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1. INTRODUCTION

A lattice is a discrete subgroup of R
n. Any lattice L has a lattice basis, i.e., a

set {b1, . . . ,bd} of linearly independent vectors such that the lattice is the set of

all integer linear combinations of the bi’s: L[b1, . . . ,bd] =
{

∑d
i=1 xibi, xi ∈ Z

}

.

A lattice basis is usually not unique, but all the bases have the same number of
elements, called the dimension or rank of the lattice. In dimension higher than
one, there are infinitely many bases, but some are more interesting than others:
they are called reduced. Roughly speaking, a reduced basis is a basis made of
reasonably short vectors that are almost orthogonal. Finding good reduced bases
has proved invaluable in many fields of computer science and mathematics, par-
ticularly in cryptology (see for instance the survey [Nguyen and Stern 2001]); and
the computational complexity of lattice problems has attracted considerable atten-
tion in the past few years (see for instance the book [Micciancio and Goldwasser
2002]), following Ajtai’s discovery [1996] of a connection between the worst-case
and average-case complexities of certain lattice problems. Lattice reduction can be
viewed as a geometric generalization of gcd computations.

There exist many different notions of reduction, such as those of Hermite [1850],
Minkowski [1896], Hermite-Korkine-Zolotarev (HKZ) [Hermite 1905; Korkine and
Zolotarev 1873], Venkov [Ryskov 1972], Lenstra-Lenstra-Lovász (LLL) [Lenstra
et al. 1982], etc. Among these, the most intuitive one is perhaps Minkowski’s, and
up to dimension four it is arguably optimal compared to all other known reductions,
because it reaches all the so-called successive minima of a lattice. However, finding
a Minkowski-reduced basis or a HKZ-reduced basis is NP-hard under randomized
reductions as the dimension increases, because such bases contain a shortest lattice
vector and the shortest vector problem is NP-hard under randomized reductions [Aj-
tai 1998]. In order to better understand lattice reduction, it is tempting to study
the low-dimensional case. Improvements in low-dimensional lattice reduction may
lead to significant running-time improvements in high-dimensional lattice reduc-
tion, as the best lattice reduction algorithms known in theory [Gama and Nguyen
2008; Schnorr 1987] and in practice [Schnorr and Euchner 1994; Schnorr and Hörner
1995] for high-dimensional lattices are based on a repeated use of low-dimensional
HKZ-reduction.

Lagrange’s algorithm [1773] computes in quadratic time (without fast integer
arithmetic [Schönhage and Strassen 1971]) a Minkowski-reduced basis of any two-
dimensional lattice. This algorithm, which is a natural generalization of Euclid’s gcd
algorithm, was also described later by Gauss [1801], and is often erroneously called
Gauss’ algorithm. It was extended to dimension three by Vallée [1986] and Semaev
[2001]: Semaev’s algorithm is quadratic without fast integer arithmetic, whereas
Vallée’s has cubic complexity. More generally, Helfrich [1985] showed by means of
the LLL algorithm [Lenstra et al. 1982] how to compute in cubic time a Minkowski-
reduced basis of any lattice of fixed (arbitrary) dimension, but the hidden com-
plexity constant grows very fast with the dimension. Finally, Eisenbrand and Rote
described in [2001] a lattice basis reduction algorithm with a quasi-linear time com-
plexity in any fixed dimension, but it is based on exhaustive enumerations and the
complexity seems to blow up very quickly when the dimension increases. Moreover,
they use fast integer arithmetic [Schönhage and Strassen 1971].
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In this paper, we generalize Lagrange’s algorithm to arbitrary dimension. Al-
though the obtained greedy algorithm is arguably the simplest lattice basis reduc-
tion algorithm known, its analysis becomes remarkably more and more complex as
the dimension increases. Semaev [2001] was the first to prove that the algorithm
was still polynomial time in dimension three, but the polynomial-time complexity
and the output quality remained open for higher dimension (see [Semaev 2001,
Remark 5]). We show that up to dimension four, the greedy algorithm computes
a Minkowski-reduced basis in quadratic time without fast arithmetic (which gives
hope for a quasi-linear lime algorithm using fast arithmetic). This immediately im-
plies that a shortest vector and a HKZ-reduced basis can be computed in quadratic
time up to dimension four. Independently of the running time improvement, we
hope our analysis may help to design new lattice reduction algorithms.

We propose two different approaches, both based on geometric properties of low-
dimensional lattices, which generalize two different analyzes of Lagrange’s algo-
rithm. The global approach generalizes up to dimension four the two-dimensional
analysis of Vallée [1991], and that of Akhavi [2000] where it was used to bound
the number of loop iterations of the so-called optimal LLL algorithm in any di-
mension. Our generalization is different from this one. Roughly speaking, the
global approach considers the following question: what does happen when the al-
gorithm stops working well, that is, when it no longer shortens much the longest
basis vector? The local approach considers a dual question: can we bound directly
the number of consecutive steps necessary to significantly shorten the basis vec-
tors? In dimension two, this method is very close to the argument given by Semaev
in [2001], which is itself very different from previous analyzes of Lagrange’s algo-
rithm [Kaib and Schnorr 1996; Lagarias 1980; Vallée 1991]. In dimension three,
Semaev’s analysis [2001] is based on a rather exhaustive analysis of all the possible
behaviors of the algorithm, which involves quite a few computations and makes it
difficult to extend to higher dimension. We replace the main technical arguments
by geometrical considerations on two-dimensional lattices. This makes it possible
to extend the analysis to dimension four, by carefully studying geometrical prop-
erties of three-dimensional lattices, although a few additional technical difficulties
appear.

The global approach provides a quicker proof of the main result, but less insight
on the local behavior of the algorithm, i.e., how the algorithm makes progress in
successive loop iterations. The local approach relies on more subtle geometrical
properties of low-dimensional lattices, including the shapes of their Voronöı cells.

Road-map of the paper: In Section 2, we recall useful facts about lattices. In
Section 3, we recall Lagrange’s algorithm and give two different complexity analyzes.
In Section 4 we describe its natural greedy generalization. Section 5 provides an
efficient low-dimensional closest vector algorithm, which is the core of the greedy
algorithm. In Section 6, we give our global approach to bound the number of
loop iterations of the algorithm, and in Section 7 we prove the claimed quadratic
complexity bound. In Section 8 we give an alternative proof for the bound of
the number of loop iterations, the so-called local approach. In dimension below
four, the quadratic complexity bound can also be derived from Sections 8 and 7
independently of Section 6. In Section 9, we prove geometrical results on low-
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Fig. 1. The graph of the proof of the complexity bound.

dimensional lattices that are useful to prove the so-called Gap Lemma, an essential
ingredient of the local approach of Section 8. Finally, in Section 10, we explain
the difficulties arising in dimension 5. The structure of the proof of the complexity
bound is given in Figure 1.

Preliminary remark: The present article is an extended and improved version
of the conference paper [Nguyen and Stehlé 2004]. Interestingly, the cancellation
technique of Section 7 has been slightly modified to give a precise analysis of a
provable floating-point LLL algorithm, in [Nguyen and Stehlé 2005], leading to the
first LLL algorithm with quadratic complexity. In the conference version [Nguyen
and Stehlé 2004], we claimed that all variants of the LLL algorithm were at least
cubic in any fixed dimension: this is no longer true since [Nguyen and Stehlé 2005],
which was motivated by the present low-dimensional work.

Notation: Let ‖ · ‖ and 〈·, ·〉 denote respectively the Euclidean norm and inner
product of R

n; variables in bold are vectors; whenever the notation [b1, . . . ,bd]≤ is
used, we have ‖b1‖ ≤ . . . ≤ ‖bd‖ and in such a case, we say that the bi’s are ordered.
Besides, the complexity model we use is the RAM model and the computational
cost is measured in elementary operations on bits. In any complexity statement, we
assume that the underlying lattice L is integral (L ⊆ Z

n). If x ∈ R, then bxe denotes
a nearest integer to x. For any n ∈ N, Sn denotes the group of the permutations
of J1, nK.
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2. PRELIMINARIES

We assume the reader is familiar with geometry of numbers (see [Cassels 1971;
Martinet 2002; Siegel 1989]).

2.1 Some Basic Definitions

We first recall some basic definitions related to Gram-Schmidt orthogonalization
and the first minima.

Gram matrix and orthogonality-defect. Let b1, . . . ,bd be vectors. The Gram
matrix G(b1, . . . ,bd) of b1, . . . ,bd is the d × d symmetric matrix (〈bi,bj〉)1≤i,j≤d

formed by all the inner products. The vectors b1, . . . ,bd are linearly independent
if and only if the determinant of G(b1, . . . ,bd) is not zero. The volume vol L of a
lattice L is the square root of the determinant of the Gram matrix of any basis of L.
The orthogonality-defect of a basis (b1, . . . ,bd) of L is defined as δ⊥(b1, . . . ,bd) =

(
∏d

i=1 ‖bi‖)/vol L: it is always greater than 1, with equality if and only if the basis
is orthogonal.

Gram-Schmidt orthogonalization and size-reduction. Let (b1, . . . ,bd) be
linearly independent vectors. The Gram-Schmidt orthogonalization (b∗

1, . . . ,b
∗
d) is

defined as follows: b∗
i is the component of bi that is orthogonal to the subspace

spanned by the vectors b1, . . . ,bi−1. Any basis vector bi can be expressed as
a (real) linear combination of the previous b∗

j ’s. We define the Gram-Schmidt
coefficients µi,j ’s as the coefficients of these linear combinations, namely, for any i ∈
J1, dK:

bi = b∗
i +

∑

j<i

µi,jb
∗
j .

We have the equality µi,j =
〈bi,b

∗

j 〉
‖b∗

j
‖2 , for any j < i.

A lattice basis (b1, . . . ,bd) is said to be size-reduced if its Gram-Schmidt coef-
ficients µi,j ’s all satisfy: |µi,j | ≤ 1/2. Size-reduction was introduced by Lagrange
[1773], and can be easily achieved by subtracting to each bi a suitable linear com-

bination
∑i−1

j=1 xjbj of the previous bj ’s, for each i = 2, . . . , d.

Successive minima and the Shortest Vector Problem. Let L be a d-dimen-
sional lattice in R

n. For 1 ≤ i ≤ d, the i-th minimum λi(L) is the radius of the
smallest closed ball centered at the origin containing at least i linearly independent
lattice vectors. The most famous lattice problem is the shortest vector problem
(SVP): given a basis of a lattice L, find a lattice vector whose norm is exactly λ1(L).
There always exist linearly independent lattice vectors vi’s such that ‖vi‖ = λi(L)
for all i. Amazingly, as soon as d ≥ 4 such vectors do not necessarily form a lattice
basis, and when d ≥ 5 there may not even exist a lattice basis reaching all the
minima.
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2.2 Different Types of Strong Reduction

Several types of strong lattice basis reductions are often considered in the liter-
ature. The following list is not exhaustive but includes the most frequent ones:
Minkowski’s and Hermite-Korkine-Zolotarev’s. Notice that though mathematically
different, these two reductions are computationally very close in low dimension:
one can derive a reduced basis of one type from a reduced basis of the other type
very efficiently.

Minkowski reduction. A basis [b1, . . . ,bd]≤ of a lattice L is Minkowski-reduced
if for all 1 ≤ i ≤ d, the vector bi has minimal norm among all lattice vectors bi

such that [b1, . . . ,bi]≤ can be extended to a basis of L. Equivalently:

Lemma 2.2.1. A basis [b1, . . . ,bd]≤ of a lattice L is Minkowski-reduced if and
only if for any i ∈ J1, dK and for any integers x1, . . . , xd such that xi, . . . , xd are
altogether coprime, we have:

‖x1b1 + . . . + xdbd‖ ≥ ‖bi‖.
With the above statement, one might think that to ensure that a given basis

is Minkowski reduced, there are infinitely many conditions to be checked. Fortu-
nately, a classical result states that in any fixed dimension, it is sufficient to check
a finite subset of them. This result is described as the second finiteness theorem
in [Siegel 1989]. Several sufficient sets of conditions are possible. We call Minkowski
conditions such a subset with minimal cardinality. Minkowski conditions have been
obtained by Tammela [1973] up to dimension 6. As a consequence, in low dimen-
sion, one can check very quickly if a basis is Minkowski-reduced by checking these
conditions.

Theorem 2.2.2 [Minkowski conditions]. Let d ≤ 6. A basis [b1, . . . ,bd]≤
of L is Minkowski-reduced if and only if for any i ≤ d and for any integers x1, . . . , xd

that satisfy both conditions below, we have the inequality:

‖x1b1 + . . . + xdbd‖ ≥ ‖bi‖.
(1 ) The integers xi, . . . , xd are altogether coprime,

(2 ) For some permutation σ of J1, dK, (|xσ(1)|, . . . , |xσ(d)|) appears in the list below
(where blanks eventually count as zeros).

1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 2
1 1 1 1 1 1
1 1 1 1 1 2
1 1 1 1 2 2
1 1 1 1 2 3

Moreover this list is minimal, which means that if any condition is disregarded, then
a basis can satisfy all the others without being Minkowski-reduced.
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A basis of a d-dimensional lattice that reaches the d minima must be Minkowski-
reduced, but a Minkowski-reduced basis may not reach all the minima, except
the first four ones (see [van der Waerden 1956]): if [b1, . . . ,bd]≤ is a Minkowski-
reduced basis of L, then for all 1 ≤ i ≤ min(d, 4) we have ‖bi‖ = λi(L), but the best
theoretical upper bound known for ‖bd‖/λd(L) grows exponentially in d. Therefore,
a Minkowski-reduced basis is optimal in a natural sense up to dimension four. A
related classical result (see [van der Waerden 1956]) states that the orthogonality-
defect of a Minkowski-reduced basis can be upper-bounded by a constant that only
depends on the lattice dimension.

Hermite reduction. Hermite [1905] defined different types of reduction, which
sometimes creates confusions. In particular, Hermite reduction differs from what we
call below Hermite-Korkine-Zolotarev reduction. An ordered basis [b1, . . . ,bd]≤ is
Hermite-reduced if it is the smallest basis of L for the lexicographic order: for
any other basis [b′

1, . . . ,b
′
d]≤ of L, we must have ‖b1‖ = ‖b′

1‖, . . . , ‖bi−1‖ =
‖b′

i−1‖ and ‖b′
i‖ > ‖bi‖ for some i ∈ J1, dK. In particular a Hermite-reduced basis

is always Minkowski-reduced. The converse is true as long as d ≤ 6 (see [Ryskov
1972]).

Hermite-Korkine-Zolotarev reduction. This reduction is often called more
simply Korkine-Zolotarev reduction. A basis (b1, . . . ,bd) of a lattice L is Hermite-
Korkine-Zolotarev-reduced (HKZ-reduced for short) if ‖b1‖ = λ1(L) and for any i ≥
2, the vector bi is a lattice vector having minimal nonzero distance to the linear
span of b1, . . . ,bi−1, and the basis is size-reduced, that is, its Gram-Schmidt co-
efficients µi,j have absolute values ≤ 1/2. In high dimension, the reduction of
Hermite-Korkine-Zolotarev [Hermite 1905; Korkine and Zolotarev 1873] seems to
be stronger than Minkowski’s: all the elements of a HKZ-reduced basis are known
to be very close to the successive minima (see [Lagarias et al. 1990]), while in the
case of Minkowski reduction the best upper bound known for for the approximation
to the successive minima grows exponentially with the dimension [van der Waerden
1956], as mentioned previously. In dimension two, HKZ reduction is equivalent to
Minkowski’s. But in dimension three, there are lattices such that no Minkowski-
reduced basis is HKZ-reduced:

Lemma 2.2.3. Let b1 = [100, 0, 0],b2 = [49, 100, 0] and b3 = [0, 62, 100]. Then
L[b1,b2,b3]≤ has no basis that is simultaneously Minkowski-reduced and HKZ-
reduced.

Proof. First, the basis [b1,b2,b3]≤ is not HKZ-reduced because |µ3,2| = 62
100 >

1/2. But it is Minkowski-reduced (it suffices to check the Minkowski conditions to
prove it). Therefore [b1,b2,b3]≤ reaches the first three minima. More precisely, the
vectors ±b1 are the only two vectors reaching the first minimum, the vectors ±b2

are the only two vectors reaching the second minimum and the vectors ±b3 are
the only two vectors reaching the third minimum. If the lattice L[b1,b2,b3]≤ had
a basis which was both Minkowski-reduced and HKZ-reduced, this basis would
reach the first three minima and would be of the kind [±b1,±b2,±b3]≤, which
contradicts the fact that [b1,b2,b3]≤ is not HKZ-reduced.
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2.3 Voronöı Cell and Voronöı Vectors

This subsection is useful for the local approach of Sections 8 and 9 and can be
disregarded by the reader interested only in the global approach.

The Voronöı cell [Voronöı 1908] of a lattice L = L[b1, . . . ,bd]≤, denoted by
Vor(b1, . . . ,bd), is the set of vectors x in the linear span of L that are closer to 0

than to any other lattice vector: for all v ∈ L, we have ‖x − v‖ ≥ ‖x‖, that
is ‖v‖2 ≥ 2〈v,x〉. The Voronöı cell is a finite polytope that tiles the linear span
of L by translations by lattice vectors. We extend the notation Vor(b1, . . . ,bd) to
the case where the first vectors may be zero (the remaining vectors being linearly
independent): Vor(b1, . . . ,bd) denotes the Voronöı cell of the lattice spanned by the
non-zero bi’s. A vector v ∈ L is called a Voronöı vector if the vector v/2 belongs to
the Voronöı cell (in which case the vector v/2 will be on the boundary of the Voronöı
cell). A vector v ∈ L is a strict Voronöı vector if v/2 is contained in the interior of
a (d−1)-dimensional facet of the Voronöı cell. A classical result states that Voronöı
vectors correspond to the minima of the cosets of L/2L. We say that (x1, . . . , xd) ∈
Z

d is a possible Voronöı coord (respectively possible strict Voronöı coord) if there
exists a Minkowski-reduced basis [b1, . . . ,bd]≤ such that x1b1 + . . . + xdbd is a
Voronöı vector (respectively strict Voronöı vector). In his PhD thesis, Tammela
[1973] listed the possible strict Voronöı coords up to dimension 6. We will notice
later that the set of possible Voronöı coords is strictly larger than the set of possible
strict Voronöı coords.

