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2 CNRS/LIP/INRIA/ENS/UCBL, 46 allée d'Italie, F-69364 Lyon Cedex 07, Frane.damien.stehle�ens-lyon.fr � http://perso.ens-lyon.fr/damien.stehleAbstrat. Lattie redution algorithms suh as LLL and its �oating-point variants have a very wide range of appliations in omputationalmathematis and in omputer siene: polynomial fatorization, ryptol-ogy, integer linear programming, et. It an our that the lattie to beredued has a dimension whih is small with respet to the dimension ofthe spae in whih it lies. This happens within LLL itself. We desribea randomized algorithm spei�ally designed for suh retangular matri-es. It omputes bases satisfying, with very high probability, propertiessimilar to those returned by LLL. It signi�antly dereases the omplex-ity dependene in the dimension of the embedding spae. Our tehniquemainly onsists in randomly projeting the lattie on a lower dimensionalspae, by using two di�erent distributions of random matries.1 IntrodutionA lattie L is a set of integer linear ombinations of some linearly independentvetors b1, . . . , bd ∈ R
n. These vetors are alled a basis of the lattie. A givenlattie has in�nitely many bases, but their ardinality d is always the same: itis alled the lattie dimension. The dimension n of the basis vetors is alledthe degree of the lattie. The degree of a given lattie annot be smaller than itsdimension. In this artile, we are interested in latties whose degrees are muhhigher than their dimensions: we will informally all retangular suh latties.When the degree and the dimension math, the lattie is full-dimensional.Latties are an algorithmi tool that proved ruial in many areas in omputersiene and mathematis, ranging from ryptology [12, 1, 19℄ to omputer arith-meti [6, 7, 24℄ and algorithmi number theory [20, 11℄. They beame popularin 1982, when Arjen Lenstra, Hendrik Lenstra Jr, and László Lovász introduedthe renowned algorithm now known under the aronym LLL [17℄. Given a lat-tie basis made of integer vetors, the LLL algorithm disloses a short non-zerolattie vetor in time polynomial in the bit-size of the input. This algorithm hasomplexity O(d5n log3 B), where B is the maximum of the norms of the inputvetors. The pratial variants of LLL rely on �oating-point arithmeti (for theunderlying Gram-Shmidt orthogonalization), and the best fully proved suhvariant is due to Nguyen and Stehlé [18℄. The so-alled L2 algorithm has bit-omplexity O(d4n log B(d + log B)). We will onsider this variant here, thoughthe tehnique we introdue works with any other variant of LLL.



Our main result is to provide a randomized algorithm taking as input a lattiebasis and omputing another basis suh that with overwhelming probability (e.g.,as d grows to in�nity) this basis satis�es properties similar to those returned byLLL. If one neglets all terms polynomial in log d, log n and log log B, then it runsin time Õ(d2(d3 + n) log B(d + log B)): the ost dependene in the degree of thelattie is onsiderably weakened. Moreover, the bit-size of the integers involvedin the algorithm is essentially the same as the bit-size of the initial basis. Asimpler strategy than the one we develop is based on the Gram matrix (thesymmetri matrix of the pairwise inner-produts): one an ompute the LLL-transformation by reduing the Gram matrix. It is deterministi and dereasesthe ost dependene in n, but it su�ers from two drawbaks: the bit-sizes of theentries of the Gram matrix are essentially twie bigger than the ones of the inputbasis and the �oating-point inauraies an be signi�antly larger if we startfrom the Gram matrix. Strong heuristis [22℄ tend to show that one an use halfthe preision required by the L2 algorithm by disregarding the Gram matrix.Retangular latties arise in the two following situations. First of all, theysometimes our in Coppersmith's methods to �nd small roots of polynomialsover the integers and modulo an integer [12℄. These methods have numerousappliations in ryptology. The involved lattie bases are full-dimensional buthighly strutured. This struture sometimes reates situations where subsets ofthe input basis vetors su�e to provide the short vetors found by LLL. Thenumber of vetors to be onsidered an be drastially dereased, while theirembedding dimension remains onstant, thus reating retangular latties. Thisarises in [4℄, where Coppersmith's method is used to ryptanalyse RSA whenthe seret exponent is unusually small, and in [23℄, where it is used to �ndbad ases for the rounding of mathematial funtions, in the �eld of omputerarithmeti. In [4℄, the ratio between the degree and the dimension is onstant,while in [23℄ the degree grows as the square of the dimension. Another on-text where retangular latties arise is the LLL algorithm itself (and most ofits variants, inluding L2), even for full-dimensional latties. In LLL, the basisis redued inrementally. There is a main loop whose main parameter is an in-dex k. The meaning of this index is that in the urrent basis (b1, . . . , bd), thevetors b1, . . . , bk−1 are already LLL-redued and one is trying to extend thisproperty to b1, . . . , bk. At the beginning of the exeution, the index k is set to 2,while at the end it reahes d + 1. As long as the index k has not been beyondsome arbitrary k0, we are in fat applying LLL to the vetors b1, . . . , bk0 ∈ Z
n.The smaller the onsidered k0, the more retangular the lattie being redued.Our tehnique may be used within LLL to speed it up by a onstant fator.To ahieve the result, we develop a few tools, whih may be of independentinterest. Firstly, we derease the degree of the lattie by applying a random pro-jetion tehnique: we multiply the n × d input basis matrix by a random d × nmatrix, and show that by reduing the randomly projeted lattie we get usefulinformation for the initial lattie with very high probability. This resembles thefamous Johnson-Lindenstrauss theorem [15℄, whih shows that one an randomlymap N vetors in a O(log N)-dimensional spae without modifying signi�antly



