3.07/0.87 4.40/1.12 5.55/1.16 5.02/1.07
R3(3) 3.54/1.03 6.67/1.04 3.10/1.02 6.52/0.98 6.21/0.95
R3(10) 2.98/0.96 2.97/0.99 4.37/1.09 5.58/1.03 3.70/0.99
R4 3.91/0.96 3.73/1.06 7.00/1.00 4.20/1.03 3.49/1.00Fig. 4. Ratios between the lengths of the �rst output ve
tors after the random proje
-tion te
hnique (respe
tively after LLL on the output basis) and after the dire
t LLL ap-proa
h (left of ea
h entry, respe
tively right of ea
h entry), with n = 3d and B = 2100·d.A
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