Theorem 2.3.1 [Tammela 1973; Stogrin 1977]. Let d ≤ 6. The possible
strict Voronöı coords in dimension d are the possible Voronöı coordinates in di-
mension d − 1 and the d-tuples (x1, . . . , xd) such that there exists a permutation σ
of J1, dK such that (|xσ(1)|, . . . , |xσ(d)|) appears in the d-th block of the table below:

1
1 1
1 1 1
1 1 1 1
1 1 1 2
1 1 1 1 1
1 1 1 1 2
1 1 1 2 2
1 1 1 2 3

1 1 1 1 1 1
1 1 1 1 1 2
1 1 1 1 1 3
1 1 1 1 2 2
1 1 1 1 2 3
1 1 1 2 2 2
1 1 1 2 2 3
1 1 1 2 2 4
1 1 2 2 2 3
1 1 1 2 3 3
1 1 1 2 3 4
1 1 2 2 3 4
1 2 2 2 3 3

In some parts of the article, we will deal with Voronöı coordinates with respect
to other types of reduced bases: the kind of reduction considered will be clear from
the context. The covering radius ρ(L) of a lattice L is half of the diameter of
the Voronöı cell. The closest vector problem (CVP) is a non-homogeneous version
of the SVP: given a basis of a lattice and an arbitrary vector x of R

n, find a
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Input: A basis [u, v]≤ with its Gram matrix G = (gi,j)1≤i,j≤2.
Output: A reduced basis of L[u, v] with its Gram matrix.

1. Repeat

2. r := v − xu where x :=
j

〈u,v〉

‖u‖2

m

: when computing x =
j

g1,2

g1,1

m

, also

compute the remainder y = g1,2 − xg1,1 of the centered Euclidean division.
3. v := u,
4. u := r,
5. Update the Gram matrix of (u,v) as follows:

swap g2,2 and g1,1; then let g1,2 := y and g1,1 := g1,1 − x(y + g1,2).
6. Until ‖u‖ ≥ ‖v‖.
7. Return [v, u]≤ and its Gram matrix (setting g2,1 = g1,2).

Fig. 2. Lagrange’s algorithm.

lattice vector v minimizing the distance ‖v − x‖. In other words, if y denotes
the orthogonal projection of the vector x onto the linear span of L, the goal is to
find v ∈ L such that y − v belongs to the Voronöı cell of L.

We have seen that if [b1, . . . ,bd]≤ is Minkowski-reduced, then the Voronöı coor-
dinates are confined. There is a result due to Delone and Sandakova (see [Delone
and Sandakova 1961; Stogrin 1977]) claiming a stronger statement: if the basis is
reduced, then the (real) coordinates towards the basis vectors of any point of the
Voronöı cell are bounded. This result holds in any dimension and for different types
of basis reductions, but the following is sufficient for our needs:

Theorem 2.3.2. The following statements hold:

(1 ) Let [b1,b2]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2). Write u =
xb1 + yb2. Then |x| < 3/4 and |y| ≤ 2/3.

(2 ) Let [b1,b2,b3]≤ be a Minkowski-reduced basis and u ∈ Vor(b1,b2,b3). Write
u = xb1 + yb2 + zb3. Then |x| < 3/2, |y| ≤ 4/3 and |z| ≤ 1.

3. TWO CLASSICAL ANALYZES OF LAGRANGE’S ALGORITHM

Lagrange’s algorithm – described in Figure 2 – can be seen as a two-dimensional
generalization of the centered Euclidean algorithm.

At Step 2 of each loop iteration, the vector u is shorter than the vector v,
and one would like to shorten v, while preserving the fact that [u,v] is a lattice
basis. This can be achieved by subtracting from v a multiple xu of u, because
such a transformation is unimodular. The optimal choice (to make the norm of
the vector v decrease as much as possible for this loop iteration) is when xu is the
closest vector to v, in the one-dimensional lattice spanned by u. This gives rise

to x :=
⌊

〈u,v〉
‖u‖2

⌉

. In other words, we size-reduce the basis [u,v]. The values 〈u,v〉
and ‖u‖2 are extracted from G(u,v), which is updated efficiently at Step 5 of each
loop iteration. Indeed, at the beginning of the loop iteration, the Gram matrix

ACM Journal Name, Vol. 0, No. 0, 00 2008.
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is

(

‖u‖2 〈u,v〉
〈u,v〉 ‖v‖2

)

, whereas at the end of the iteration it becomes:

(

‖v‖2 − 2x〈u,v〉 + x2‖u‖2 〈u,v〉 − x‖u‖2

〈u,v〉 − x‖u‖2 ‖u‖2

)

.

The analysis of Lagrange’s algorithm is summarized by the following classical result:

Theorem 3.0.3. Given as input any basis [u,v]≤ of a lattice L with its Gram
matrix, Lagrange’s algorithm described in Fig. 2 outputs a Minkowski-reduced basis
of the lattice L in time O(log ‖v‖ · [1 + log ‖v‖ − log λ1(L)]).

Note that if the Gram matrix of [u,v]≤ is not given, then it can be computed in
time O(log2 ‖v‖), so the running time of Lagrange’s algorithm becomes O(log ‖v‖ ·
[1 + log ‖v‖]), which is still quadratic. Since computing the Gram matrix is not
cheap, Lagrange’s algorithm must update the Gram matrix in an efficient way, as
done in Step 5.

Theorem 3.0.3 is not trivial to prove. It is not even clear a priori why Lagrange’s
algorithm would output a Minkowski-reduced basis. The correctness statement of
the theorem comes from Minkowski’s conditions in dimension two, that is Theo-
rem 2.2.2. Here, we give two different approaches showing that Lagrange’s algo-
rithm has a quadratic bit complexity, a global analysis and a local analysis. The
main goal of this paper is to generalize both analyzes to higher dimensions.

In dimension two, the main difficulty is to prove that the total number of loop
iterations is O(1 + log ‖v‖ − log λ1(L)), where v is the initial second basis vector.
We will first show this with the global approach, then with the local approach.
Finally, we will deduce the quadratic bit-complexity.

3.1 The Global Analysis of Lagrange’s Algorithm

The global analysis of Lagrange’s algorithm can be found in [Vallée 1991] and
[Akhavi 2000], where a weaker version of Theorem 3.0.3 was proved with a cubic
(and not quadratic) bit-complexity. In this approach, we split the loop iterations
of the algorithm into two phases: a first phase with O(1+ log ‖v‖− logλ1(L)) loop
iterations, and a second phase with O(1) loop iterations.

To do so, let η such that 0 < η < 1. We define the first phase as all the
first consecutive loop iterations such that r (defined at Step 2) is at least 1 + η
shorter than the current v. Thus, the product of the lengths of the basis vectors
decreases at least by a factor 1 + η at each loop iteration. Since this product is
always ≥ λ1(L)2, it follows that the number of loop iterations of the first phase is
O(1 + log ‖v‖ − log λ1(L)).

It remains to prove that the second phase has O(1) loop iterations, independently
of the lattice. After the first phase, either the algorithm terminates in which case
we are done, or during the last loop iteration of the first phase, the triplet (u,v, r)
satisfies right after Step 2:

‖r‖ < ‖u‖ ≤ ‖v‖ ≤ (1 + η)‖r‖.
We show that the basis [u,v]≤ has bounded orthogonality-defect. Let v∗ = v −
〈u,v〉
‖u‖2 u be the component of v orthogonal to u. Then ‖r‖2 ≤ ‖v∗‖2 + ‖u‖2/4
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because [u, r] is size-reduced. Since ‖u‖ ≤ ‖v‖ ≤ (1 + η)‖r‖, this implies that:

‖v∗‖2 ≥
(

1

(1 + η)2
− 1

4

)

· ‖v‖2,

where 1/(1 + η)2 − 1/4 > 0 since 0 < η < 1. It follows that [u,v]≤ has bounded
orthogonality-defect, namely:

δ⊥(u,v) =
‖v‖
‖v∗‖ ≤ 1/

√

1

(1 + η)2
− 1

4
.

This implies that the second phase has O(1) loop iterations, where the constant
is independent of the lattice. Indeed, because the algorithm is greedy, each new
vector “ri” created during each Step 2 of the second phase cannot be longer than u.
But the number of lattice vectors w ∈ L such that ‖w‖ ≤ ‖u‖ is O(1). To see this,
write w as w = w1u+w2v where w1, w2 ∈ Z. Since |〈w,v∗〉| ≤ ‖v‖2, it follows that
|w2| ≤ ‖v‖2/‖v∗‖2 = δ⊥(u,v)2. So the integer w2 has only O(1) possible values:
note that if η is chosen sufficiently small, we can even ensure δ⊥(u,v)2 < 2 and
therefore |w2| ≤ 1. And for each value of w2, the number of possibilities for the
integer w1 is at most two.

3.2 The Local Analysis of Lagrange’s Algorithm

We provide another proof of the classical result that Lagrange’s algorithm has
quadratic complexity. Compared to other proofs, our local method closely resem-
bles the recent one of Semaev [2001], itself relatively different from [Akhavi and
Moreira dos Santos 2004; Kaib and Schnorr 1996; Lagarias 1980; Vallée 1991]. The
analysis is not optimal (as opposed to [Vallée 1991]) but its basic strategy can
be extended up to dimension four. This strategy gives more information on the
behavior of the algorithm. Consider the value of x at Step 2:

—If x = 0, this must be the last iteration of the loop.

—If |x| = 1, there are two cases:

—If ‖v − xu‖ ≥ ‖u‖, then this is the last loop iteration.

—Otherwise we have ‖u−xv‖ < ‖u‖, which means that u can be shortened with
the help of v. This can only happen if this is the first loop iteration, because
of the greedy strategy: the vector u is the former vector v.

—Otherwise |x| ≥ 2, which implies that xu is not a Voronöı vector of the lattice
spanned by u. Intuitively, this means that xu is far from Vor(u), so that v−xu is
considerably shorter than v. More precisely, if v∗ denotes again the component of
the vector v that is orthogonal to u, we have ‖v‖2 > 3‖v−xu‖2 if this is not the

last loop iteration. Indeed, recall that v = 〈v,u〉
‖u‖2 u+v∗. Since x =

⌊

〈v,u〉
‖u‖2

⌉

is ≥ 2,

one has ‖v‖2 ≥ (3/2)2‖u‖2 + ‖v∗‖2. Then since v− xu =
(

〈v,u〉
‖u‖2 −

⌊

〈v,u〉
‖u‖2

⌉)

u +

v∗, one has ‖v‖2 ≥ 2‖u‖2+‖v−xu‖2, which is greater than 3‖v−xu‖2 provided
that this is not the last loop iteration.

This shows that the product of the norms of the basis vectors decreases by a
multiplicative factor of at least

√
3 at each loop iteration except possibly the
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first and last ones. Thus, the number τ of loop iterations is upper bounded by
O(1 + log ‖v‖ − log λ1(L)).

3.3 Quadratic Bit-Complexity

We proved in two different ways that the total number of loop iterations is O(1 +
log ‖v‖−logλ1(L)). To complete the proof of Theorem 3.0.3, it remains to carefully
analyze the cost of each Step 2 and Step 5. Consider first the cost of each Step 2,
that is, the computation of the pair (x, y) by a centered Euclidean division of

〈u,v〉 by ‖u‖2. Since |〈u,v〉|
‖u‖2 ≤ ‖v‖

‖u‖ and ‖u‖ ≤ ‖v‖, the bit complexity of Step 2

is O(log ‖v‖· [1+log‖v‖− log ‖u‖]). For Step 5, the most expensive operation is the
multiplication x(y+g1,2). Since |x| ≤ 1/2+‖v‖/‖u‖ and |y+g1,2| ≤ ‖u‖2+|〈u,v〉| ≤
2‖v‖2‖, the bit complexity of Step 5 is O(log ‖v‖· [1+log ‖v‖− log ‖u‖]) like Step 2.

If we denote by ui and vi the values of u and v at the i-th iteration, then vi+1 =
ui and we obtain that the bit complexity of Lagrange’s algorithm is bounded by:

O(

τ
∑

i=1

log ‖vi‖ · [1 + log ‖vi‖ − log ‖ui‖])

= O(log ‖v‖ ·
τ
∑

i=1

[1 + log ‖vi‖ − log ‖vi+1‖])

= O(log ‖v‖ · [τ + log ‖v‖ − log λ1(L)]),

where τ = O(1 + log ‖v‖ − log λ1) is the total number of loop iterations. This
completes the proof of Theorem 3.0.3.

4. A GREEDY GENERALIZATION OF LAGRANGE’S ALGORITHM

In the previous section, we viewed Lagrange’s algorithm as a greedy algorithm
based on the one-dimensional CVP. It suggests a natural generalization to arbitrary
dimension that we call the greedy reduction algorithm. We study properties of the
bases output by the greedy algorithm by defining a new type of reduction and
comparing it to Minkowski’s reduction.

4.1 The Greedy Reduction Algorithm

Lagrange’s algorithm suggests the general greedy algorithm described in Figure 3,
which uses reduction and closest vectors in dimension d − 1 to reduce bases in
dimension d. We make a few simple remarks on the algorithm. If the Gram matrix
is not given, we may compute it in time O(log2 ‖bd‖) for a fixed dimension d, at the
beginning of the algorithm. Step 3 is easy: if this is the first iteration of the loop, the
basis is already ordered; otherwise, [b1, . . . ,bd−1] is already ordered, and only bd

has to be inserted among b1, . . . ,bd−1. At Step 4, the greedy algorithm calls itself
recursively in dimension d − 1: the Gram matrix G(b1, . . . ,bd−1) does not need
to be computed before calling the algorithm, since G(b1, . . . ,bd) is already known.
At this point, we do not explain how Step 5 (the computation of closest vectors)
is performed: of course, Kannan’s closest vector algorithms [Kannan 1983] could
be used but they do not seem to suffice to prove a quadratic bit complexity of the
greedy algorithm. We will describe in Section 5 a tailored closest vector algorithm
that allows us to prove this complexity bound. And this closest vector algorithm
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Name: Greedy(b1, . . . ,bd).
Input: A basis [b1, . . . , bd]≤ with its Gram matrix G = (gi, j)1≤i,j≤d.
Output: An ordered basis of L[b1, . . . ,bd] with its Gram matrix.

1. If d = 1, return b1.
2. Repeat
3. Sort (b1, . . . , bd) by increasing lengths and update the Gram matrix,
4. [b1, . . . ,bd−1]≤ := Greedy(b1, . . . ,bd−1),
5. Compute a vector c ∈ L[b1, . . . ,bd−1] closest to bd,
6. bd := bd − c and update the Gram matrix efficiently,
7. Until ‖bd‖ ≥ ‖bd−1‖.
8. Return [b1, . . . , bd]≤ and its Gram matrix.

Fig. 3. The (recursive) greedy lattice basis reduction algorithm in dimension d.

will also efficiently update the Gram matrix, as required by Step 6: a naive update
of the Gram matrix would not be enough to ensure a quadratic bit complexity.
Notice that for d = 2, the greedy algorithm is exactly Lagrange’s algorithm. From
a geometrical point of view, the goal of Steps 5 and 6 is to make sure that the
orthogonal projection of the vector bd onto the lattice spanned by [b1, . . . ,bd−1]≤
lies in the Voronöı cell of that sublattice.

An easy proof by induction on d shows that the algorithm terminates. Indeed,
the new vector bd of Step 6 is strictly shorter than bd−1 if the loop does not end
at Step 7. Thus the product of the norms of the bi’s decreases strictly at each
iteration of the loop that is not the last one. But for all B, the number of lattice
vectors of norm less than B is finite, which completes the proof.

Although the description of the greedy algorithm is fairly simple, analyzing its
complexity seems very difficult. Even the two-dimensional case of Lagrange’s algo-
rithm is not trivial.

4.2 An Iterative Description of the Greedy Algorithm

We will also use an iterative version of the greedy algorithm, described in Figure 4,
and which performs exactly the same operations as the recursive version. With this
alternative description, the resemblance with the usual LLL algorithm is clearer:
the closest vector of Step 2 is replaced in the LLL algorithm by an approximate
closest vector and the length condition of Step 4 is replaced by the so-called Lovász
condition. We will use this iterative description in the bit-complexity analysis,
namely in Section 7, while Sections 6 and 8 will focus on the recursive description
to show that the number of loop iterations of the iterative algorithm is at most
linear in the bit-size of the input.

The main result of the paper is the following:

Theorem 4.2.1. Let d ≤ 4. Given as input an ordered basis [b1, . . . ,bd]≤ and
its Gram matrix, the greedy algorithm of Figures 3 and 4 based on the closest vector
algorithm of Section 5 outputs a Minkowski-reduced basis of L[b1, . . . ,bd], using a
number of bit operations bounded by O(log ‖bd‖ · [1 + log ‖bd‖ − log λ1(L)]), where
the O() constant is independent of the lattice. Moreover, in dimension five, the
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Name: Iterative − Greedy(b1, . . . ,bd).
Input: A basis [b1, . . . ,bd]≤ with its Gram matrix.
Output: An ordered basis of L[b1, . . . ,bd] with its Gram matrix.

1. k := 2. While k ≤ d, do:
2. Compute a vector c ∈ L[b1, . . . ,bk−1] closest to bk,
3. bk := bk − c and update the Gram matrix,
4. If ‖bk‖ ≥ ‖bk−1‖, then k := k + 1
5. Else insert bk at his length rank k′ (the vectors are sorted by increasing
lengths), update the Gram matrix, k := k′ + 1.

Fig. 4. The iterative description of the greedy algorithm.

output basis may not be Minkowski-reduced.

4.3 Greedy Reduction

Here we study some properties of the bases output by the greedy algorithm. As pre-
viously mentioned, it is not clear why Lagrange’s algorithm outputs a Minkowski-
reduced basis. But it is obvious that the output basis [u,v]≤ satisfies ‖u‖ ≤ ‖v‖ ≤
‖v − xu‖ for all x ∈ Z. This suggests the following definition:

Definition 4.3.1. An ordered basis [b1, . . . ,bd]≤ is greedy-reduced if for all 2 ≤
i ≤ d and for all x1, . . . , xi−1 ∈ Z:

‖bi‖ ≤ ‖bi + x1b1 + . . . + xi−1bi−1‖.

In other words, we have the following recursive definition: a one-dimensional basis
is always greedy-reduced, and an ordered basis [b1, . . . ,bd]≤ is greedy-reduced if
and only if [b1, . . . ,bd−1]≤ is greedy-reduced and the projection of bd onto the
linear span of b1, . . . ,bd−1 lies in the Voronöı cell Vor(b1, . . . ,bd−1). The greedy
algorithm always outputs a greedy-reduced basis and if the input basis is greedy-
reduced, then the output basis will be equal to the input basis. The fact that
Lagrange’s algorithm outputs Minkowski-reduced bases is a particular case of the
following result, which compares greedy and Minkowski reductions:

Lemma 4.3.2. The following statements hold:

(1 ) Any Minkowski-reduced basis is greedy-reduced.