the pairwise distanes between the vetors. We annot diretly apply suh amethod sine we do not onsider the input vetors solely, but their in�nitelymany integer linear ombinations (i.e., in our ase N would be in�nite). More-over, we need to keep the Eulidean struture of the initially spanned vetorspae. In partiular, we do not derease the degree of our lattie below its di-mension.In this paper we onsider two random projetions. In both models eah rowof the projetion matrix are hosen independently with a ommon distribution
µn. In the �rst model, alled the Gaussian model, νn = N (0, In), the stan-dard normal distribution. In other words, eah entry of the projetion matrixis sampled independently with the standard normal distribution N (0, 1). Theserandom matries have been studied extensively and we will rely on a resultabout their ondition numbers, due to Chen and Dongarra [9℄. In the seondrandom model, alled the unit ball model, νn is the uniform distribution inside
Bn(0, 1), the n-dimensional ball of radius 1 that is entered in 0. So eah row ofthe projetion matrix is sampled uniformly and independently inside Bn(0, 1).Suh random matries have been already studied in [13, 2, 3℄. We will rely onsome of the results of these papers. Notie that Rouault [21℄ reently studied theasymptoti behavior of the determinant of the lattie generated by the rows ofa retangular random matrix with both distributions that we onsider here.All the proofs in this paper are done in ontinuous random models, i.e. en-tries of our random matries are real numbers, whih is unsuitable to devisean algorithm. In pratie, random matries are generated with the assoiateddisretised law. Due to spae limitation, we hose to skip these di�ulties andto to desribe them in the full version of the paper.We performed tests on our redution tehnique. They worked very well formany di�erent lasses of random projetions, inluding easily samplable ones(suh as entries hosen independently and uniformly in {−1, 0, 1}). As theoret-ially predited, the speed-ups an be made arbitrarily large by inreasing theratio between the lattie degree and the lattie dimension.Related work. Chen and Storjohann [10℄ introdued in 2005 a probabilistitehnique to ompute a redued basis of a lattie given by a generating family:one is given more vetors than the lattie dimension. Our work an be seen asdual to theirs. We deal with vertially retangular matries by multiplying themon the left by a random matrix, whereas they deal with horizontally retangularmatries by multiplying them on the right by a random matrix. They use thearithmeti struture of the lattie whereas we onsider its geometri embedding.The two tehniques may be used together.Road-map of the paper. In Setion 2, we provide the neessary bakgroundon latties. In Setion 3, the ore of the paper, we desribe our randomizedalgorithm and perform its omplexity analysis. Setion 4 is devoted to show itsorretness with two di�erent soures of random matries. Finally, in Setion 5,we desribe our experiments.Notations. All osts are given for the bit-omplexity model and we assumethat we have a perfet soure of random bits. We use only naive arithmeti and