(2 ) A basis of d ≤ 4 vectors is Minkowski-reduced if and only if it is greedy-reduced.

(3 ) If d ≥ 5, there exists a basis of d vectors that is greedy-reduced but not Min-
kowski-reduced.

Proof. The first statement follows directly from the definitions of the Minkowski
and greedy reductions. The second one is obvious if one considers Theorem 2.2.2:
up to dimension four the conditions involve only zeros and ones. It now remains to
give a counterexample in dimension five. We consider the lattice spanned by the
columns of the following basis:
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2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 + ε 1 + ε

2
0 0 0 0 1













,

where ε ∈
(

0,−2 + 4
√

3
3

)

.

The upper bound on ε implies that ‖b1‖ ≤ ‖b2‖ ≤ ‖b3‖ < ‖b4‖ < ‖b5‖. The
given basis is not Minkowski-reduced because it does not reach the first four minima
of the lattice: 2b5−b4−b3−b2−b1 =t (0, 0, 0, 0, 2) is linearly independent with the
vectors b1,b2,b3 and is strictly shorter than the vectors b4 and b5. However, the
basis is greedy-reduced: b1,b2,b3,b4 are pairwise orthogonal, and the vector b5

cannot be longer than any linear integer combination of those four vectors added
to b5.

As a consequence the greedy algorithm outputs a Minkowski-reduced basis up to
dimension four, thus reaching all the successive minima of the lattice. Furthermore,
beyond dimension four, the greedy algorithm outputs a greedy-reduced basis that
may not be Minkowski-reduced. The following lemma shows that greedy-reduced
bases may considerably differ from Minkowski-reduced bases beyond dimension
four:

Lemma 4.3.3. Let d ≥ 5. For any ε > 0, there exists a lattice L and a greedy-

reduced basis [b1, . . . ,bd]≤ of L such that λ1(L)
‖b1‖ ≤ ε and vol L

Q

d
i=1

‖bi‖
≤ ε.

Proof. Consider the greedy-reduced basis spanned by the columns of the fol-
lowing matrix:













2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 ε













,

where ε > 0 is small. Then 2b5 −b1 −b2 −b3 −b4 is a lattice vector of length 2ε.
Moreover, the vector b1 is of length 2, which proves the first fact. Finally, we
have vol L = 16ε and the product of the ‖bi‖’s is larger than 16, which proves the
second statement of the lemma.

Such properties do not hold for Minkowski-reduced bases. The first phenomenon
shows that greedy-reduced bases may be arbitrarily far from the first minimum
while the second one shows that a greedy-reduced basis may be far from being
orthogonal.

5. THE CLOSEST VECTOR PROBLEM IN LOW DIMENSIONS

We now explain how Steps 5 of the recursive greedy algorithm and 2 of the iterative
variant can be implemented efficiently up to d = 5. Step 5 is trivial only when d ≤
2. Otherwise, notice that the (d − 1)-dimensional basis [b1, . . . ,bd−1]≤ is greedy-
reduced, and therefore Minkowski-reduced as long as d ≤ 5. And we know the
Gram matrix of [b1, . . . ,bd−1,bd]≤.
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Theorem 5.0.4. Let d ≥ 1 be an integer. There exists an algorithm that, given
as input a Minkowski-reduced basis [b1, . . . ,bd−1]≤, a target vector t longer than
all the bi’s and the Gram matrix of [b1, . . . ,bd−1, t]≤, outputs a closest lattice
vector c to t (in the lattice spanned by the vectors b1, . . . ,bd−1) and the Gram
matrix of (b1, . . . ,bd−1, t− c), in time:

O (log ‖t‖ · [1 + log ‖t‖ − log ‖bα‖]) ,

where α ∈ J1, dK is any integer such that [b1, . . . ,bα−1, t]≤ is Minkowski-reduced.

The index α appearing in the statement of the theorem requires an explanation.
Consider the iterative version of the greedy algorithm. The index k can increase
and decrease rather arbitrarily. For a given loop iteration, the index α tells us
which vectors have not changed since the last loop iteration for which the index k
had the same value. Intuitively, the reason why we can make the index α appear in
the statement of the theorem is that we are working in the orthogonal complement
of the vectors b1, . . . ,bα−1. The use of the index α is crucial. If we were using the
weaker bound O(log ‖t‖ · [1+log ‖t‖− log ‖b1‖]), we would not be able to prove the
quadratic bit complexity of the greedy algorithm. Rather, we would obtain a cubic
complexity bound. This index α is also crucial for the quadratic bit complexity of
the floating-point LLL described in [Nguyen and Stehlé 2005].

Intuitively, the algorithm works as follows: an approximation of the coordinates
(with respect to the bi’s) of the closest vector is computed using linear algebra and
the approximation is then corrected by a suitable exhaustive search.

Proof. Let h be the orthogonal projection of the vector t onto the linear span
of b1, . . . ,bd−1. We do not compute h but introduce it to simplify the description

of the algorithm. There exist y1, . . . , yd−1 ∈ R such that h =
∑d−1

i=1 yibi. If c =
∑d−1

i=1 xibi is a closest vector to t, then h−c belongs to Vor(b1, . . . ,bd−1). However,
for any C > 0, the coordinates (with respect to any basis of orthogonality-defect ≤
C) of any point inside the Voronöı cell can be bounded independently from the
lattice (see [Stogrin 1977]). It follows that if we know an approximation of the yi’s
with sufficient precision, then c can be derived from a O(1) exhaustive search,
since the coordinates yi − xi of h − c are bounded (the orthogonality-defect of
the Minkowski-reduced basis [b1, . . . ,bd−1]≤ is bounded). This exhaustive search
can be performed in time O(log ‖t‖) since the Gram matrix of [b1, . . . ,bd−1, t]≤ is
known.

To approximate the yi’s, we use basic linear algebra. Let G = G(b1, . . . ,bd−1)

and H =
(

〈bi,bj〉
‖bi‖2

)

i,j<d
. The matrix H is exactly G, where the i-th row has been

divided by ‖bi‖2. We have:

G ·







y1

...
yd−1






= −







〈b1, t〉
...

〈bd−1, t〉






, and thus







y1

...
yd−1






= −H−1 ·









〈b1,t〉
‖b1‖2

...
〈bd−1,t〉
‖bd−1‖2









. (1)

We use the latter formula to compute the yi’s with an absolute error≤ 1/2, within

the expected time. Let r = maxi

⌈

log |〈bi,t〉|
‖bi‖2

⌉

. Notice that r = O(1 + log ‖t‖ −
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log ‖bα‖), which can be obtained by bounding 〈bi, t〉 depending on whether i ≥ α:

if i < α, |〈bi, t〉| ≤ ‖bi‖2/2; otherwise, |〈bi, t〉| ≤ ‖bi‖2 · ‖t‖
‖bi‖ ≤ ‖bi‖2 · ‖t‖

‖bα‖ . Notice

also that the entries of H are all ≤ 1 in absolute value (because [b1, . . . ,bd−1]≤ is
Minkowski-reduced and therefore pairwise Lagrange-reduced), and that det(H) =

det(G)
‖b1‖2...‖bd−1‖2 is lower bounded by some universal constant (because the orthogona-

lity-defect of the Minkowski-reduced basis [b1, . . . ,bd−1]≤ is bounded). It follows
that one can compute the entries of the matrix H−1 with an absolute precision
of Θ(r) bits, within O(r2) binary operations, for example by computing Θ(r)-bit
long approximations to both the determinant and the comatrix of H (though not
efficient, it can be done with Leibniz formula). One eventually derives the yi’s with
an absolute error ≤ 1/2, by a matrix-vector multiplication involving Θ(r) bit long
approximations to rational numbers.

From Equation (1) and the discussion above on the quantities 〈bi,t〉
‖bi‖2 , we derive

that for any i, the integer |xi| ≤ |yi| + O(1) is O(1 + log ‖t‖ − log ‖bα‖) bit long.
We now explicit the computation of the Gram matrix of (b1, . . . ,bd−1, t− c) from
the Gram matrix of (b1, . . . ,bd−1, t). Only the entries from the last row (and last
column, by symmetry) are changing. For the non-diagonal entries of the last row,
we have:

〈bi, t − c〉 = 〈bi, t〉 −
∑

j<d

xj〈bi,bj〉.

Because of the length upper bound on the xj ’s, this computation can be performed
within the expected time. The same holds for the diagonal entry, by using the
equality:

‖t− c‖2 = ‖t‖2 +
∑

i<d

x2
i ‖bi‖2 + 2

∑

i<j<d

xixj〈bi,bj〉 − 2
∑

i<d

xi〈bi, t〉.

It can be proved that this result remains valid when replacing Minkowski reduc-
tion by any kind of basis reduction that ensures a bounded orthogonality-defect, for
example LLL-reduction. Besides, notice that Theorem 2.3.2 can be used to make
Theorem 5.0.4 more practical: the bounds given in Theorem 2.3.2 help decreasing
drastically the cost of the exhaustive search following the linear algebra step.

6. THE GLOBAL APPROACH

In this section we describe the global approach to prove that there is a linear num-
ber of loop iterations during the execution of the iterative version of the greedy
algorithm (as described in Figure 4). The goal of this global approach is to prove
Theorem 6.0.5. The proof of this last theorem can be replaced by another one that
we describe in Sections 8 and 9. We call this alternative proof the local approach.
In both cases, the complexity analysis of the greedy algorithm finishes with Sec-
tion 7. This last section makes use of the local and global approaches only through
Theorem 6.0.5.

In the present section, we describe a global analysis proving that the number of
loop iterations of the iterative greedy algorithm is at most linear in log ‖bd‖, as
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long as d ≤ 4. More precisely, we show that:

Theorem 6.0.5. Let d ≤ 4. Let b1, . . . ,bd be linearly independent vectors.
The number of loop iterations performed during the execution of the iterative greedy
algorithm of Figure 4 given as input b1, . . . ,bd is bounded by O(1+log ‖bd‖−logλ1),
where λ1 = λ1(L[b1, . . . ,bd]).

To obtain this result, we show that in any dimension d ≤ 4, there are at most N =
O(1) consecutive loop iterations of the recursive algorithm described in Figure 3
without a significant length decrease, i.e., without a decrease of the product of the
lengths of the basis vectors by a factor higher than K for some constant K > 1. This
fact implies that there cannot be more than Nd = O(1) consecutive loop iterations
of the iterative algorithm without a decrease of the product of the lengths of the
basis vectors by a factor higher than K. This immediately implies Theorem 6.0.5.
More precisely, we prove the following:

Theorem 6.0.6. Let d ≤ 4. There exist two constants K > 1, N such that in
any N consecutive loop iterations of the d-dimensional recursive greedy algorithm
of Figure 3, the lengths of the current basis vectors decreases by at least a factor K.

Our proof of Theorem 6.0.6 is as follows. We first define two different phases in
the execution of the recursive d-dimensional greedy algorithm. In the first phase,
when a vector is shortened, its length decreases by at least a factor of 1 + η for
some η > 0 to be fixed later. All these steps are good steps since they make the
product of the lengths of the basis vectors decrease significantly. In the second
phase, the lengths of the vectors are not decreasing much, but we will show that
once we enter this phase, the basis is nearly orthogonal and there remain very few
loop iterations.

6.1 Two Phases in the Recursive Greedy Algorithm

We divide the successive loop iterations of the recursive greedy algorithm into two
phases: the η-phase and the remaining phase. The execution of the algorithm
starts with the η-phase. The loop iterations are in the η-phase as long as the
new vector bd of Step 6 is at least (1 + η) times shorter than the previous bd.
Once there is no more a large length decrease, all the remaining loop iterations are
in the remaining phase. More precisely, the η-phase is exactly made of the loop
iterations of the η-greedy algorithm of Figure 5, which simulates the beginning of
the execution of the greedy algorithm. The remaining phase corresponds to the
execution of the recursive greedy algorithm of Figure 3 given as input the output
basis of the η-greedy algorithm.

It is clear that all loop iterations in the η-phase are good loop iterations: the
product of the lengths of the basis vectors decreases by a factor higher than 1 + η.
Moreover, if d ≤ 4, when the execution of the algorithm enters the remaining phase,
the basis has a bounded orthogonality defect:

Lemma 6.1.1. Let d ≤ 4 and η ∈
(

0,
√

4
3 − 1

)

. Suppose the basis [b1, . . . ,bd]≤
is invariant by the η-greedy algorithm of Figure 5. Then for any k ≤ d, we have:

‖b∗
k‖2 ≥

(

1

(1 + η)2
+

1 − k

4

)

· ‖bk‖2.
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Input: A basis [b1, . . . , bd]≤ with its Gram matrix.
Output: An ordered basis of L[b1, . . . ,bd] with its Gram matrix.

1. If d = 1, return b1.
2. Sort (b1, . . . , bd) by increasing lengths and update the Gram matrix,
3. [b1, . . . ,bd−1]≤ := Greedy(b1, . . . ,bd−1),
4. Compute a vector c ∈ L[b1, . . . ,bd−1] closest to bd,
5. b′

d := bd − c,
6. If (1 + η) · ‖b′

d‖ ≥ ‖bd‖, goto Step 8.
7. Else, bd := b′

d, update the Gram matrix and goto Step 2.
8. Return [b1, . . . , bd]≤ and its Gram matrix.

Fig. 5. The η-greedy lattice basis reduction algorithm in dimension d.

Notice that if k ≤ 4, then 1
(1+η)2 + 1−k

4 > 0.

Proof. Let k ≤ d and b′
k = bk − c where c is a vector closest to bk in the

lattice L[b1, . . . ,bk−1]. We write b′
k = b∗

k + b−
k , where b−

k is in the linear span
of (b1, . . . ,bk−1). Since the vector b′

k cannot be shortened by adding to it an
integral linear combination of the vectors b1, . . . ,bk−1, we know that:

‖b−
k ‖2 ≤ ρ(b1, . . . ,bk−1)

2 ≤ k − 1

4
max
i<k

‖b∗
i ‖2 ≤ k − 1

4
‖bk−1‖2 ≤ k − 1

4
‖bk‖2,

where ρ(b1, . . . ,bk−1) is the covering radius of the lattice Lk−1 spanned by the
vectors b1, . . . ,bk−1. We used the fact that any vector t of the span of b1, . . . ,bk−1

is at most 1
2

√
∑

i<k ‖b∗
i ‖2 away from Lk−1: all coefficients of t when written as a

linear combination of the b∗
i ’s can be made smaller than 1/2 in absolute value by

subtracting from it a well-chosen integer linear combination of the bi’s. From the
Pythagorean theorem, we derive that:

‖bk‖2 ≤ (1 + η)2 · ‖b′
k‖2 ≤ (1 + η)2 · (‖b∗

k‖2 + ‖b−
k ‖2)

≤ (1 + η)2 ·
(

‖b∗
k‖2 +

k − 1

4
‖bk‖2

)

,

which gives the result.

6.2 The Greedy Algorithm with a Nearly Orthogonal Basis

We now prove that when the ‖b∗
i ‖/‖bi‖’s are all lower-bounded (i.e., the orthogo-

nality defect is bounded), then the number of loop iterations of the greedy algorithm
is O(1).

Lemma 6.2.1. Let D ≥ 2 and C > 0. There exists a constant N such that for all

d ≤ D, and any basis [b1, . . . ,bd]≤ satisfying
∏d

i=1
‖b∗

i ‖
‖bi‖ ≥ C, the recursive greedy

algorithm, when given as input b1, . . . ,bd, terminates in at most N loop iterations.

Proof. Since for any i ≤ d, we have ‖b∗
i ‖ ≤ ‖bi‖, we also have

‖b∗

i ‖
‖bi‖ ≥ C for

any i ≤ d. As a consequence, if the initial basis satisfies
∏d

i=1
‖b∗

i ‖
‖bi‖ ≥ C, since the

numerator is constant (it is the determinant of the lattice) and the denominator
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decreases, then all the bases appearing in the execution of the greedy algorithm sat-
isfy this condition. Any vector bi appearing during the execution of the algorithm

satisfies
‖b∗

i ‖
‖bi‖ ≥ C.

We define Xi = {(xi, . . . , xd), ∃(x1, . . . , xi−1) ∈ Z
i−1, ‖∑j xjbj‖ ≤ ‖bi‖} for i ≤

d. We prove that |Xi| ≤ (1 + 2/C)d−i+1 by decreasing induction on i. Let b =
x1b1 + . . . + xdbd with ‖b‖ ≤ ‖bd‖. By considering the component of the vector b

on b∗
d, we have that |xd| ≤ 1/C. Suppose now that we want to prove the fact

for some i < d. Let b = x1b1 + . . . + xdbd with ‖b‖ ≤ ‖bi‖. Since the basis is
ordered, we have ‖b‖ ≤ ‖bi+1‖, which gives, by using the induction hypothesis,
that (xi+1, . . . , xd) belongs to a finite set. Moreover, by taking the component of b

on b∗
i , we obtain that:

∣

∣

∣

∣

∣

∣

xi +
d
∑

j=i+1

xj

〈bj ,b
∗
i 〉

‖b∗
i ‖2

∣

∣

∣

∣

∣

∣

≤ 1/C.

This gives that for any choice of (xi+1, . . . , xd), there are at most 2/C + 1 possible
values for xi.

Consider now the execution of the greedy algorithm on such a basis: the number
of times a vector shorter than b1 is created is bounded by |X1| ≤ (1 + 2/C)d.
Therefore we can subdivide the execution of the algorithm into phases in which b1

remains constant. Consider such a phase. Let b1, . . . ,bd be the initial basis of this

phase. It satisfies the condition
∏d

i=1
‖b∗

i ‖
‖bi‖ ≥ C. At most |X2| ≤ (1+2/C)d−1 times

in this phase a vector shorter than b2 can be created: for any (x2, . . . , xd) ∈ X2,
there are at most two possibilities for x1, because of the greedy choice in Steps 2
of the iterative greedy algorithm and 5 of the recursive greedy algorithm. This
shows that we can subdivide the execution of the algorithm into ≤ 2(1 + 2/C)2d−1

phases in which both b1 and b2 are constant. By using the bound on |Xi| and the
finiteness of the number of solutions for a closest vector problem instantiation (this
is the so-called kissing number, see [Conway and Sloane 1988]), this reasoning can be
extended to subdivide the execution of the algorithm into phases in which b1, . . . ,bi

do not change, and we can bound the number of phases independently of the basis.
The case i = d gives the result.