naive linear algebra. The results may be improved by using fast arithmeti andfast linear algebra. We let Bn(a, R) denote the n-dimensional ball of radius Rentered in a. If B is a matrix, we denote by L(B) the lattie spanned by itsolumns. We denote by ‖B‖2 the matrix norm indued by the Eulidean norm,also alled the spetral. The maximum of the absolute values of B's entries isthe usual max norm denoted by ‖B‖.2 Some Reminders on LattiesWe refer to [8℄ and [11℄ for omprehensive introdutions to latties and theiromputational aspets. We give below only the material that is neessary to thedesription and proof of our probabilisti redution tehnique.Let b1, . . . , bd ∈ R
n be linearly independent vetors. Their Gram-Shmidtorthogonalization is de�ned as follows: the vetor b∗i is the omponent of thevetor bi whih is orthogonal to the linear span of the vetors b1, . . . , bi−1. Wehave b∗

i = bi −
∑i−1

j=1
rj,i

rj,j
b∗j where rj,i =

〈bi,b
∗

j 〉
‖b∗

j‖ . If B is a full-rank n× d matrix,its QR-fatorization is the unique pair of matries (Q, R) suh that B = Q · R,
Q is an n × d matrix made of orthonormal olumn vetors and R is an uppertriangular d × d matrix with positive diagonal oe�ients. The Gram-Shmidtorthogonalization and the QR-fatorization of the matrix made of the bi's arelosely related: the i-th olumn of Q is b

∗

i

‖b∗

i ‖
and the matrix R is made of the ri,j 's.Let b1, . . . , bd and c1, . . . , cd be two bases of the same lattie. If B and Care the matries whose olumns are the bi's and ci's, then there exists a d × dinteger matrix T of determinant ±1 suh that B = C · T . Suh a matrix isalled unimodular. Moreover, if two matries an be obtained one another byunimodular matries, their olumns span the same lattie. Let L be a lattie.The length of any shortest non-zero vetor is alled the lattie minimum anddenoted by λ(L).Consider the bi's as a basis of a lattie L. The determinant of L is de-�ned by det L =

∏d
i=1 ‖b∗i ‖. This does not depend on the hoie of the basis.Hadamard's inequality gives that detL ≤ ∏d

i=1 ‖bi‖. Let δ ∈ (1/4, 1] and η ∈
[1/2,

√
δ). The bi's are said (δ, η)-LLL-redued if for any i < j, we have |ri,j | ≤

η · ri,i, and for any i, we have δ · r2
i−1,i−1 ≤ r2

i,i + r2
i−1,i. When introdued in [17℄,LLL-redution referred to the pair (3/4, 1/2). The vetors of a LLL-reduedbasis are relatively short. In partiular, we have ‖b1‖ ≤ (δ − η2)−

d−1
4 (detL)

1
dand ∏d

i=1 ‖bi‖ ≤ (δ − η2)−
d(d−1)

4 (det L). We refer to [18℄ for a proof of this fatand for the ost of the algorithm mentioned in the following theorem. The prop-erty on the unimodular transformation matrix is lassial and a proof an befound in [16℄.Theorem 1. Let η ∈ (1/2, 1) and δ ∈ (η2, 1). There exists an algorithm suhthat when given as input any linearly independent vetors b1, . . . , bd ∈ Z
n itomputes a (δ, η)-LLL-redued basis of the lattie they span in time O(d4n(d +

log B) log B), where B = maxi ‖bi‖. Furthermore, the bit-lengths of the entriesof the transformation matrix are bounded by O(d log B).



3 Probabilisti Redution of Retangular Latties3.1 High-Level Desription of the AlgorithmWe are given an n × d integer matrix B and try to �nd a small integer linearombination of its olumns. Instead of applying an LLL-type algorithm diretly,we apply a random d × n dimensional projetion P to the matrix and LLL-redue the d× d projeted matrix B′ = P ·B. By doing so, we derease the ostwith respet to n. We wish that with high probability the unimodular transfor-mation T obtained by LLL-reduing B′ somehow redues B as well. Figure 1sums up the general method. The top arrow is omputationally expensive andis approximately and probabilistially simulated by the suession of plain ar-rows, that are heaper. The main result of the paper is the theorem followingthe desription of the algorithm.PSfrag replaements B

B′ = P · B C′ = B′
· T

C = B · T

LLLDiret LLL
Fig. 1. High-level desription of the algorithm of Figure 2Input: A lattie basis B = (b1, . . . , bd) ∈ Z

n×d.Output: Another basis of the same lattie, hopefully made of short vetors.Parameters: (δ, η) suh that η ∈ (1/2, 1) and δ ∈ (η2, 1).1. Generate a random d × n matrix P with a �xed distribution.2. Compute B′ = P · B.3. Compute C′ = LLLδ,η(B′).4. Compute T = (B′)−1
· C′.5. Return B · T .Fig. 2. Probabilisti redution of a retangular lattieTheorem 2. Let (b1, . . . , bd) ∈ Z

n×d be a basis of a lattie L with B =
max ‖bi‖. The algorithm of Figure 2 will ompute a basis (c1, . . . , cd) of L withthe expeted running time:

O
(

d5 log nB(d + log nB) + d2n log nB(log nB + d log log nB)
)

.If the entries of the random matrix P are independent Gaussian randomvariables, then for all x < 1 then with probability greater than 1 − x,1. The vetor c1 satis�es ‖c1‖ ≤ 28d2

x3 (δ − η2)−
d−1
4 · (detL)

1
d .2. The basis (c1, . . . , cd) satis�es ∏

i≤d ‖ci‖ ≤
(

28d2

x3 (δ − η2)−
d−1
4

)d

· (detL).



If the rows of the random matrix P are independent random vetors eahone piked up uniformly inside the n dimensional unit ball then for any d, thereexists n0(d) suh that for any n ≥ n0(d), with probability greater than 1 − 2−d,1. The vetor c1 satis�es ‖c1‖ ≤ 24d(det L)1/d.2. The basis (c1, . . . , cd) satis�es ∏

i≤d ‖ci‖ ≤ 24d2

(det L).Notie that one an take x = 2−d and obtain that with probability exponen-tially lose to 1 the output still satis�es properties similar to what would havebeen returned by LLL. On both model the length of the �rst vetor may alsobe expressed as an approximation of the �rst minimum of the lattie by a fatorsimilar to what would have been returned by LLL. Subsetion 3.2 proves theomplexity statement and Setion 4 the orretness in the ontinuous models.3.2 Complexity AnalysisWe now prove the omplexity statements of Theorem 2. We assume the reader isfamiliar with the Chinese Remainder Theorem (CRT for short). We refer to [14℄for an introdution to the CRT.From the previous subsetion, we know that Step 1 of the algorithm of Fig-ure 2 osts O(dn log n) bit operations. Step 2 is a multipliation of a d × n ma-trix whose entries have length O(log n) with an n× d matrix whose entries havelength O(log B). The entries of the d× d matrix B′ have length O(log nB). Thematrix multipliation is performed with the CRT. One takes O
(

log nB
log log nB

) primenumbers, eah of them of length O(log log nB). The onstrution of the primesis omputationally negligible. The matrix multipliations modulo the primesost O(d2n log nB log log nB). The onversions of the input matries into matri-es modulo the primes ost O(dn log2 nB), whereas the onversion of the outputmatries modulo the primes into the integer matrix B′ osts O(d2 log2 nB). The-orem 1 gives us that Step 3 osts O
(

d5 log nB(d + log nB)
). At Step 4, we useagain the CRT. Thanks to Theorem 1, we know that the entries of the matrix Thave length O(d log nB). By an analysis similar to the one developed for Step 2,we get that the ost is bounded byO

(

d4 log nB(log d + log log nB) + d4 log2 nB
).At Step 5, we have to multiply an n×d matrix whose entries have length O(log B)with a d×d matrix whose entries have length O(d log nB). We split eah entry ofthe matrix T into d bloks of roughly Θ(log nB) bits, whih gives rise to d matri-es of dimensions d×d and whose entries have length O(log nB). We thus have dbalaned matrix multipliations to perform. For eah of them we use the CRT.The overall bit-ost of this step is O

(

d3n log nB log log nB + d2n log2 nB
). Thisonludes the proof for the bit-omplexity bound of the algorithm of Figure 2laimed by Theorem 2.4 Probabilisti orretness in two ontinuous modelsWe onsider an input basis (b1, . . . , bd) given by an n × d matrix B. Let B =