It follows that there are at most N loop iterations of the recursive algorithm without
a decrease of the product of the lengths of the basis vectors by a factor at least
K = 1 + η, where N is independent of the lattice. This implies that there are at
most Nd = O(1) consecutive loop iterations of the iterative algorithm without such
a decrease, which completes the proof of Theorem 6.0.5.

7. QUADRATIC BIT COMPLEXITY

In this subsection we use Theorems 5.0.4 and 6.0.5 of the two previous sections
to prove the quadratic bit complexity claimed in Theorem 4.2.1. To do this, we
generalize the cancellation phenomenon used in the analysis of Lagrange’s algorithm
in Section 3.

Suppose that d ≤ 4. We consider the iterative version of the d-dimensional

greedy algorithm of Figure 4 and denote by [b
(t)
1 , . . . ,b

(t)
d ]≤ the current ordered ba-
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PSfrag replacements
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Fig. 6. A possible curve for κ(t), with the corresponding values for α(t)

sis at the beginning of the t-th loop iteration. Initially we have: [b
(t)
1 , . . . ,b

(t)
d ]≤ =

[b1, . . . ,bd]≤. Theorem 5.0.4 gives that the cost of the t-th loop iteration is bounded

by O
(

log ‖bd‖ ·
(

1 + log
∥

∥

∥
b

(t)
k(t)

∥

∥

∥
− log

∥

∥

∥
b

(t)
α(t)

∥

∥

∥

))

. Theorem 6.0.5 gives that the

number of loop iterations τ is bounded by O(1 + log ‖bd‖ − log λ1). We have
two indices of interest for the cost analysis: k(t) because at the t-th loop iteration,

we are trying to decrease the length of b
(t)
k(t), and α(t) that we define precisely in the

following lemma and that corresponds to the largest i such that none of b1, . . . ,bi

has been modified since the last time the index k had value k(t).
Figure 6 gives a possible curve for k(t) (thin continuous line) in dimension four,

with the corresponding values for α(t) (plain dots).

Lemma 7.0.2. Let t be a loop iteration. Let ϕ(t) = max(t′ < t, k(t′) ≥ k(t)) if it
exists and 1 otherwise, and α(t) = min (k(t′), t′ ∈ Jϕ(t), t − 1K)−1 if k(t) ≥ k(t−1)
and α(t) = k(t) − 1 otherwise. The cost of the t-th loop iteration of the iterative
greedy algorithm is bounded by:

O
(

log ‖bd‖ ·
[

1 + log
∥

∥

∥
b

(t)
k(t)

∥

∥

∥
− log

∥

∥

∥
b

(t)
α(t)

∥

∥

∥

])

.

Proof. Between loop iterations ϕ(t) and t, the vectors b1, . . . ,bα(t)−1 do not
change and because of the greedy choices of the successive Steps 2 and 3, each vec-
tor b created during these loop iterations is such that the basis [b1, . . . ,bα(t)−1,b]≤
is greedy-reduced, and therefore Minkowski-reduced if α(t) ≤ 4 (because of the
equivalence of greedy and Minkowski reductions up to dimension four). This in-

cludes the vector b
(t)
k(t). Theorem 5.0.4 gives the result because all vectors appearing

during the execution of the algorithm are shorter than bd.

We are to subdivide the sum of the costs of the successive loop iterations into O(d)
subsums according to the value of k(t):

∑

t≤τ

[

1 + log
∥

∥

∥
b

(t)
k(t)

∥

∥

∥
− log

∥

∥

∥
b

(t)
α(t)

∥

∥

∥

]

≤ τ +

d
∑

k=2

∑

t,k(t)=k

(

log
∥

∥

∥
b

(t)
k

∥

∥

∥
− log

∥

∥

∥
b

(t)
a(t)

∥

∥

∥

)

.

For each of these subsums, we keep k − 1 positive terms and k − 1 negative terms,
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and make the others vanish in a progressive cancellation. The crucial point to do
this is the following:

Lemma 7.0.3. Let k ∈ J2, dK and t1 < t2 < . . . < tk be loop iterations of the
iterative greedy algorithm such that for any j < k, we have k(tj) = k. Then there

exists j < k with
∥

∥

∥
b

(tj)

α(tj)

∥

∥

∥
≥
∥

∥

∥
b

(tk)
k

∥

∥

∥
.

Proof. We choose j = max (i ≤ k, α(ti) ≥ i). Here j is well-defined because
the set of indices i is non-empty (it contains 1). Since α(tk) < k and k(tk) =
k(tk−1) = k, there exists a first loop iteration Tk ∈ Jtk−1, tk − 1K such that k(Tk) ≥
k ≥ k(Tk + 1). Because for a given index the lengths of the vectors are always
decreasing, we have:

∥

∥

∥
b

(tk)
k

∥

∥

∥
≤
∥

∥

∥
b

(Tk+1)
k

∥

∥

∥
≤
∥

∥

∥
b

(Tk)
k−1

∥

∥

∥
.

By definition of Tk the vectors b1, . . . ,bk−1 do not change between loop itera-
tions tk−1 and Tk. Therefore:

∥

∥

∥
b

(tk)
k

∥

∥

∥
≤
∥

∥

∥
b

(tk−1)
k−1

∥

∥

∥
.

If j = k−1, we have the result. Otherwise there exists a first loop iteration Tk−1 ∈
Jtk−2, tk−1 − 1K such that k(Tk−1) ≥ k − 1 ≥ k(Tk−1 + 1). We have:

∥

∥

∥
b

(tk−1)
k−1

∥

∥

∥
≤
∥

∥

∥
b

(Tk−1+1)
k−1

∥

∥

∥
≤
∥

∥

∥
b

(Tk−1)
k−2

∥

∥

∥
≤
∥

∥

∥
b

(tk−2)
k−2

∥

∥

∥
.

If j = k − 2 we have the result, otherwise we go on constructing such loop itera-
tions Ti’s to obtain the result.

We can now finish the complexity analysis. Let k ∈ J2, dK and t1 < t2 < . . . <
tτk

= {t ≤ τ, k(t) = k}. We have:

τk
∑

i=1

(

log
∥

∥

∥
b

(ti)
k

∥

∥

∥
− log

∥

∥

∥
b

(ti)
α(ti)

∥

∥

∥

)

≤ k (log ‖bd‖ − log λ1)

+

τk
∑

i=k

log
∥

∥

∥
b

(ti)
k

∥

∥

∥
−

τk−k+1
∑

i=1

log
∥

∥

∥
b

(ti)
α(ti)

∥

∥

∥
,

where λ1 is the first minimum of the lattice we are reducing. Lemma 7.0.3 helps
bounding the right hand-side of the above bound. First, we apply it with t1, . . . , tk.

Thus there exists j < k such that ‖b(tk)
k ‖ ≤ ‖b(tj)

α(tj)
‖. The indices “i = k” in

the positive sum and “i = j” in the negative sum cancel out. Then we apply
Lemma 7.0.3 to tk+1 and the k − 1 first ti’s that remain in the negative sum. It
is easy to see that tk+1 is larger than any of them, so that we can have another
“positive-negative” pair that cancels out. We perform this operation τk − k + 1
times, to obtain:

τk
∑

i=k

log
∥

∥

∥
b

(ti)
k

∥

∥

∥
−

τk−k+1
∑

i=1

log
∥

∥

∥
b

(ti)
α(ti)

∥

∥

∥
≤ 0.

The fact that
∑

k τk = τ = O (1 + log ‖bd‖ − log λ1) completes the proof of Theo-
rem 4.2.1.
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8. THE LOCAL APPROACH

This section and the following give another proof for Theorem 6.0.6. They give
a more precise understanding of the behavior of the algorithm but may be skipped
since they are not necessary to prove the main results of the paper.

In this section we give an alternative proof of Theorem 6.0.6 for d ≤ 4, that gen-
eralizes the local analysis of Lagrange’s algorithm. The result is of the same flavor,
but involves a more subtle analysis of the behavior of successive loop iterations.
We will obtain that except for a few initial initial and final iterations, the product
of the lengths of the basis vectors decreases by at least a factor K > 1 every d loop
iterations.

Theorem 8.0.4. Let d ≤ 4. There exist three constants K > 1, I, F such that in
any d consecutive loop iterations of the d-dimensional recursive greedy algorithm of
Figure 3, some of the iterations are in the I initial loop iterations or in the F final
loop iterations, or the product of the lengths of the current basis vectors decreases
by at least a factor K.

This result clearly implies Theorem 6.0.6. The global approach has the advantage
of providing a quicker proof of Theorem 6.0.6 then the local approach. However, it
provides less insight on the behavior of the algorithm. The local approach explains
why the algorithm actually makes progress in successive loop iterations, not only
globally.

8.1 A Unified Geometric Analysis Up To Dimension Four

The local analysis of Lagrange’s algorithm (Section 3) was based on the fact that
if |x| ≥ 2, the vector xu is far from the Voronöı cell of the lattice spanned by u. The
analysis of the number of loop iterations of the greedy algorithm in dimensions three
and four relies on a similar phenomenon in dimensions two and three. However,
the situation is more complex, as the following basic remarks hint:

—For d = 2, we considered the value of x, but if d ≥ 3, there will be several
coefficients xi instead of a single one, and it is not clear which one will be useful
in the analysis.

—For d = 2, Step 4 cannot change the basis, as there are only two bases in dimen-
sion one. If d ≥ 3, Step 4 may completely change the vectors, and it could be
hard to keep track of what is going on.

To prove Theorem 8.0.4, we introduce a few notations. Consider the i-th loop

iteration. Let
[

a
(i)
1 , . . . , a

(i)
d

]

≤
denote the basis [b1, . . . ,bd]≤ at the beginning of

the i-th loop iteration. The basis
[

a
(i)
1 , . . . , a

(i)
d

]

≤
becomes

[

b
(i)
1 , . . . ,b

(i)
d−1, a

(i)
d

]

≤

with
∥

∥

∥
b

(i)
1

∥

∥

∥
≤ . . . ≤

∥

∥

∥
b

(i)
d−1

∥

∥

∥
after Step 4, and

(

b
(i)
1 , . . . ,b

(i)
d

)

after Step 6, where

b
(i)
d = a

(i)
d − c(i) and c(i) is the closest vector found at Step 5. Let pi be the

number of integers 1 ≤ j ≤ d such that
∥

∥

∥
b

(i)
j

∥

∥

∥
≤
∥

∥

∥
b

(i)
d

∥

∥

∥
. Let πi be the rank

of b
(i)
d once

(

b
(i)
1 , . . . ,b

(i)
d

)

is sorted by length: for example, we have πi = 1
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if
∥

∥

∥
b

(i)
d

∥

∥

∥
<
∥

∥

∥
b

(i)
1

∥

∥

∥
. Notice that πi may not be equal to pi because there may

be several choices when sorting the vectors by length in case of length equalities.

Clearly 1 ≤ πi ≤ pi ≤ d, if pi = d then the loop terminates, and
∥

∥

∥
a

(i+1)
πi

∥

∥

∥
=

∥

∥

∥
a

(i+1)
pi

∥

∥

∥
.

Now consider the (i+1)-th loop iteration for some i ≥ 1. Notice that by definition

of πi, we have a
(i+1)
πi = b

(i)
d = a

(i)
d − c(i), while

{

a
(i+1)
j

}

j 6=πi

=
{

b
(i)
j

}

j<d
. The

vector c(i+1) belongs to L
[

b
(i+1)
1 , . . . ,b

(i+1)
d−1

]

= L
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

: there exist

integers x
(i+1)
1 , . . . , x

(i+1)
d−1 such that c(i+1) =

∑d−1
j=1 x

(i+1)
j a

(i+1)
j .

We are to prove that there exists a universal constant K > 1 such that for any
execution of the d-dimensional greedy algorithm with d ≤ 4, in any d consecutive
iterations of the loop (except eventually the first ones and the last ones), the product
of the lengths of the current basis vectors decreases by some factor higher than K:

∥

∥

∥
a

(i)
1

∥

∥

∥
. . .
∥

∥

∥
a

(i)
d

∥

∥

∥

∥

∥

∥
a

(i+d)
1

∥

∥

∥
. . .
∥

∥

∥
a

(i+d)
d

∥

∥

∥

≥ K (2)

This will automatically ensure that the number of loop iterations is at most pro-

portional to log
∥

∥

∥
a

(1)
d

∥

∥

∥
− log λ1.

We deal with the first difficulty mentioned above: which one will be the useful

coefficient? The trick is to consider the value of x
(i+1)
πi , i.e., the coefficient of a

(i+1)
πi =

a
(i)
d −c(i) in c(i+1), and to use the greedy properties of the algorithm. This coefficient

corresponds to the vector that has been created at the previous loop iteration.
Since this vector has been created so that it cannot be shortened by adding to it a
combination of the others, there are only two possibilities at the current iteration:

either the new vector is longer than a
(i+1)
πi , in which case pi increases (this cannot

happen during more than d successive iterations), either it is shorter and we must
have |xπi

| 6= 1.

Lemma 8.1.1. Among d consecutive iterations of the loop of the greedy algorithm
of Figure 3, there is at least one iteration of index i + 1 such that pi+1 ≤ pi.

Moreover, for such a loop iteration, we have
∣

∣

∣
x

(i+1)
πi

∣

∣

∣
≥ 2, or this is the last loop

iteration.

Proof. The first statement is obvious. Consider one such loop iteration i + 1.

Suppose we have a small |x(i+1)
πi |, that is x

(i+1)
πi = 0 or

∣

∣

∣
x

(i+1)
πi

∣

∣

∣
= 1.

—If x
(i+1)
πi = 0, then c(i+1) ∈ L

[

a
(i+1)
j

]

j 6=πi,j<d
= L

[

b
(i)
1 , . . . ,b

(i)
d−2

]

. We claim

that the (i+1)-th iteration must be the last one. Since the i-th loop iteration was

not terminal, we have a
(i+1)
d = b

(i)
d−1. Moreover, the basis

[

b
(i)
1 , . . . ,b

(i)
d−1

]

≤
is

greedy-reduced because of Step 4 of the i-th loop iteration. These two facts imply
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that c(i+1) must be zero (or at least it does not make the length of a
(i)
d decrease

if there are several closest lattice vectors), and the (i + 1)-th loop iteration is the
last one.

—If |x(i+1)
πi | = 1, we claim that pi+1 > pi. We have c(i+1) =

∑d−1
j=1 x

(i+1)
j a

(i+1)
j

where a
(i+1)
πi = a

(i)
d −c(i) and

{

a
(i+1)
j

}

j 6=πi

=
{

b
(i)
j

}

j<d
. Thus, the vector c(i+1)

can be written as c(i+1) = ∓
(

a
(i)
d − c(i)

)

− e where e ∈ L
[

b
(i)
1 , . . . ,b

(i)
d−1

]

.

Therefore a
(i+1)
d − c(i+1) = b

(i)
d−1 ±

(

a
(i)
d − c(i)

)

+ e. In other words, we have
∥

∥

∥
a

(i+1)
d − c(i+1)

∥

∥

∥
=
∥

∥

∥
a

(i)
d − f

∥

∥

∥
for some f ∈ L

[

b
(i)
1 , . . . ,b

(i)
d−1

]

. The greedy choice

of b
(i)
d at the i-th loop iteration implies that pi+1 ≥ 1 + pi, which completes the

proof of the claim.

We will see that in dimension three, any such loop iteration i + 1 implies that at
least one of the basis vectors significantly decreases in the (i + 1)-th loop iteration,
or had significantly decreased in the i-th loop iteration. This is only “almost”
true in dimension four: fortunately, we will be able to isolate the bad cases and to
show that when a bad case occurs, the number of remaining loop iterations can be
bounded by some constant.

We now deal with the second difficulty mentioned above, that is the possi-
ble change of the vectors during the recursive call in dimension d − 1. Recall

that c(i+1) =
∑d−1

j=1 x
(i+1)
j a

(i+1)
j but the basis

[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤
is not necessar-

ily greedy-reduced. We distinguish two cases:

(1) The ordered basis
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤
is somehow far from being greedy-

reduced. Then the vector b
(i)
d was significantly shorter than the replaced vec-

tor a
(i)
d . Notice that this length decrease concerns the i-th loop iteration and

not the (i + 1)-th.

(2) Otherwise, the basis
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤
is almost greedy-reduced. The fact

that
∣

∣

∣
x

(i+1)
πi

∣

∣

∣
≥ 2 roughly implies that the vector c(i+1) is somewhat far away

from the Voronöı cell Vor
(

a
(i+1)
1 , . . . , a

(i+1)
d−1

)

: this phenomenon will be pre-

cisely captured by the so-called Gap Lemma. When this is the case, the new

vector b
(i+1)
d is significantly shorter than a

(i+1)
d .

To capture the property that a set of vectors is almost greedy-reduced, we intro-
duce the so-called ε-greedy-reduction, which is defined as follows:

Definition 8.1.2. Let ε ≥ 0. A single vector [b1] is always ε-greedy-reduced;
for d ≥ 2, a d-tuple [b1, . . . ,bd]≤ is ε-greedy-reduced if [b1, . . . ,bd−1]≤ is ε-
greedy-reduced and the orthogonal projection of the vector bd onto the span of
[b1, . . . ,bd−1]≤ belongs to (1 + ε) · Vor(b1, . . . ,bd−1).
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With this definition, a greedy-reduced basis is ε-greedy-reduced for any ε ≥ 0. In
the definition of ε-greedy-reduction, we did not assume that the bi’s were nonzero
nor linearly independent. This is because the Gap Lemma is essentially based on
compactness properties: the set of ε-greedy-reduced d-tuples needs being closed
(from a topological point of view), while a limit of bases may not be a basis.

We can now give the precise statements of the two cases described just above.
Lemma 8.1.3 corresponds to case 1, and Lemma 8.1.4 to case 2.

Lemma 8.1.3. Let 2 ≤ d ≤ 4. There exists a constant ε1 > 0 such that for
any ε ∈ (0, ε1] there exists Cε > 1 such that the following statement holds. Consider
the (i + 1)-th loop iteration of an execution of the d-dimensional greedy algorithm.

If
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤
is not ε-greedy-reduced, then

∥

∥

∥
a

(i)
d

∥

∥

∥
≥ Cε

∥

∥

∥
b

(i)
d

∥

∥

∥
.