QBRB be its QR-fatorization. Let P be a d × n random matrix, either fromthe Gaussian model or from the unit ball model. Let B′ = P ·B and P ′ the d×d



matrix P · QB. We are to show that, with high probability, if an integer linearombination of the olumns of B′ = P ′RB is a short vetor of the lattie L(B′),then the same ombination of olumns of B will be a short vetor in L(B).Let c′ ∈ L(B′) be de�ned by c′ = B′x = P ′RBx, with x ∈ Z
d. Let c be de�nedby the same linear ombination of the bi's: c = Bx = QBRBx.Our goal is to ompare the ratios ‖c

′‖
(detL(B′))1/d and ‖c‖

(det L(B))1/d . Lemma 1provides an upper bound to detL(B′)/detL(B) whih holds with high proba-bility. Moreover if c′ ∈ L(B′) is the �rst vetor of the basis output by LLL,then ‖c‖ ≤ 2O(d)(det L(B′))
1
d . To ompare ‖c′‖ and ‖c‖, we proeed as follows.Sine the olumns of QB are orthonormal, we have ‖c‖ = ‖RBx‖. Weget ‖c‖ = ‖(P ′)−1c′‖ ≤

∥

∥(P ′)−1
∥

∥

2
· ‖c′‖. Lemma 3 provides an upper boundto ∥

∥(P ′)−1
∥

∥

2
whih also holds with high probability in the Gaussian model.Similarly, if (c′1, . . . , c

′
d) is an LLL-redued basis of L(B′), then ∏

i≤d ‖c′i‖ ≤
2O(d2) detL(B′). If (c1, . . . , cd) is the basis of L(B) where any ci is expressed interms of the input basis B with the same integer linear ombination than c′i interms of B′, then: ∏d

i=1 ‖ci‖ =
∏d

i=1 ‖(P ′)−1c′i‖ ≤
∥

∥(P ′)−1
∥

∥

d

2
· ∏d

i=1 ‖c′i‖.To ahieve omputations in the unit ball model, we deompose one morethe matrix P ′: let P ′ = RP ′QP ′ be the transpose of the QR-deompositionof (P ′)t. Sine the rows of QP ′ are orthonormal, we have ‖c‖ = ‖QP ′RBx‖. Weget ‖c‖ = ‖(RP ′)−1y‖ ≤ d
∥

∥(RP ′)−1
∥

∥ · ‖c′‖. Analogously to the previous ase,Lemma 5 provides an upper bound to ∥

∥(RP ′)−1
∥

∥ in the unit ball model. Thereis also an analogous upper bound for ∏d
i=1 ‖ci‖ that is dd

∥

∥(RP ′ )−1
∥

∥

d ∏d
i=1 ‖ci‖.Notie that in Theorem 2, one ould also ompare the �rst vetor output byour algorithm with the �rst minimum of the lattie (as it is usually done in theLLL ase): we use the fats that |c1‖ ≤ ‖(P ′)−1‖2 · ‖c′1‖, ‖c′1‖ ≤ 2O(d) ·λ(L′(B))and λ(L′(B)) ≤ ‖P ′‖2 · λ(L(B)). For the last inequality, onsider s ∈ Z

d suhthat ‖Bs‖ = λ(L(B)). For the same reasons as above, ‖B′s‖ ≤ ‖P ′‖2 · ‖Bs‖. Itnow su�es to see that λ(L(B′)) ≤ ‖B′s‖.Lemma 1. For any λ > 1, the following holds with probability at least 1−1/λ2:(i) In the Gaussian model, (detL(B′))2 ≤ dd · (1 + 3λ) · (det L(B))2.(ii) In the unit ball model, (det L(B′))2 ≤ d!
(n+2)d · (1 + 2dλ) · (detL(B))2.Proof. We have B′ = P ·B = P ·QB ·RB, whih gives that detL(B′) = det(P ·

QB) detRB = det(P ·QB) detL(B). It thus su�es to fous on the determinantof the d × d matrix P ′ = P · QB.Notie �rst that the matrix QB an be extended to an n × n orthogonalmatrix Q′
B = (QB|·). We are interested in P ·QB, i.e., the d× d left sub-matrixof P ·Q′

B . Sine the both distributions of P that we onsider are invariant underright multipliation by an orthonormal matrix, the randommatries P and P ·Q′
Bfollow the same distribution. The distribution of P ·QB is thus the same as thedistribution of the left d × d sub-matrix of P , denoted by Pl.Proof of (i). The random matrix P is Gaussian. Let the rows of the d × d leftsub-matrix of P be denoted by p1, . . . , pd. Thanks to Hadamard's inequality, wehave det P ′ (d)

= detPl ≤
∏d

i=1 ‖pi‖. Let X be ∏d
i=1 ‖pi‖.



Any ‖pi‖2 is the sum of d squared independent Gaussians. Thus E(‖pi‖2) = dand E(‖pi‖4
) = d(d + 2). Sine they are independent, one gets:

E(X2) = dd and σ(X2) = E(X2) ·
√

f(d),where f(d) =
(

d+2
d

)d − 1 ≤ 9. Chebyshev's inequality gives that for λ > 0:
P

{

X2 − E(X2) > 3λE(X2)
}

≤ 1/λ2.Proof of (ii). Now P is distributed under the unit ball model. Let H be a d-dimensional linear subspae. Consider the distribution of the orthogonal pro-jetions of the rows of P onto H . Sine the distribution of the rows of P isinvariant under rotation, the distribution of their orthogonal projetions is thesame no matter onto whih subspae H the projetion is performed. Let uspik up n− d additional vetors p1, . . . , pn−d in the n-dimensional unit ball andlet H be the orthogonal oset of the (almost surely (n − d)-dimensional) spaespanned by these additional vetors: H =< p1, . . . , pn−d >⊥. Let the rows of Pbe denoted by pn−d+1, . . . , pn. Let us denote by p∗
1, . . . , p

∗
n the Gram-Shmidtorthogonalization of the random vetors p1, . . . , pn. We then have det(P ·QB) =

∏n
i=n−d+1 ‖p∗

i ‖. Let X be the random variable orresponding to det(P · Q). Itis proved in [13℄ that the ‖p∗
i ‖2's are independent random variables and thattheir distribution is given by ‖p∗

i ‖2 (d)
= β

(

n−i+1
2 , i+1

2

). The Beta law is lassialin probability theory and its moments are well known:
E(‖p∗

i ‖2) = n−i+1
n+2 and E(‖p∗

i ‖4) = (n−i+1)(n−i+3)
(n+4)(n+2) .Then the independene of ‖p∗

i ‖2's leads to:
E(X2) = d!/(n + 2)d and σ2(X2) = E(X2) ·

√

f(d, n),where f(d, n) = (d+1)(d+2)
2

(

n+2
n+4

)d

− 1. By routine omputation, one seesthat √

f(d, n) ≤ 2d and onlude thanks to Bienaymé's inequality. ⊓⊔4.1 Probabilisti orretness in the Gaussian modelThe orretness laims of Theorem 2 derive from Lemmas 1 and 3. To boundthe quantity ‖(P ′)−1‖, we use the following result on the ondition number of aGaussian random matrix.Lemma 2 ([9℄). Let κ be the ondition number of the matrix P ′, i.e., ‖P ′‖ ·
‖(P ′)−1‖. Then for any λ ≥ 1, the probability that κ > λd is smaller than 4/λ.The last ingredient to the proof of orretness of theorem 2 is the following.Lemma 3. Let t < 1. Then ∥

∥(P ′)−1
∥

∥ ≤ 32d/t2 holds with probability greaterthan 1 − t.Proof. Let x < 1/2. We upper-bound by 1 the density funtion of the �rst entryof P ′. So with probability greater than 1 − 2x, we have ‖P ′‖2 ≥ ‖P ′‖2 ≥ x. Byusing Lemma 2, we obtain that with probability greater than 1 − 2x − 4/λ wehave ‖(P ′)−1‖2 ≤ λd/x. Setting x = t/4 and λ = 8/t provides the result. ⊓⊔



By using Lemmas 1 and 3, we see that, with probability greater than 1− t−
1/λ2, the �rst vetor omputed by the algorithm of Figure 2 satis�es:

‖c1‖ ≤ (δ − η2)−
d−1
4

32 · d 3
2 (1 + 3λ)

1
2d

t2
· (det L(B))

1
d .By hoosing λ =

√

2/x and t = x/2, we obtain the result laimed in Theorem 2.4.2 Probabilisti orretness in the unit ball modelThe orretness laims of Theorem 2 derive from Lemmas 1 and 5.Lemma 4. Suppose that p1, . . . , pn are n vetors hosen independently and uni-formly in the n-dimensional unit ball. Then for any d ≤ n and any v < 1
4
√

n
:

P{min1≤k≤d ‖p∗
n−d+k‖ ≤ v} ≤ 4

√
nv.Proof. Let ℓi = ‖p∗

i ‖. The distributions of the ℓi's are given by [13℄:
P[ln−d+k ≤ v] =

2

B
(

d−k+1
2 , n−d+k+1

2

)

∫ v

0

ud−k(1 − u2)
n−d+k−1

2 du.Sine 1 − u2 ≤ 1, the integral smaller than vd−k+1. Rewriting the denominatorin terms of the Gamma funtion, we get P[ℓn−d+k ≤ v] ≤ 2 Γ(n+2
2 ) vd−k+1

Γ( d−k+1
2 )Γ( n−d+k+1

2 )
.Using lassial properties of the Gamma funtion, we obtain

P[ℓn−d+k ≤ v] ≤ 2

(

nv2

2

)

d−k+1
2 and P[ min

1≤k≤d
ℓn−d+k ≤ v] ≤ 2

d
∑

k=1

(

n v2

2

)

d−k+1
2

.Finally, if nv2 ≤ 1/2, we have P [min1≤k≤d ℓn−d+k ≤ v] ≤ 4
√

nv. ⊓⊔Lemma 5. Let P be a random matrix hosen as previously. Let P = RQ bethe transpose of the QR-deomposition of P t. Let u and v be two reals satisfying
u < 1

√
3 and v < 1

4
√

n
. For any d there exists n1 suh that for all n ≥ n1(d, u),with probability greater than 1 − d2( u2

1+u2 )d − 4
√

nv, we have:
∥

∥R−1
∥

∥ ≤ 1

v
(1 +

1

u
)d.Proof (Sketh). First, notie that as explained in the proof of Lemma 1, the rowsof P ′ = P ·QB have the same distributions as the projetions p∗

n−d+1, pn−d+2[n−
d+1], . . . , pn[n−d+1] of n vetors p1, . . . , pn hosen independently and uniformlyin Bn(0, 1) in the orthogonal of the span of the n− d �rst ones. Let us denote ℓithe norm of p∗

i . The proof, available in the full version, the previous lemma andlassial bounds on the Gamma and Beta funtions together with the followingtools:



� an asymptoti equivalent for P[ℓn+j/ℓn+i < v] when n grows to in�nity and
i and j are two onstants. This is available in [2℄(using the Laplae methodfor evaluating integrals asymptotially)� an expliit expression of the oe�ients of R−1

P as a funtion of the oe�-ients ri,j (using the fat that the matrix RP is lower triangular and so is
R−1

P as well) ⊓⊔By using Lemmas 1 and 5 after routine omputations we see that, withprobability greater than 1− 4
√

nv − d2( u2

1+u2 )d −λ−2, the �rst vetor omputedby the algorithm of Figure 2 satis�es:
‖c1‖ ≤ (δ − η2)−

d−1
4 · v ·

(

1 +
1

u

)d−1
4 · d 3

2 · λ 1
2d√

n + 2
(det L(B))

1
d .Finally we hoose λ = 2d/2, u =

√

1/8, v = 1/(2d√n).5 Experimental DataIn this setion, we report experiments supporting the validity of our method.The experiments are very promising in the sense that the random projetiontehnique seems to work with a wide range of random matries and seems toperform better than what we proved. Indeed, the output bases are not only madeof vetors of small lengths, but LLL terminates very quikly given them as input.The experiments were performed using Magma [5℄ V2.14 on an AMD Opteron2.40GHz. Eah �gure orresponds to an average over at least ten samples. Weused the LLL routine with the default options (δ = 0.75, η = 0.51). Magma's LLLis based on the �oating-point L2 algorithm [18℄. The Magma ode orrespondingto our experiments is available under the GPL at: http://perso.ens-lyon.fr/damien.stehle/DIMREDUCTION.html. We onsidered the following familiesof random projetions.� R1(N): eah vetor is sampled independently in the sphere Bn