Proof. The statement is obvious for d = 2 since a single vector is always ε-

greedy-reduced. Suppose that d = 3 and that
[

a
(i+1)
1 , a

(i+1)
2

]

≤
is not ε-greedy-

reduced. We have
∣

∣

∣
〈a(i+1)

2 , a
(i+1)
1 〉

∣

∣

∣
≥ 1+ε

2

∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

. Along with this, we must

have πi = 1 (otherwise
[

a
(i+1)
1 , a

(i+1)
2

]

≤
=
[

b
(i)
1 ,b

(i)
2

]

≤
would be Minkowski-

reduced), which implies that the vector a
(i+1)
1 = b

(i)
3 cannot be shortened by adding

to it multiples of a
(i+1)
2 = b

(i)
1 . We thus have

∣

∣

∣
〈a(i+1)

1 , a
(i+1)
2 〉

∣

∣

∣
≤
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

/2.

These two inequalities give:

(1 + ε) ·
∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

≤
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

.

The facts that a
(i+1)
1 = b

(i)
3 and that

∥

∥

∥
a

(i+1)
2

∥

∥

∥
≤
∥

∥

∥
a

(i)
3

∥

∥

∥
end the proof.

Suppose now that d = 4 and that the ordered basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is

not ε-greedy-reduced. Therefore the orthogonal projection of the vector a
(i+1)
2

onto the linear span of a
(i+1)
1 is not in (1 + ε) · Vor

(

a
(i+1)
1

)

, or the orthogonal

projection of the vector a
(i+1)
3 onto the linear span of

[

a
(i+1)
1 , a

(i+1)
2

]

is not in

(1 + ε) ·Vor
(

a
(i+1)
1 , a

(i+1)
2

)

. We consider these two cases separately. Suppose first

that the orthogonal projection of the vector a
(i+1)
2 onto the linear span of a

(i+1)
1

is not in Vor
(

a
(i+1)
1

)

. Then
∣

∣

∣
〈a(i+1)

1 , a
(i+1)
2 〉

∣

∣

∣
≥ 1+ε

2

∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

. Moreover, we must

have πi = 1 (otherwise
[

a
(i+1)
1 , a

(i+1)
2

]

≤
=
[

b
(i)
1 ,b

(i)
2

]

≤
is Minkowski-reduced),

therefore the vector a
(i+1)
1 cannot be shortened by adding to it multiples of the

vector a
(i+1)
2 , which gives that

∣

∣

∣
〈a(i+1)

1 , a
(i+1)
2 〉

∣

∣

∣
≤
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

/2. Then:

(1 + ε) ·
∥

∥

∥
b

(i)
4

∥

∥

∥

2

= (1 + ε) ·
∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

≤
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

≤
∥

∥

∥
a

(i)
4

∥

∥

∥

2

.

We suppose now that the ordered vectors
[

a
(i+1)
1 , a

(i+1)
2

]

≤
are ε-greedy-reduced
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and that the orthogonal projection of the vector a
(i+1)
3 onto the linear span of

[

a
(i+1)
1 , a

(i+1)
2

]

≤
belongs to the set (1+ε) ·Vor

(

a
(i+1)
1 , a

(i+1)
2

)

. We distinguish two

subcases: πi = 1 and πi = 2. Suppose first that πi = 2. In this case
[

a
(i+1)
1 , a

(i+1)
2

]

≤

is Minkowski-reduced and the possible Voronöı coordinates of L
[

a
(i+1)
1 , a

(i+1)
2

]

are

the pairs (x1, x2) ∈ {−1, 0, 1}2 (see Lemma 9.1.2). Thus a vector u has its orthog-

onal projection onto the span of
[

a
(i+1)
1 , a

(i+1)
2

]

≤
in Vor

(

a
(i+1)
1 , a

(i+1)
2

)

if and only

if:

∀(x1, x2) ∈ {−1, 0, 1}2, ‖u‖ ≤
∥

∥

∥
u + x1a

(i+1)
1 + x2a

(i+1)
2

∥

∥

∥
.

This implies that there exists a pair (x1, x2) ∈ {−1, 0, 1}2 such that
∣

∣

∣
〈a(i+1)

3 , x1a
(i+1)
1 + x2a

(i+1)
2 〉

∣

∣

∣
≥ 1 + ε

2

∥

∥

∥
x1a

(i+1)
1 + x2a

(i+1)
2

∥

∥

∥

2

.

In the case when πi = 1, we can suppose that
∥

∥

∥
a

(i+1)
1

∥

∥

∥
≥ (1 − ε) ·

∥

∥

∥
a

(i+1)
2

∥

∥

∥
, since

otherwise
∥

∥

∥
b

(i)
4

∥

∥

∥
=
∥

∥

∥
a

(i+1)
1

∥

∥

∥
≤ (1 − ε) ·

∥

∥

∥
a

(i)
4

∥

∥

∥
. We will see in Subsection 9.2

(Lemma 9.2.5) that for a small enough ε > 0, the possible Voronöı coords of
such an ε-greedy-reduced basis are the same as for a Minkowski-reduced basis.
Therefore, as in the previous subcase, there exists a pair (x1, x2) ∈ {−1, 0, 1}2 such

that
∣

∣

∣
〈a(i+1)

3 , x1a
(i+1)
1 + x2a

(i+1)
2 〉

∣

∣

∣
≥ 1+ε

2

∥

∥

∥
x1a

(i+1)
1 + x2a

(i+1)
2

∥

∥

∥

2

. We now consider

the two subcases simultaneously. Suppose first that x2 = 0, then necessarily |x1| =

1. As in the case d = 3, the fact that the vector a
(i+1)
1 cannot be shortened by

adding to it multiples of the vector a
(i+1)
3 gives the result (this is obvious if πi = 1

and, if πi = 2, the basis
[

a
(i+1)
1 , a

(i+1)
3

]

≤
=
[

b
(i)
1 ,b

(i)
2

]

≤
is Minkowski-reduced).

The case x1 = 0 can be dealt with in the same way. Therefore, it remains to
consider the case |x1| = |x2| = 1. Wlog we suppose x1 = x2 = 1. We have:

∣

∣

∣
〈a(i+1)

3 , a
(i+1)
1 + a

(i+1)
2 〉

∣

∣

∣
≥ 1 + ε

2

∥

∥

∥
a

(i+1)
1 + a

(i+1)
2

∥

∥

∥

2

.

Since the vector a
(i+1)
πi cannot be shortened by adding to it integer linear combina-

tions of the two other vectors, we have
∥

∥

∥
a

(i+1)
3 ±

(

a
(i+1)
1 + a

(i+1)
2

)∥

∥

∥
≥
∥

∥

∥
a

(i+1)
πi

∥

∥

∥
=

∥

∥

∥
b

(i)
4

∥

∥

∥
. By considering the right choice for the “plus or minus” and using the fact

that
∥

∥ai+1
3

∥

∥ ≤
∥

∥

∥
a

(i)
4

∥

∥

∥
, we obtain:

∥

∥

∥
b

(i)
4

∥

∥

∥

2

≤
∥

∥

∥
a

(i)
4

∥

∥

∥

2

− 2
∣

∣

∣
〈a(i+1)

3 , a
(i+1)
1 + a

(i+1)
2 〉

∣

∣

∣
+
∥

∥

∥
a

(i+1)
1 + a

(i+1)
2

∥

∥

∥

2

≤
∥

∥

∥
a

(i)
4

∥

∥

∥

2

− ε ·
∥

∥

∥
a

(i+1)
1 + a

(i+1)
2

∥

∥

∥

2

.

Since the basis
[

a
(i+1)
1 , a

(i+1)
2

]

≤
is ε-greedy-reduced, we also have:

∥

∥

∥
a

(i+1)
1 + a

(i+1)
2

∥

∥

∥

2

≥
∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

+
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

− (1+ε) ·
∥

∥

∥
a

(i+1)
1

∥

∥

∥

2

≥ (1−ε) ·
∥

∥

∥
a

(i+1)
2

∥

∥

∥

2

,
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0
b1

b2

Fig. 7. The Gap Lemma in dimension 2.

from which we get (1 + ε(1 − ε)) ·
∥

∥

∥
b

(i)
4

∥

∥

∥

2

≤
∥

∥

∥
a

(i)
4

∥

∥

∥

2

.

Lemma 8.1.4. Let 2 ≤ d ≤ 4. There exist two constants ε2 > 0 and D > 0
such that the following statement holds. Consider the (i+1)-th loop iteration of an

execution of the d-dimensional greedy algorithm. Suppose that
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤

is ε2-greedy-reduced, and that
∥

∥

∥
a

(i+1)
k

∥

∥

∥
≥ (1− ε2) ·

∥

∥

∥
a

(i+1)
d

∥

∥

∥
for some k ∈ J1, d − 1K.

Then, if |xk | ≥ 2 and if we are not in the 211-case, we have:

∥

∥

∥
b

(i+1)
d

∥

∥

∥

2

+ D
∥

∥

∥
b

(i+1)
k

∥

∥

∥

2

≤
∥

∥

∥
a

(i+1)
d

∥

∥

∥

2

,

where the 211-case is: d = 4, |xk| = 2 and the other |xj |’s are both equal to 1.

This last lemma is a direct consequence of the Pythagorean theorem and the Gap

Lemma: in Equation (3) below, set u as the orthogonal projection of b
(i+1)
d onto

the span of a1, . . . , ad−1 and notice that ‖b(i+1)
k ‖ ≤ ‖a(i+1)

k ‖. This result is crucial
to our analysis, and Section 9 is devoted to prove it. Figure 7 illustrates the Gap
Lemma: when a vector from the outer non-hashed area that is mapped to a vector
within the inner non-hashed area, its length decreases significantly.

Theorem 8.1.5 Gap Lemma. Let 2 ≤ d ≤ 4. There exist two universal con-
stants ε > 0 and D > 0 such that the following statement holds. Let [a1, . . . , ad−1]≤
be ε-greedy-reduced vectors, u be a vector of Vor(a1, . . . , ad−1) and x1, . . . , xd−1 be
integers. Suppose that ‖ak‖ ≥ (1 − ε) · ‖ad−1‖ for some k < d. Suppose also
that |xk| ≥ 2 and that if d = 4 the two other |xj |’s are not both equal to 1. Then:

‖u‖2 + D‖ak‖2 ≤

∥

∥

∥

∥

∥

∥

u +

d−1
∑

j=1

xjaj

∥

∥

∥

∥

∥

∥

2

. (3)

This completes the overall description of the proof of Theorem 4.2.1. Indeed,
choose three constants ε, D > 0 and C > 1 such that we can apply Lemmata 8.1.3

and 8.1.4. We prove that Equation (2) holds for K = min
(

C,
√

1 + D, 1
1−ε

)

> 1.

Consider a loop iteration i + 1 such that pi+1 ≤ pi. Recall that among any d
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consecutive iterations of the loop, there is at least one such iteration. For such an

iteration we have
∣

∣

∣
x

(i+1)
πi

∣

∣

∣
≥ 2. We distinguish four cases:

—The basis
[

a
(i+1)
1 , . . . , a

(i+1)
d−1

]

≤
is not ε-greedy-reduced: then Lemma 8.1.3 gives

the result via the i-th loop iteration.

—We have
∥

∥

∥
a

(i+1)
πi

∥

∥

∥
< (1 − ε) ·

∥

∥

∥
a

(i+1)
d

∥

∥

∥
. Indeed, because pi+1 ≤ pi, we have:

∥

∥

∥
b

(i+1)
d

∥

∥

∥
≤
∥

∥

∥
b(i+1)

πi+1

∥

∥

∥
≤
∥

∥

∥
a(i+1)

πi+1

∥

∥

∥
=
∥

∥

∥
a(i+1)

pi+1

∥

∥

∥

≤
∥

∥

∥
a(i+1)

pi

∥

∥

∥
=
∥

∥

∥
a(i+1)

πi

∥

∥

∥
< (1 − ε) ·

∥

∥

∥
a

(i+1)
d

∥

∥

∥
.

—We are in the 211-case, i.e., d = 4 with |xπi
| = 2 and the other |xj |’s are all equal

to 1. Then we refer to Subsection 8.2.

—Otherwise we apply Lemma 8.1.4, which gives the expected result via the (i+1)-
th loop iteration.

8.2 Concluding in Dimension Four

In the previous subsections, we showed that there is at most a linear number of
loop iterations in the iterative greedy algorithm in dimensions two and three, but
we noticed that a new difficulty arose in dimension four: the Gap Lemma is useless
in the so-called 211-case. This is because there are three-dimensional Minkowski-
reduced bases [b1,b2,b3]≤ for which 2bi + s1bj + s2bk — with {i, j, k} = {1, 2, 3}
and |s1| = |s2| = 1 — is a Voronöı vector. Indeed consider the lattice spanned by
the columns b1,b2,b3 of the following matrix:

M =





1 1 −1
1 −1 0
0 0 1



 .

This basis is Minkowski-reduced and ‖b1 +b2 +2b3‖ = ‖b1 +b2‖ ≤ ‖(2k1 +1)b1 +
(2k2 + 1)b1 + 2k3b3‖ for any k1, k2, k3 ∈ Z. Therefore, a vector in the translated
Voronöı cell centered in b1 +b2 +2b3 can avoid being significantly shortened when
translated inside the Voronöı cell centered in 0.

The Gap Lemma cannot tackle this problem. However, we notice that (1, 1, 2)
is rarely a Voronöı coordinate (with respect to a Minkowski-reduced basis), and
when it is the case it cannot be a strict Voronöı coord: it can be proved easily that
if (1, 1, 2) is a Voronöı coord, then ‖b1 + b2‖ = ‖b1 + b2 + 2b3‖, which tells us
that b1 + b2 + 2b3 is not the only vector in its coset of L/2L reaching the length
minimum. It turns out that the lattice spanned by the columns of M is essentially
the only one for which (1, 1, 2) — modulo any change of sign and permutation of
coordinates — can be a Voronöı coord. More precisely, if (1, 1, 2) — modulo any
change of sign and permutation of coordinates — is a Voronöı coord for a lattice
basis, then the basis matrix can be written as rUM where r is any non-zero real
number and U is any orthogonal matrix. Since a basis can be arbitrarily close
to one of them without actually being one of them, we need to consider a small
compact set of normalized bases around the annoying ones. More precisely, this
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compact set consists in all ε-greedy-reduced bases [b1,b2,b3]≤ such that there
exists a permutation σ ∈ S3 with

∥

∥

∥

∥

1

‖b3‖2

∣

∣G
(

bσ(1),bσ(2),bσ(3)

)∣

∣−
∣

∣M tM
∣

∣

∥

∥

∥

∥

∞
≤ ε

for some sufficiently small ε > 0, where ‖M‖∞ is the maximum of the absolute
values of the matrix M and |M | is the matrix made of the absolute values of the
entries of M .

Now, consider we are in the 211-case at some loop iteration i+1. We distinguish
three cases:

—The basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is outside the compact. In this case, a variant

of the Gap Lemma (Lemma 9.3.4) proved in Section 9 is valid and can be used

to show that the vector b
(i+1)
4 is significantly shorter than the vector a

(i+1)
4 .

—The basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is inside the compact but the orthogonal projec-

tion of the vector a
(i+1)
4 onto the linear span of

[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is far from

the Voronöı cell Vor
(

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

)

. In this case, we can use Lemma 9.3.4

to show that the vector b
(i+1)
4 is significantly shorter than the vector a

(i+1)
4 .

—Otherwise the geometry of the basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3 , a

(i+1)
4

]

≤
is very pre-

cisely known and we can show that there remain O(1) loop iterations.

More precisely, by using Lemma 9.3.4, we show that:

Lemma 8.2.1. There exist two constants K, ε > 0 such that the following holds.
Consider an execution of the four-dimensional greedy algorithm, and a loop itera-
tion i + 1 for which:

(1 ) pi+1 ≤ pi,

(2 ) |xπi
| = 2 and

(∣

∣xσ(1)

∣

∣ ,
∣

∣xσ(2)

∣

∣ ,
∣

∣xσ(3)

∣

∣

)

= (1, 1, 2) for some σ ∈ S3,

(3 )
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is ε-greedy-reduced,

(4 )
∥

∥

∥
a

(i+1)
πi

∥

∥

∥
≥ (1 − ε) ·

∥

∥

∥
a

(i+1)
4

∥

∥

∥
.

Then either
∥

∥

∥
a

(i+1)
4

∥

∥

∥
≥ (1 + K) ·

∥

∥

∥
b

(i+1)
4

∥

∥

∥
or:

∥

∥

∥

∥

∥

∥

∥

1
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

∣

∣

∣
G
(

a
(i+1)
σ(1) , a

(i+1)
σ(2) , a

(i+1)
σ(3) , a

(i+1)
4

)∣

∣

∣
− A

∥

∥

∥

∥

∥

∥

∥

∞

≤ ε, with A =









1 0 1
2 0

0 1 1
2 0

1
2

1
2 1 1

2
0 0 1

2 1









.

To prove this result, we restrict more and more the possible geometry of the

basis
[

a
(i)
1 , a

(i)
2 , a

(i)
3 , a

(i)
4

]

≤
. Notice that this critical geometry corresponds to the

root lattice D4. This last case is considered in Lemma 8.2.2.
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Proof. The proof essentially relies on Lemma 9.3.4. We choose ε, C > 0 ac-
cording to Lemma 9.3.4. The constant K will depend on C and ε. We first
show that wlog we can suppose that the basis vectors have similar lengths, that

is (1 − ε)2 ·
∥

∥

∥
a

(i+1)
4

∥

∥

∥
≤
∥

∥

∥
a

(i+1)
1

∥

∥

∥
. We know that |xπi

| = 2 and the two other |xi|’s
are 1. By hypothesis, we have

∥

∥

∥
a

(i+1)
πi

∥

∥

∥
≥ (1− ε) ·

∥

∥

∥
a

(i+1)
4

∥

∥

∥
. If πi = 1, we are done.

If πi = 2, then we apply Lemma 9.3.4 2), and if πi = 3 we apply Lemma 9.3.4 1),
in both cases along with the Pythagorean theorem. So far, we have proved that
one of the following holds:

(1) ‖a(i+1)
4 ‖2 ≥ (1 + C)‖b(i+1)

4 ‖2,

(2) (1 − ε)2‖a(i+1)
4 ‖ ≤ ‖a(i+1)

1 ‖ ≤ ‖a(i+1)
2 ‖ ≤ ‖a(i+1)

3 ‖ ≤ ‖a(i+1)
4 ‖.