(

0, 10N
). Theomputations are performed with deimal preision N . The sampling wouldbe uniform if the omputations were performed with in�nite preision.� R2(N): eah entry is Gaussian variate approximated to deimal preision N .� R3(N): eah entry is taken uniformly and independently in Z ∩

[

−2N , 2N
).� R4: eah matrix entry is taken uniformly and independently in {−1, 1}.The matries to be redued are generated in the following way. We �rst reatea d × d random matrix of the following shape:

0

B

B

B

@

x1 x2 . . . xd

0 1 . . . 0... ... . . . ...
0 0 . . . 1

1

C

C

C

A

,where the xi's are hosen uniformly and independently in [0, B] for some �xed B.When B is large enough, the olumns form lattie bases that are far from being



redued. To obtain n × d lattie bases, we multiply them by matries sampledfrom R3(100). This provides retangular bases that are far from being reduedwith large and balaned entries. We tested our tehnique with varying param-eters d, n and B and for the lasses of random projetions desribed above.We also measured the time LLL takes on the output basis. We ompared ourtehnique with the diret LLL approah and with the Gram matrix approahdesribed in the introdution (LLL-reduing the Gram matrix and applying theomputed transformation to the input basis). We also ompared the lengths ofthe �rst vetors of the outputs. The results are desribed in Figures 3 and 4.
d 20 30 40 50 20 30 40 50Diret LLL 0.62 8.47 13.6 23.9 1.30 15.8 92.7 341.0Gram-based approah 0.40 2.26 8.41 25.3 0.52 3.70 16.3 70.7Random projetion approah 0.22 1.19 4.20 13.1 0.25 1.42 5.19 24.8Diret LLL on the output basis 0.01 0.03 0.07 0.10 0.02 0.09 0.41 1.22Fig. 3. Timings in seonds of the di�erent LLL approahes for retangular latties,when the random matrix is hosen from R4 and n = 5d, B = 2100·d, (�rst four olumns)and n = d2/2, B = 2100·d (last four olumns).Figure 3 shows that the random projetion tehnique an be signi�antlyfaster than the diret tehnique, in partiular when n is muh larger than d,even if one inludes the running-time of LLL on the output basis. Figure 4shows that the output quality is similar to that of the diret LLL approah. Thevetor found by the random projetion method is most often longer than theone omputed by the diret LLL approah, but the ratio remains small. Thetehnique seems to provide reasonably short vetors for all the afore-mentionedfamilies of projetions.

d 10 20 30 40 50
R1(100) 2.34/0.99 3.24/1.06 2.95/1.18 3.90/0.99 5.55/0.88
R2(100) 3.04/1.02 12.9/1.00 4.13/0.98 4.57/1.00 4.19/0.94
R2(1000) 3.02/1.04 3.07/0.87 4.40/1.12 5.55/1.16 5.02/1.07
R3(3) 3.54/1.03 6.67/1.04 3.10/1.02 6.52/0.98 6.21/0.95
R3(10) 2.98/0.96 2.97/0.99 4.37/1.09 5.58/1.03 3.70/0.99
R4 3.91/0.96 3.73/1.06 7.00/1.00 4.20/1.03 3.49/1.00Fig. 4. Ratios between the lengths of the �rst output vetors after the random proje-tion tehnique (respetively after LLL on the output basis) and after the diret LLL ap-proah (left of eah entry, respetively right of eah entry), with n = 3d and B = 2100·d.Aknowledgments.We are grateful to Rihard Brent, Philippe Flajolet, Guil-laume Hanrot, Luis Pardo, Brigitte Vallée and Gilles Villard for helpful disus-sions. This work was partially funded by the LaRedA projet of the AgeneNationale de la Reherhe. It was initiated while the �rst author was hostedwithin the omputer siene laboratory of the University of Paris 7 (LIAFA)and ompleted while the seond author was hosted within the Magma group atthe University of Sydney.
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