The remainder of the proof is the same for any of the possible configurations
of (x1, x2, x3), thus, for the sake of simplicity, we suppose now that (x1, x2, x3) =
(2, 1, 1). The following step of the proof is to show that we can suppose that the

Gram matrix of
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
is approximately:

∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

·





1 − 1
2 − 1

2
− 1

2 1 0
− 1

2 0 1



 .

This directly follows from Lemma 9.3.4 and the Pythagorean theorem, which give
that at least one of the following holds:

(1)
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

≥ (1 + C)
∥

∥

∥
b

(i+1)
4

∥

∥

∥

2

,

(2)
∣

∣

∣
〈a(i+1)

2 , a
(i+1)
3 〉

∣

∣

∣
≤ ε

∥

∥

∥
a

(i+1)
3

∥

∥

∥

2

and

∣

∣

∣

∣

〈a(i+1)
1 , a

(i+1)
j 〉 + 1

2

∥

∥

∥
a

(i+1)
3

∥

∥

∥

2
∣

∣

∣

∣

≤ ε
∥

∥

∥
a

(i+1)
3

∥

∥

∥

2

for j ∈ {2, 3}.

It remains to consider the scalar products 〈a(i+1)
4 , a

(i+1)
k 〉 for k ∈ {1, 2, 3}. Recall

that the orthogonal projection of the vector b
(i+1)
4 = a

(i+1)
4 − a

(i+1)
3 − a

(i+1)
2 −

2a
(i+1)
1 onto the linear span of

[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
belongs to the Voronöı

cell Vor
(

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

)

. Wlog we can suppose that
∥

∥

∥
a

(i+1)
4

∥

∥

∥
≥
∥

∥

∥
b

(i+1)
4

∥

∥

∥
≥

(1−ε) ·
∥

∥

∥
a

(i+1)
4

∥

∥

∥
, since otherwise have the result for K = 1

1−ε
. By expanding ‖b4‖2,

we get:

(1 + 19ε) ·
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

≥ 3
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

− 2〈a(i+1)
4 , 2a

(i+1)
1 + a

(i+1)
2 + a

(i+1)
3 〉

≥ (1 − 19ε) ·
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2

,

where we used our knowledge of the Gram matrix of
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
. Thus

we have:
∣

∣

∣
〈a(i+1)

4 , 2a
(i+1)
1 + a

(i+1)
2 + a

(i+1)
3 〉 −

∥

∥

∥
a

(i+1)
4

∥

∥

∥

∣

∣

∣
≤ 19ε ·

∥

∥

∥
a

(i+1)
4

∥

∥

∥
.
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This last equation gives that in order to end the proof, it is sufficient to prove

that the scalar products 〈a(i+1)
4 , a

(i+1)
2 〉 and 〈a(i+1)

4 , a
(i+1)
3 〉 are small. Let j ∈

{2, 3}. By hypothesis, for any x ∈ Z, we have
∥

∥

∥
a

(i+1)
4 − 2a

(i+1)
1 − xa

(i+1)
j

∥

∥

∥
≥

∥

∥

∥
a

(i+1)
4 − 2a

(i+1)
1 − a

(i+1)
2 − a

(i+1)
3

∥

∥

∥
. In particular, by choosing x = 0 and x = 2

and expanding the norms and using the knowledge of the Gram matrix of the

ordered basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3

]

≤
, one can obtain an explicit positive integer k

such that
∣

∣

∣
〈a(i+1)

4 , a
(i+1)
1 〉

∣

∣

∣
≤ kε ·

∥

∥

∥
a

(i+1)
4

∥

∥

∥
.

Let K = min
(

1 + C, 1
(1−ε)2

)

. Altogether, we have proved that there exists a

constant K ′ = max(K, k, 16) such that:
∥

∥

∥

∥

∥

∥

∥

1
∥

∥

∥
a

(i+1)
4

∥

∥

∥

2 G
(

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3 , a

(i+1)
4

)

− A

∥

∥

∥

∥

∥

∥

∥

∞

≤ K ′ε.

This completes the proof of the lemma.

At this point of the analysis of the 211-case, we have shown that we can suppose

that the shape of the basis
[

a
(i+1)
1 , a

(i+1)
2 , a

(i+1)
3 , a

(i+1)
4

]

≤
is very specific: its Gram

matrix is very close to A. We treat this last case by applying the following lemma,
which roughly says that if the Gram matrix of a basis is sufficiently close to some
invertible matrix, then the number of short vectors generated by the basis remains
bounded. Since the greedy algorithm always creates smaller bases for the lexico-
graphic order based on the lengths, if the Gram matrix of the current basis is close
to the matrix A, then it remains O(1) loop iterations.

Lemma 8.2.2. Let A be a d×d invertible matrix, and B > 0. There exist ε, N >

0 such that for any basis (b1, . . . ,bd) satisfying
∥

∥

∥

1
‖bd‖2 G(b1, . . . ,bd) − A

∥

∥

∥

∞
≤ ε,

we have:

|{(x1, . . . , xd), ‖x1b1 + . . . + xdbd‖ ≤ B‖bd‖}| ≤ N.

Proof. Let ε > 0 such that for any G, if ‖G − A‖∞ ≤ ε, then G is invertible
(such an ε does exist since the set of invertible matrices is open). In that case,
if X = (x1, . . . , xd), then

∣

∣

∣

∣

1

‖bd‖2
‖x1b1 + . . . + xdbd‖2 − XAXt

∣

∣

∣

∣

= |X(G − A)Xt| ≤ d2ε · (XXt),

where G = 1
‖bd‖2 G(b1, . . . ,bd). Therefore, if ‖x1b1 + . . . + xdbd‖ ≤ B‖bd‖, then,

by the triangular inequality, we obtain |XAX t| ≤ B2 +d2ε ·(XXt). But |XAXt| ≥
1

‖A−1‖ (XXt), where ‖B‖ is defined as max(Y BY t, Y ∈ R
n and ‖Y ‖ = 1), which is

positive. Therefore:

(XXt) ·
(

1

‖A−1‖ − d2ε

)

≤ B2.

We set ε < 1
d2‖A−1‖ . The xi’s are integers such that the quantity (XX t) remains
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bounded, so that we are considering integer points in a d-dimensional hypersphere.
There can only be finitely many such points.

9. THE GEOMETRY OF LOW-DIMENSIONAL LATTICES

In this section, we give some results about Voronöı cells in dimensions two and
three, which are crucial to the complexity analysis of the greedy algorithm described
in Section 4. More precisely, the analysis is based on the Gap Lemma (given in
Subsection 9.3), which is derived from the study of Voronöı cells in the case of ε-
greedy-reduced vectors (see Subsection 9.2), itself derived from the study of Voronöı
cells for Minkowski-reduced bases (in Subsection 9.1).

9.1 Voronöı Cells in the Case of Minkowski-Reduced Bases

We start by giving some simple bounds on the diameter of the Voronöı cell and on
the Gram-Schmidt orthogonalization of a Minkowski-reduced basis:

Lemma 9.1.1. Let d ≥ 1. Let [b1, . . . ,bd]≤ be a basis of a lattice L. Then

ρ(L) ≤
√

d
2 · ‖bd‖. As a consequence, if the basis [b1, . . . ,bd]≤ is a Minkowski-

reduced basis, then ‖b∗
d‖ ≥

√
5−d
2 · ‖bd‖.

Proof. The first part of the lemma is very classical and several different proofs
can be found in the literature. For example, we can use the inequalities ρ(L)2 ≤
1
4

∑

i≤d ‖b∗
i ‖2 ≤ d

4‖bd‖2, where the first one derives from Babai’s nearest plane
algorithm [Babai 1986].

Suppose now that the basis [b1, . . . ,bd]≤ is Minkowski-reduced. Then the or-
thogonal projection of the vector bd onto the linear span of [b1, . . . ,bd−1]≤ is
in Vor(b1, . . . ,bd−1). Therefore, by the Pythagorean theorem, we get: ‖b∗

d‖2 ≥
‖bd‖2 − d−1

4 ‖bd−1‖2. The fact that ‖bd−1‖ ≤ ‖bd‖ completes the proof.

The following lemma provides the possible Voronöı vectors of a lattice of dimen-
sion two given by a Minkowski-reduced basis (recall that we cannot directly use
Theorem 2.3.1 because it only considers strict Voronöı coordinates). Such a basis
confines the coordinates of the Voronöı vectors:

Lemma 9.1.2. In dimension two, the possible Voronöı coords are (1, 0) and
(1, 1), modulo any change of signs and permutation of coordinates, i.e., any nonzero
(ε1, ε2) where |ε1|, |ε2| ≤ 1.

The proof relies on a detailed study of the quantity ‖(2x1 + ε1) ·b1 +(2x2 + ε2) ·
b2‖2 − ‖ε1b1 + ε2b2‖2, where the basis [b1,b2]≤ is Minkowski-reduced, ε1, ε2 ∈
{0, 1} and x1, x2 ∈ Z. Indeed, since the Voronöı coords of a lattice L are given
by the minima of the non-zero cosets of L/2L, it suffices to show that if x1 6= 0
or x2 6= 0, then this expression is strictly positive.

Proof. Recall that the possible Voronöı coords can be obtained by considering
the short elements of L/2L, given a Minkowski-reduced basis of L. Let [b1,b2]≤
be a reduced basis. By eventually replacing the vector bi by −bi for i ∈ {1, 2},
it is clearly sufficient to show that for any x1, x2 ≥ 0, and for any ε1, ε2 ∈ {0, 1},
if x1 ≥ 1 or x2 ≥ 1, then:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2‖2 > ‖ε1 · b1 + ε2 · b2‖2.
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First of all:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2‖2 − ‖ε1 · b1 + ε2 · b2‖2

=
(

(2x1 + ε1)
2 − ε2

1

)

· ‖b1‖2 +
(

(2x2 + ε2)
2 − ε2

2

)

· ‖b2‖2

+2((2x1 + ε1)(2x2 + ε2) − ε1ε2) · 〈b1,b2〉.

Since x1, x2 ≥ 0, we have that (2x2+ε2)
2−ε2

2 ≥ 0 and (2x1+ε1)(2x2+ε2)−ε1ε2 ≥ 0.
Moreover, the basis [b1,b2]≤ is reduced and therefore ‖b2‖ ≥ ‖b1‖ and 2〈b1,b2〉 ≥
−‖b1‖2. From these facts, we obtain:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2‖2 − ‖ε1b1 + ε2b2‖2

≥ 2
[

2x2
1 + 2x2

2 − 2x1x2 + x1(2ε1 − ε2) + x2(2ε2 − ε1)
]

· ‖b1‖2.

This last expression is strictly positive as long as (x1, x2) 6= (0, 0). Indeed:

—if ε1 = ε2 = 0, the factor is 4
(

(x1 − x2)
2 + x1x2

)

,

—if ε1 = 0 and ε2 = 1, the factor is 2
(

x2
2 + 2x2 + (x2 − x1)

2 + (x2
1 − x1)

)

,

—the case ε1 = 1 and ε2 = 0 is symmetric,

—if ε1 = ε2 = 1, the factor is 2
(

(x2 − x1)
2 + (x2

2 + x2) + (x2
1 + x1)

)

.

We generalize this analysis to the three-dimensional case. The underlying ideas
of the proof are the same, but the increase of the number of variables makes the
analysis more tedious.

Lemma 9.1.3. In dimension three, the possible Voronöı coordinates are among
(1, 0, 0), (1, 1, 0), (1, 1, 1) and (2, 1, 1), modulo any change of signs and permutation
of coordinates.

Proof. We generalize the proof of Lemma 9.1.2. We show that for any inte-
gers x1, x2, x3 and any ε1, ε2, ε3 ∈ {0, 1}, if (2x1 + ε1, 2x2 + ε2, 2x3 + ε3) is not in
the desired list of Voronöı coords, then:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2 + (2x3 + ε3) · b3‖2 − ‖ε1b1 + ε2b2 + ε3b3‖2 > 0.

By replacing the vector bi by −bi, we see that wlog the proof can be restricted
to the case x1, x2, x3 ≥ 0. Moreover, because we already considered the two-
dimensional case in Lemma 9.1.2, we can suppose that for any i ∈ {1, 2, 3}, we
have (xi, εi) 6= (0, 0).

From Lemma 9.1.1, we know that since the basis [b1,b2,b3]≤ is Minkowski-
reduced, we have ‖b∗

3‖ ≥ ‖b3‖/
√

2. As a consequence, if 2x3 + ε3 ≥ 5, then:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2 + (2x3 + ε3) · b3‖2 ≥ 25 · ‖b∗
3‖2 ≥ 25

2
· ‖b3‖2,

and the triangular inequality gives that ‖ε1 ·b1 +ε2 ·b2 +ε3 ·b3‖2 ≤ 9 · ‖b3‖2. This
gives the result when 2x3 + ε3 ≥ 5. The same argument holds for (x3, ε3) = (2, 0),
and for (x3, ε3) ∈ {(1, 1), (1, 0)} with ε1 · ε2 = 0. Therefore, it remains to consider
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the three cases (x3, ε3) = (1, 1) with ε1 = ε2 = 1, (x3, ε3) = (1, 0) with ε1 = ε2 = 1,
and (x3, ε3) = (0, 1).

Case 1: Suppose that (x3, ε3) = (1, 1) and ε1 = ε2 = 1. Since the ordered
basis [b1,b2,b3]≤ is Minkowski-reduced, we have 〈bi,bj〉 ≥ −‖bi‖2/2 for any
1 ≤ i < j ≤ 3, which gives:

‖(2x1 + 1) · b1 + (2x2 + 1) · b2 + 3 · b3‖2 − ‖b1 + b2 + b3‖2

= 4
(

x2
1 + x1

)

· ‖b1‖2 + 4
(

x2
2 + x2

)

· ‖b2‖2 + 8 · ‖b3‖2

+4(3x1 + 1) · 〈b1,b3〉 + 4(3x2 + 1) · 〈b2,b3〉 + 4(2x1x2 + x1 + x2) · 〈b1,b2〉
≥
(

4x2
1 − 4x1x2 − 4x1 − 2x2 − 2

)

· ‖b1‖2 +
(

4x2
2 − 2x2 − 2

)

‖b2‖2 + 8‖b3‖2.

If x2 = 0, it suffices to lower-bound
(

x2
1 − x1

)

· ‖b1‖2 + ‖b3‖2, which is always
greater than ‖b3‖2 and therefore strictly positive. Suppose now that x2 ≥ 1.
Then 4x2

2 − 2x2 − 2 ≥ 0 and we obtain:

‖(2x1 + 1) · b1 + (2x2 + 1) · b2 + 3 · b3‖2 − ‖b1 + b2 + b3‖2

≥ 4
(

x2
1 + x2

2 − x1x2 − x1 − x2 + 1
)

· ‖b1‖2

≥ 4
(

(x1 − x2)
2 + (x1x2 − x1 − x2) + 1

)

· ‖b1‖2.

It is clear that this last expression is strictly positive for any x1, x2 ≥ 0 except
when x1 = x2 = 1. In this last situation, we use the fact that ‖3 · b1 + 3 · b2 + 3 ·
b3‖2 − ‖b1 + b2 + b3‖2 = 8 · ‖b1 + b2 + b3‖2.

Case 2: Suppose now that (x3, ε3) = (1, 0) and ε1 = ε2 = 1. Similarly, we have:

‖(2x1 + 1) · b1 + (2x2 + 1) · b2 + 2 · b3‖2 − ‖b1 + b2‖2

= 4
(

x2
1 + x1

)

· ‖b1‖2 + 4
(

x2
2 + x2

)

· ‖b2‖2 + 4 · ‖b3‖2

+4(2x1 + 1) · 〈b1,b3〉 + 4(2x2 + 1) · 〈b2,b3〉 + 4(2x1x2 + x1 + x2) · 〈b1,b2〉
≥
(

4x2
1 − 4x1x2 − 2x1 − 2x2 − 2

)

· ‖b1‖2 +
(

4x2
2 − 2

)

· ‖b2‖2 + 4‖b3‖2.

If x2 = 0, it suffices to lower-bound
(

2x2
1 − x1 − 1

)

· ‖b1‖2 + ‖b3‖2, which is
strictly positive if x1 ≥ 1. If x1 = 0, then we have one of the possible Voronöı
coords. Suppose now that x2 ≥ 1. In that case 4x2

2 − 2 ≥ 0, which ensures that:

‖(2x1 + 1) · b1 + (2x2 + 1) · b2 + 2 · b3‖2 − ‖b1 + b2‖2

≥ 2
(

2x2
1 + 2x2

2 − 2x1x2 − x1 − x2

)

· ‖b1‖2

≥ 2
(

(x1 − x2)
2 + (x2

1 − x1) + (x2
2 − x2)

)

· ‖b1‖2.

If x1 ≥ 2 or x2 ≥ 2 or x1 6= x2, this is strictly positive. Therefore it remains to
consider the case x1 = x2 = 1. We have:

‖3·b1+3·b2+2·b3‖2−‖b1+b2‖2 = 4·
(

‖b3‖2 + 3 · 〈b3,b1 + b2〉 + 2 · ‖b1 + b2‖2
)

.

Since the basis [b1,b2,b3]≤ is reduced, we have 〈b3,b1 + b2〉 ≥ −‖b1 + b2‖2/2,
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which gives the expected result.

Case 3: Suppose now that (x3, ε3) = (0, 1). Similarly, we have the inequalities:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2 + b3‖2 − ‖ε1 · b1 + ε2 · b2 + b3‖2

= 4
(

x2
1 + ε1x1

)

· ‖b1‖2 + 4
(

x2
2 + ε2x2

)

· ‖b2‖2 + 4x1 · 〈b1,b3〉
+4x2 · 〈b2,b3〉 + 4(2x1x2 + x1ε2 + x2ε1) · 〈b1,b2〉

≥
(

4x2
1 − 4x1x2 + (4ε1 − 2 − 2ε2)x1 − 2x2ε1

)

· ‖b1‖2

+
(

4x2
2 + (4ε2 − 2)x2

)

· ‖b2‖2.

If x2 = 0, it suffices to lower-bound 4x2
1 +(4ε1 − 2− 2ε2)x1. It is strictly positive

as soon as x1 ≥ 1 except in the case (x1, ε1, ε2) = (1, 0, 1), which corresponds to
one of the possible Voronöı coords. If x1 = 0, we only have possible Voronöı coords.
Suppose now that x2 ≥ 1. In that case 4x2

2 + (4ε2 − 2)x2 ≥ 0 and:

‖(2x1 + ε1) · b1 + (2x2 + ε2) · b2 + b3‖2 − ‖ε1 · b1 + ε2 · b2 + b3‖2

≥
(

4x2
1 + 4x2

2 − 4x1x2 + (4ε1 − 2 − 2ε2)x1 + (4ε2 − 2 − 2ε1)x2

)

· ‖b1‖2.

For (ε1, ε2) = (0, 0), we get 2
(

(x1 − x2)
2 + (x2

1 − x1) + (x2
2 − x2)

)

, which is strictly
positive as soon as x1 6= x2 or x1 ≥ 2 or x2 ≥ 2. The only remaining case that does
not provide a possible Voronöı coord is x1 = x2 = 1. Notice that ‖2b1 + 2b2 +
b3‖2 > ‖b3‖2 is equivalent to ‖b1 + b2‖2 + 〈b1 + b2,b3〉 > 0, which is implied
by 〈b1 +b2,b3〉 ≥ −‖b1 +b2‖2/2 (the vector b3 has its orthogonal projection onto
the span of [b1,b2] inside Vor(b1,b2)).

For (ε1, ε2) = (1, 0), we get 2(x1 −x2)
2 +2(x2

2 − 2x2) + 2x2
1 +2x1. If x2 ≥ 2, this

is clearly strictly positive. If x2 = 1, we obtain 4x2
1 − 2x1, which is strictly positive

unless x1 = 0 (one of the possible Voronöı coords). We have already considered the
case x2 = 0. The case (ε1, ε2) = (0, 1) is symmetric.

Finally, if (ε1, ε2) = (1, 1), we obtain 2
(

(x1 − x2)
2 + x2

1 + x2
2

)

, which is strictly
positive unless x1 = x2 = 0 (one of the possible Voronöı coords). This completes
the proof of the lemma.

The possible Voronöı coord (2, 1, 1) creates difficulties when analyzing the greedy
algorithm in dimension four because it contains a two, which cannot be handled
with the greedy argument used for the ones. We tackle this problem as follows:
we show that when (2, 1, 1) happens to be a Voronöı coord, the lattice has a very
specific shape, for which the behavior of the algorithm is well-understood.

Lemma 9.1.4. Suppose the basis [b1,b2,b3]≤ is Minkowski-reduced.

(1 ) If (s1, s2, 2) is a Voronöı coord with si = ±1 for i ∈ {1, 2}, then ‖b1‖ = ‖b2‖ =
‖b3‖, 〈b1,b2〉 = 0 and 〈bi,b3〉 = − si

2 · ‖b1‖2 for i ∈ {1, 2}.
(2 ) If (s1, 2, s3) is a Voronöı coord with si = ±1 for i ∈ {1, 3}, then ‖b1‖ = ‖b2‖.

Moreover, if ‖b1‖ = ‖b2‖ = ‖b3‖, then 〈b1,b3〉 = 0 and 〈bi,b2〉 = − si

2 · ‖b1‖2

for i ∈ {1, 3}.
(3 ) If (2, s2, s3) is a Voronöı coord with si = ±1 for i ∈ {2, 3} and ‖b1‖ = ‖b2‖ =

‖b3‖, then 〈b2,b3〉 = 0 and 〈bi,b1〉 = − si

2 · ‖b1‖2 for i ∈ {2, 3}.
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Proof. Wlog we suppose that for any i, we have si = 1. In the first situation we
consider the inequality ‖b1 +b2 +2 ·b3‖2 ≤ ‖b1 +b2‖2: it is equivalent to ‖b3‖2 +
〈b1,b3〉 + 〈b2,b3〉 ≤ 0. Since the basis is reduced, we must have 〈b1,b3〉 ≥
−‖b1‖2/2 and 〈b2,b3〉 ≥ −‖b2‖2/2. Thus 2 · ‖b3‖2 − ‖b1‖2 − ‖b2‖2 ≤ 0. Conse-
quently, the length equalities hold and the inequalities on the scalar products above
are equalities. It remains to prove that 〈b1,b2〉 = 0. Since b1 is a shortest vector,
we have ‖b3 + b2 + b1‖2 ≥ ‖b1‖2, which is equivalent to 〈b1,b2〉 ≥ 0. Moreover,
we have 〈b1,b2〉 ≤ 0 from the expansion of ‖b1 + b2 + 2 · b3‖2 ≤ ‖b1 − b2‖2.

In the second situation, expanding ‖b1 + 2 · b2 + b3‖2 ≤ ‖b1 + b3‖2 gives the
length equality. In the case of the additional hypothesis ‖b1‖ = ‖b2‖ = ‖b3‖, the
basis [b1,b3,b2]≤ is also reduced and we can apply the result of the first situation.
This last argument also holds in the third situation.

9.2 Voronöı Cells in the Case of ε-Greedy-Reduced Vectors

We extend the results of the previous subsection to the case of ε-greedy-reduced
vectors. The idea is that if we compactify the set of Minkowski-reduced bases and
slightly enlarge it, the possible Voronöı coords remain the same. Unfortunately,
by doing so, some of the vectors we consider may be zero and this creates an
infinity of possible Voronöı coords: for example, if b1 = 0, any pair (x1, 0) is
a Voronöı coord of [b1,b2]≤. To tackle this problem, we restrict to vectors bi

with “similar” lengths. More precisely, we use the so-called Topological Lemma:
if we can guarantee that the possible Voronöı coords of the enlargement of the
initial compact set of bases are bounded, then for a sufficiently small enlargement,
the possible Voronöı coords remain the same. We first give rather simple results
on ε-greedy-reduced vectors and their Gram-Schmidt orthogonalization, then we
introduce the Topological Lemma (Lemma 9.2.3), from which we finally derive the
relaxed versions of Lemmata 9.1.2, 9.1.3 and 9.1.4.

Lemma 9.2.1. For any ε > 0, if [b1,b2,b3]≤ are ε-greedy-reduced, then the
following inequalities hold:

∀i < j, |〈bi,bj〉| ≤ 1 + ε

2
· ‖bi‖2,

∀s1, s2 ∈ {−1, 1}, |〈b3, s1 · b1 + s2 · b2〉| ≤ 1 + ε

2
· ‖s1 · b1 + s2 · b2‖2.

Proof. Since [b1,b2]≤ are ε-greedy-reduced, we have that b′
2 ∈ (1+ε) ·Vor(b1),

where b′
2 is the orthogonal projection of the vector b2 onto the span of b1. As a

consequence, we can write b′
2 = (1 + ε) · u with u ∈ Vor(b1). By expanding the

inequalities ‖u ± b1‖2 ≥ ‖u‖2, we obtain that |〈u,b1〉| ≤ ‖b1‖2/2. Therefore,
|〈b3,b1〉| ≤ 1+ε

2 · ‖b1‖2.
Moreover [b1,b2,b3]≤ are ε-greedy-reduced, so that b′

3 ∈ (1 + ε) · Vor(b1,b2),
where b′

3 is the orthogonal projection of the vector b3 onto the span of [b1,b2]≤.
As a consequence, we can write b′

3 = (1 + ε) · u with u ∈ Vor(b1,b2). We proceed
exactly as above by expanding the inequalities ‖u + s1 · b1 + s2 · b2‖2 ≥ ‖u‖2 for
any s1, s2 ∈ {−1, 0, 1}, and this provides the result.

The previous lemma implies that if [b1, . . . ,bd]≤ are ε-greedy-reduced, the only
case for which the bi’s can be linearly dependent is when some of them are zero,
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but this case cannot be avoided since we need compactifying the set of Minkowski-
reduced bases. The following lemma generalizes Lemma 9.1.1. It shows that even
with ε-greedy-reduced vectors, if the dimension is below four then the Gram-
Schmidt orthogonalization process cannot arbitrarily decrease the lengths of the
initial vectors.

Lemma 9.2.2. There exists C > 0 such that for any 1 ≤ d ≤ 4 and any
sufficiently small ε > 0, if [b1, . . . ,bd]≤ are ε-greedy-reduced vectors, then we
have ‖b∗

d‖ ≥ C · ‖bd‖.
Proof. Since [b1, . . . ,bd]≤ are ε-greedy-reduced, we know that if b′

d is the or-
thogonal projection of the vector bd onto the span of [b1, . . . ,bd−1]≤, then b′

d ∈
(1 + ε) · Vor(b1, . . . ,bd−1). Therefore, because of Lemma 9.1.1 and because the
vectors are ordered,

‖b′
d‖ ≤ (1 + ε)

√
d − 1

2
· ‖bd−1‖ ≤ (1 + ε)

√
d − 1

2
· ‖bd‖.

Besides, from the Pythagorean theorem, we have ‖bd‖2 = ‖b∗
d‖2 + ‖b′

d‖2, which
completes the proof.

The Topological Lemma is the key argument when extending the results on pos-
sible Voronöı coords from Minkowski-reduced bases to ε-greedy-reduced vectors.
When applying it, X0 will correspond to the xi’s, K0 to the bi’s that are ε-
greedy-reduced, X to the possible Voronöı coordinates, K to a compact subset
of the Minkowski-reduced bases, and f to the continuous function of real vari-
ables f : (yi)i≤d, (bi)i≤d −→ ‖y1b1 + . . . + ydbd‖.

Lemma 9.2.3 Topological Lemma. Let n, m ≥ 1. Let X0 and K0 be compact
sets of R

n and R
m. Let f be a continuous function from K0×X0 to R. For any a ∈

K0 we define Ma = {x ∈ X0 ∩ Z
n, f(a, x) = minx′∈X0∩Zn f(a, x′)}. Let K ⊂ K0 be

a compact and X = ∪a∈KMa ⊂ X0 ∩ Z
n. With these notations, there exists ε > 0

such that if b ∈ K0 satisfies dist(b, K) ≤ ε, we have Mb ⊂ X.

Proof. First, all the notations of the result make sense: X0 ∩Z
n is finite so the

minimum of f(a, ·) over it does exist and Ma is finite. Since X ⊂ X0 ∩ Z
n, X is

finite. Finally, since K is compact, the notation dist(·, K) makes sense too.
For each x ∈ X0 we define Kx = {a ∈ K0, x ∈ Ma}. The set Kx is compact.

Indeed, it is obviously bounded, and if (ak) is a sequence of elements of Kx that
converges towards an a ∈ K0, we show that a ∈ Kx. For all x′ ∈ X0 ∩ Z

n and for
all k, we have f(ak, x) ≤ f(ak, x′). By continuity, this holds for a too, which proves
that x ∈ Ma.

Now we fix an x ∈ X0 ∩ Z
n \ X . Since Kx and K are both compact and x /∈ X

(which implies K ∩ Kx = ∅), dist(Kx, K) > 0. Finally, set

ε =
1

2
min (dist(Kx, K), x ∈ (X0 ∩ Z

n) \ X) ,

which exists since (X0∩Z
n)\X is finite. Now, let b4 ∈ K0 such that dist(b, K) ≤ ε.

For any x0 ∈ Mb, we have b ∈ Kx0
. Then necessarily x0 ∈ X , since otherwise one

would have dist(Kx0
, K) > ε ≥ dist(b, K), which cannot be the case because b ∈

Kx0
.
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In order to apply the Topological Lemma, we need to map the relaxed bases into
a compact set. For any ε ≥ 0 and any α ∈ [0, 1], we define:

K2(ε, α) = {(b1,b2),b1,b2 ε-greedy-reduced, α ≤ ‖b1‖ ≤ ‖b2‖ = 1}
K3(ε, α) = {(b1,b2,b3),b1,b2,b3 ε-greedy-reduced,

α ≤ ‖b1‖ ≤ ‖b2‖ ≤ ‖b3‖ = 1}.
Lemma 9.2.4. If ε ≥ 0 and α ∈ [0, 1], K2(ε, α) and K3(ε, α) are compact sets.

The following lemma is the relaxed version of Lemma 9.1.2. It can also be viewed
as a reciprocal to Lemma 9.2.1.

Lemma 9.2.5. There exists ε > 0 such that for any α ∈ (0, 1], the possible
Voronöı coords of [b1,b2]≤ ∈ K2(ε, α) are the same as for Minkowski-reduced bases,
i.e., (1, 0) and (1, 1), modulo any change of signs and permutation of coordinates.

Proof. Recall that there is a set of possible Voronöı coords for each non-zero
element of (Z/2Z)2: we look at the minima of the cosets of L/2L. Since there is
a finite number of such cosets (three in dimension two), we treat them separately.
Let (a1, a2) ∈ {0, 1}2. We are looking for the pairs (k1, k2) ∈ Z

2 that minimize the
quantity ‖(a1 + 2k1) · b1 + (a2 + 2k2) · b2‖, where [b1,b2]≤ are ε-greedy-reduced.
We first prove that the minimum over (k1, k2) can be taken over a finite domain.
Notice that if (k∗

1 , k∗
2) is optimal:

2 ≥ ‖b1‖ + ‖b2‖ ≥ ‖a1 · b1 + a2 · b2‖ ≥ ‖(a1 + 2k∗
1) · b1 + (a2 + 2k∗

2) · b2‖.
Moreover, Lemma 9.2.2 gives that:

‖(a1 + 2k∗
1) · b1 + (a2 + 2k∗

2) · b2‖ ≥ |a2 + 2k∗
2 | · ‖b∗

2‖ ≥ |a2 + 2k∗
2 |C,

which gives the result for k∗
2 . By applying the triangular inequality, we get the

result for k∗
1 :

|a1 + 2k∗
1 |α ≤ ‖(a1 + 2k∗

1) · b1‖ ≤ 2 + ‖(a2 + 2k∗
2) · b2‖ ≤ 2 + |a2 + 2k∗

2 |.
From this we deduce that (k∗

1 , k∗
2) ∈ Z

2 can be bounded independently of (b1,b2).
From Lemma 9.2.4, we know that K2(ε, α) is compact and therefore we can apply
the Topological Lemma. This gives the expected result.

We now relax Lemma 9.1.3 in the same manner. To do this, we proceed exactly
like in the proof above.

Lemma 9.2.6. There exists ε > 0 such that for any α ∈ (0, 1], the possible
Voronöı coords of [b1,b2,b3]≤ ∈ K3(ε, α) are the same as for Minkowski-reduced
bases.

Proof. We consider each non-zero coset of L/2L separately (there are seven
of them in dimension three). Let (a1, a2, a3) ∈ {0, 1}3. We are looking for the
triples (k1, k2, k3) ∈ Z

3 minimizing the quantity ‖(a1 + 2k1) · b1 + (a2 + 2k2) ·
b2 + (a3 + 2k3) · b3‖, where [b1,b2,b3]≤ are ε-greedy-reduced. In order to apply
Lemma 9.2.4, from which the result can be deduced easily, it is sufficient to prove
that the minimum over (k1, k2, k3) can be taken over a finite domain. Notice that
if (k∗

1 , k∗
2 , k∗

3) is optimal:

3 ≥ ‖a1 ·b1 +a2 ·b2 +a3 ·b3‖ ≥ ‖(a1 +2k∗
1) ·b1 +(a2 +2k∗

2) ·b2 +(a3 +2k∗
3) ·b3‖.
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Moreover, Lemma 9.2.2 gives that:

‖(a1 +2k∗
1) ·b1 +(a2 +2k∗

2) ·b2 +(a3 +2k∗
3) ·b3‖ ≥ |a3 +2k∗

3 | · ‖b∗
3‖ ≥ |a3 +2k∗

3 |C,

for any sufficiently small ε > 0. This gives the result for k∗
3 .

From the triangular inequality, Lemma 9.2.2, and the fact that ‖b2‖ ≥ α, we
have:

3+ |a3 +2k∗
3 | ≥ ‖(a1 +2k∗

1) ·b1 +(a2 +2k∗
2) ·b2‖ ≥ |a2 +2k∗

2 | · ‖b∗
2‖ ≥ |a2 +2k∗

2 |Cα.

The fact that k∗
3 is bounded ensures that k∗

2 is bounded.
To obtain the result on k∗

1 , it suffices to apply the triangular inequality once
more:

3 + |a3 + 2k∗
3 | + |a2 + 2k∗

2 | ≥ ‖(a1 + 2k∗
1) · b1‖ ≥ |a1 + 2k∗

1 |α.

The following result generalizes Lemma 9.1.4 about the possible Voronöı co-
ord (1, 1, 2). As opposed to the two previous results, there is no need using the
Topological Lemma in this case, because only a finite number of (x1, x2, x3)’s is
considered.

Lemma 9.2.7. There exists c > 0 such that for any sufficiently small ε > 0,
if [b1,b2,b3]≤ are ε-greedy-reduced and ‖b3‖ = 1, then:

(1 ) If (s1, s2, 2) is a Voronöı coord with si = ±1 for i ∈ {1, 2}, then: ‖b1‖ ≥
1 − cε, |〈b1,b2〉| ≤ cε and

∣

∣〈bi,b3〉 + si

2 · ‖b1‖2
∣

∣ ≤ cε for i ∈ {1, 2}.
(2 ) If (s1, 2, s3) is a Voronöı coord with si = ±1 for i ∈ {1, 3}, then (1 − cε) ·

‖b2‖ ≤ ‖b1‖ ≤ ‖b2‖. Moreover, if ‖b1‖ ≥ 1 − ε, then: |〈b1,b3〉| ≤ cε
and

∣

∣〈bi,b2〉 + si

2 · ‖b1‖2
∣

∣ ≤ cε for i ∈ {1, 3}.
(3 ) If (2, s2, s3) is a Voronöı coord with si = ±1 for i ∈ {2, 3} and if ‖b1‖ ≥ 1− ε,

then: |〈b2,b3〉| ≤ cε and
∣

∣〈bi,b1〉 + si

2 · ‖b1‖2
∣

∣ ≤ cε for i ∈ {2, 3}.
The proof is a straightforward modification of the proof of Lemma 9.1.4.

Proof. Wlog we suppose that for any i, we have si=1. The proofs of the other
cases are very similar. We only prove the statement in the case of the first situation.

We consider the inequality ‖b1 + b2 + 2 · b3‖2 ≤ ‖b1 + b2‖2: it is equivalent
to ‖b3‖2+〈b1,b3〉+〈b2,b3〉 ≤ 0. Since [b1,b2,b3]≤ are ε-greedy-reduced, by using
Lemma 9.2.1 we obtain that we must have 〈b1,b3〉 ≥ − 1+ε

2 · ‖b1‖2 and 〈b2,b3〉 ≥
− 1+ε

2 · ‖b2‖2. Thus 2 · ‖b3‖2 − (1 + ε) · ‖b1‖2 − (1 + ε) · ‖b2‖2 ≤ 0. Consequently,
the length “quasi-equality” holds, and the inequalities on the scalar products above
are “quasi-equalities”.

It remains to prove that |〈b1,b2〉| is very small. Expanding the relation ‖b1 +
b2 + 2 · b3‖2 ≤ ‖b1 − b2‖2 gives that 〈b1,b2〉 ≤ c1ε for some constant c1 > 0.
Similarly, expanding the relation |〈b3,b1 + b2〉| ≤ 1+ε

2 · ‖b1 + b2‖2 (which comes
from Lemma 9.2.1 gives 〈b1,b2〉 ≥ −c2ε for some constant c2 > 0.

9.3 The Gap Lemma

The goal of this subsection is to prove that even with relaxed bases, if one adds a
lattice vector with not too small coordinates to a vector of the Voronöı cell, this
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vector becomes significantly longer. This result was used the other way round: if
the xi’s found at Step 5 of the recursive greedy algorithm are not too small, then
the vector bd is significantly shorter than the vector ad. We first generalize the
compact sets K2 and K3. For any ε ≥ 0 and any α ∈ [0, 1], we define:

K ′
2(ε, α) = {(b1,b2,u), (b1,b2) ∈ K2(ε, α) and u ∈ Vor(b1,b2)}

K ′
3(ε, α) = {(b1,b2,b3,u), (b1,b2,b3) ∈ K3(ε, α) and u ∈ Vor(b1,b2)}.

Lemma 9.3.1. If ε ≥ 0 and α ∈ [0, 1], the sets K ′
2(ε, α) and K ′

3(ε, α) are com-
pact.

Proof. Since the proofs in the two and three dimensional cases are the same,
we only consider K ′

2(ε, α). It is sufficient to show that K ′
2(ε, α) is closed and

bounded. The fact it is bounded is obvious since ‖b1‖ ≤ ‖b2‖ = 1 and ‖u‖ ≤
‖b1‖ + ‖b2‖ ≤ 2. We suppose now that K ′

2(ε, α) is not closed and we look for

a contradiction. Let
(

b
(n)
1 ,b

(n)
2 ,u(n)

)

be a sequence of elements of K ′
2(ε, α) that

converges to (b1,b2,u) /∈ K ′
2(ε, α). By definition of K ′

2(ε, α), there exists (x1, x2) 6=
(0, 0) such that ‖x1 · b1 + x2 · b2 + u‖ > ‖u‖. Thus there exists an integer n ≥
0 such that

∥

∥

∥
x1b

(n)
1 + x2b

(n)
2 + u(n)

∥

∥

∥
>
∥

∥u(n)
∥

∥. In that case, we have u(n) /∈
Vor

(

b
(n)
1 ,b

(n)
2

)

, which is impossible.

The next result is the two-dimensional version of the Gap Lemma.

Lemma 9.3.2. There exist two constants ε, C > 0 such that for any ε-greedy-
reduced vectors [b1,b2]≤ and any u ∈ Vor(b1,b2), if at least one of the following
conditions holds, then: ‖u + x1b1 + x2b2‖2 ≥ ‖u‖2 + C‖b2‖2.

(1 ) |x2| ≥ 2,

(2 ) |x1| ≥ 2 and ‖b1‖ ≥ (1 − ε) · ‖b2‖.
Proof. The proof involves three claims. The first one helps compactifying the

set of the variables [b1,b2]. The second one shows that we can suppose that the
vectors b1 and b2 have similar lengths, and the third one is the key step when
showing that we can use Lemma 9.2.5 to end the proof.

Claim 1: Wlog we can suppose ‖b2‖ = 1.

Let (∗) be the following statement: “There exist two constants ε, C > 0 such that
for any ε-greedy-reduced vectors [b1,b2]≤ with ‖b2‖ = 1, and any u ∈ Vor(b1,b2),
if one of the following conditions is not satisfied then ‖u + x1 · b1 + x2 · b2‖2 ≥
‖u‖2 + C.

—A- |x2| ≥ 2,

—B- |x1| ≥ 2 and ‖b1‖ ≥ 1 − ε.”

We keep the same constants ε, C > 0. Let [b1,b2]≤ be ε-greedy-reduced vectors.
If ‖b2‖ = 0, the result is obvious. Otherwise, let b′

i = 1
‖b2‖ · bi for i ∈ {1, 2}. We

apply (∗) to the ε-greedy-reduced vectors [b′
1,b

′
2]≤. Let u ∈ Vor(b1,b2) and u′ =

1
‖b2‖ · u. Then u′ ∈ Vor(b′

1,b
′
2). If condition (1) or condition (2) is satisfied,
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then ‖u′ + x1 · b′
1 + x2 · b′

2‖2 ≥ ‖u′‖2 + C. Multiplying both sides by ‖b2‖2 gives
the result.

We now distinguish two cases: either the vector b1 has approximately the length
of the vector b2, or it is far shorter (which cannot happen in situation (2)). The
idea of the following claim is that when b1 converges to 0, (b1,b2,u) converges
to (0,b2,u

′) where u′ is close to Vor(b2).

Claim 2: There exist C, α, ε > 0 such that for any (b1,b2,u) ∈ K ′
2(ε, 0) with

‖b1‖ ≤ α, as soon as |x2| ≥ 2:

‖u + x1 · b1 + x2 · b2‖2 − ‖u‖2 ≥ C.

Since u ∈ Vor(b1,b2), we have |〈u,bi〉| ≤ ‖bi‖2/2 for i ∈ {1, 2}. Therefore:

‖u + x1 · b1 + x2 · b2‖2 − ‖u‖2 = ‖x1 · b1 + x2 · b2‖2 + 2〈u, x1 · b1 + x2 · b2〉
≥ ‖x1 · b1 + x2 · b2‖2 − |x1| · ‖b1‖2 − |x2|
≥ (x2

1 − |x1|) · ‖b1‖2 + (x2
2 − |x2|) − 2|x1x2| · |〈b1,b2〉|.

Since [b1,b2]≤ are ε-greedy-reduced, by Lemma 9.2.1 we have |〈b1,b2〉| ≤ 1+ε
2 ·

‖b1‖2, from which we get:

‖u + x1 · b1 + x2 · b2‖2 − ‖u‖2 ≥ |x1|(|x1| − |x2|(1 + ε) − 1) · ‖b1‖2 + (x2
2 − |x2|).

We now minimize this last expression as regard to the variable |x1| (this is a degree-2

polynomial), and with the extremal choice “|x1| = (1+ε)|x2|+1
2 ” we obtain:

‖u + x1 · b1 + x2 · b2‖2 − ‖u‖2

≥ − (|x2|(1 + ε) + 12

4
· ‖b1‖2 + (x2

2 − |x2|)

≥
(

1 − α2(1 + ε)2

4

)

|x2|2 −
(

1 +
α2(1 + ε)

2

)

|x2| −
α2

4

For a small enough α, the minimum of this degree-2 polynomial in |x2| is reached
for “|x2| ≤ 2”, and is increasing as regard to |x2| ≥ 2. By hypothesis |x2| ≥ 2,
therefore we have:

‖u + x1 · b1 + x2 · b2‖2 − ‖u‖2 ≥ 2 − α2(9/4 + 3ε + ε2),

which gives the result.

The constant α > 0 is fixed to satisfy the constraint of Claim 2, and we fix ε > 0
to satisfy the constraints of Claim 2 and Lemmata 9.2.2 and 9.2.5. We now consider

a sequence
(

b
(k)
1 ,b

(k)
2 ,u(k), x

(k)
1 , x

(k)
2

)

k
such that:

(1)
(

b
(k)
1 ,b

(k)
2 ,u(k)

)

∈ K ′
2(ε, α),

(2) x
(k)
1 , x

(k)
2 are integers with |x(k)

2 | ≥ 2 (respectively |x(k)
1 | ≥ 2),

(3)
∥

∥

∥
u(k) + x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥

2

−
∥

∥u(k)
∥

∥

2 → 0 when k → ∞.
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If no such sequence exists, then (1) (respectively (2)) is proved. To end the proof
of Lemma 9.3.2, suppose to the contrary that such a sequence does exist: there will
be a contradiction with Voronöı coords.

Claim 3: For any sufficiently small ε > 0 and for any α > 0, the sequences x
(k)
2

and x
(k)
1 remain bounded.

Suppose that this is not the case. We show that this implies that the quantity
∥

∥

∥
u(k) + x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥

2

−
∥

∥u(k)
∥

∥

2
is not bounded, which is impossible. By

the Cauchy-Schwarz inequality, we have:

‖u(k) + x
(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 ‖2 −
∥

∥

∥
u(k)

∥

∥

∥

2

≥
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥

(∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥
− 2

∥

∥

∥
u(k)

∥

∥

∥

)

.

Since
∥

∥u(k)
∥

∥ is bounded, it suffices to show that
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥
is not

bounded. From Lemma 9.2.2, we have:
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2

∥

∥

∥
≥
∣

∣

∣
x

(k)
2

∣

∣

∣
·
∥

∥

∥
b

(k)∗
2

∥

∥

∥
≥ C

∣

∣

∣
x

(k)
2

∣

∣

∣
.

Therefore, the sequence x
(k)
2 is bounded. The triangular inequality and the fact

that
∥

∥

∥
b

(k)
1

∥

∥

∥
≥ α ensure that the sequence x

(k)
1 remains bounded too.

The previous claim and Lemma 9.3.1 imply that
(

b
(k)
1 ,b

(k)
2 ,u(k), x

(k)
1 , x

(k)
2

)

re-

mains in a compact subset of R
3n×Z

2. Therefore we can extract a subsequence that
converges to a limit (b1,b2,u, x1, x2) that lies in the same compact and satisfies:
‖u + x1 · b1 + x2 · b2‖ = ‖u‖. This means that x1 · b1 + x2 · b2 is a Voronöı vector
of the lattice spanned by [b1,b2]≤ ∈ K ′

2(ε, α), which contradicts Lemma 9.2.5.

We now give the three-dimensional Gap Lemma, on which relies the analysis of
the four-dimensional greedy algorithm.

Lemma 9.3.3. There exist two constants ε, C > 0 such that for any ε-greedy-
reduced vectors [b1,b2,b3]≤ and any u ∈ Vor(b1,b2,b3), if at least one of the
following conditions holds, then:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 ≥ ‖u‖2 + C · ‖b3‖2.

(1 ) |x3| ≥ 3, or |x3| = 2 with (|x1|, |x2|) 6= (1, 1).

(2 ) ‖b2‖ ≥ (1 − ε) · ‖b3‖ and: |x2| ≥ 3, or |x2| = 2 with (|x1|, |x3|) 6= (1, 1).

(3 ) ‖b1‖ ≥ (1 − ε) · ‖b3‖ and: |x1| ≥ 3, or |x1| = 2 with (|x2|, |x3|) 6= (1, 1).

Proof. It is easy to see that similarly to Lemma 9.3.2 we can suppose that
‖b3‖ = 1. We consider three cases: both vectors b1 and b2 are significantly shorter
than the vector b3, the vector b1 is very short but the vectors b2 and b3 have

ACM Journal Name, Vol. 0, No. 0, 00 2008.



44 · P. Q. Nguyen and D. Stehlé

similar lengths, and finally all the vectors have similar lengths.

Claim 1: There exist C, α, ε > 0 such that for any (b1,b2,b3,u) ∈ K ′
3(ε, 0)

with ‖b2‖ ≤ α, as soon as |x3| ≥ 2, we have ‖u+x1·b1+x2·b2+x3 ·b3‖2−‖u‖2 ≥ C.

Because the vector u lies in the Voronöı cell of the lattice spanned by the vec-
tors b1,b2 and b3, and because of Lemma 9.2.1, we have the following inequalities:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 − ‖u‖2

= ‖x1 · b1 + x2 · b2 + x3 · b3‖2 + 2〈u, x1 · b1 + x2 · b2 + x3 · b3〉
≥
(

x2
1 − (1 + ε)|x1|(|x2| + |x3|) − |x1|

)

· ‖b1‖2

+
(

x2
2 − (1 + ε)|x2‖x3| − |x2|

)

· ‖b2‖2 + x2
3 − |x3|.

We minimize this degree-2 polynomial of the variable |x1|, and with the choice

“x1 = (1+ε)(|x2|+|x3|)+1
2 ”, we obtain that ‖u+ x1 ·b1 + x2 ·b2 + x3 ·b3‖2 −‖u‖2 is:

≥ − ((1 + ε)(|x2| + |x3|) + 1)2

4
· ‖b1‖2 +

(

x2
2 − (1 + ε)|x2||x3| − |x2|

)

· ‖b2‖2

+x2
3 − |x3|

≥
(

3 − 2ε − ε2

4
x2

2 −
(

3 + 4ε + ε2

2
|x3| +

3 + ε

2

)

|x2| −
((1 + ε)|x3| + 1)2

4

)

‖b2‖2

+x2
3 − |x3|,

because ‖b1‖ ≤ ‖b2‖. The left-hand term is a degree-2 polynomial in |x2|, whose
first coefficient is positive (for a small enough ε > 0). It is lower-bounded by its
minimum over Z and the minimum is reached for |x2| = |x3| + 1 when ε = 0. This
gives:

‖u+x1·b1+x2·b2+x3 ·b3‖2−‖u‖2 ≥
(

a2(ε)x
2
3 + a1(ε)|x3| + a0(ε)

)

·‖b2‖2+x2
3−|x3|,

where a2(ε) → −1, a2(ε) → −2 and a0(ε) → −1 when ε → 0. When ε > 0 is small
enough, the factor in front of ‖b2‖2 is negative, and since ‖b2‖ ≤ α, we get:

u + x1 · b1 + x2 · b2 + x3 · b3‖2 − ‖u‖2

≥
(

1 + α2a2(ε)
)

x2
3 +

(

−1 + α2a1(ε)
)

|x3| + α2a0(ε).

For small enough constants α, ε > 0, this degree-2 polynomial of the variable |x3|
is strictly increasing over [2,∞) so that we can replace |x3| by 2 in the right hand
side:

‖u+x1 ·b1 +x2 ·b2 +x3 ·b3‖2−‖u‖2 ≥ 4
(

1 + α2a2(ε)
)

−2
(

1 − α2a1(ε)
)

+α2a0(ε).

When α > 0 is small enough, this quantity becomes larger than a constant C > 0.

Claim 2: There exist C, c′′, ε, α > 0 such that for any (b1,b2,b3,u) ∈ K ′
3(ε, 0)

with ‖b1‖ ≤ α and ‖b2‖ ≥ c′′α, as soon as |x3| ≥ 2, ‖u + x1 · b1 + x2 · b2 + x3 ·
b3‖2 − ‖u‖2 ≥ C.

The proof looks like the one of Claim 2 of Lemma 9.3.2, but is slightly more
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technical. We have the following inequalities:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 − ‖u‖2

= ‖x1 · b1 + x2 · b2 + x3 · b3‖2 + 2〈u, x1 · b1 + x2 · b2 + x3 · b3〉
≥
(

x2
1 − (1 + ε)|x1|(|x2| + |x3|) − |x1|

)

· ‖b1‖2

+‖x2 · b2 + x3 · b3‖2 + 2〈u, x2 · b2 + x3 · b3〉

≥ −α2

4
((1 + ε)(|x2| + |x3|) + 1)

2
+ ‖x2 · b2 + x3 · b3‖2 + 2〈u, x2 · b2 + x3 · b3〉.

We write u = u′ +u′′, where u′ is in the span of [b2,b3], and u′′ is orthogonal to
it. It is clear that the vector u′ is in the Voronöı cell of L[b2,b3]. By Lemma 9.1.1,
we know that ‖u′‖ ≤ 1/

√
2. Besides, as soon as |x3| ≥ 2:

‖x2 · b2 + x3 · b3‖2 ≥
(

x2
2 − (1 + ε)|x2x3|

)

· ‖b2‖2 + x2
3

≥ − ((1 + ε)|x3|)2
4

· ‖b2‖2 + x2
3

≥ x2
3

(

1 − (1 + ε)2

4

)

≥ 3 − 2ε− ε2.

Consequently
√

2 ≤
√

2
3−2cε−c2ε2 · ‖x2 · b2 + x3 · b3‖, which gives, by using the

Cauchy-Schwarz inequality:

〈u, x2 ·b2+x3 ·b3〉 ≥ −
√

2

2
·‖x2 ·b2+x3 ·b3‖ ≥ −1

2

√

2

3 − 2ε − ε2
‖x2 ·b2+x3 ·b3‖2.

From this, we get:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 − ‖u‖2

≥ −α2

4
((1 + ε)(|x2| + |x3|) + 1)2 +

(

1 −
√

2

3 − 2ε − ε2

)

· ‖x2 · b2 + x3 · b3‖2

≥ −α2

4
((1 + ε)(|x2| + |x3|) + 1)2

+

(

1 −
√

2

3 − 2ε − ε2

)

(

(x2
2 − (1 + 2ε)|x2‖x3|) · ‖b2‖2 + x2

3

)

.

Because |x2x3| ≤ (x2
2 + x2

3)/2, we obtain, for any sufficiently small ε > 0, a lower
bound of the form:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 − ‖u‖2

≥
(

α2f1(ε) + g1(ε) · ‖b2‖2
)

x2
2 +

(

α2f2(ε) + g2(ε) · ‖b2‖2 + g3(ε)
)

x2
3 + α2f3(ε),

where, when ε converges to zero: fi(ε) = O(1), limε g1(ε) > 0, 0 ≤ | limε g2(ε)| <
limε g3(ε). It follows that for a suitable c′′ > 0, there exists C ′ > 0 such that for any
sufficiently small α > 0 and any sufficiently small ε > 0, and any (b1,b2,b3,u) ∈
K ′

3(ε, 0) with ‖b1‖ ≤ α and ‖b2‖ ≥ c′′α, in the lower bound above, the coefficient
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of x2
2 is non-negative and the coefficient of x2

3 is greater than C ′. This completes
the proof of Claim 2.

The rest of the proof is identical to the end of the proof of Lemma 9.3.2: we choose
an α > 0 satisfying the conditions of the two previous claims and we consider a

sequence
(

b
(k)
1 ,b

(k)
2 ,b

(k)
3 ,u(k), x

(k)
1 , x

(k)
2 , x

(k)
3

)

k
such that:

(1)
(

b
(k)
1 ,b

(k)
2 ,b

(k)
3 ,u(k)

)

∈ K ′
3(ε, α),

(2) x
(k)
1 , x

(k)
2 , x

(k)
3 are integers with

∣

∣

∣
x

(k)
3

∣

∣

∣
≥ 3 or

∣

∣

∣
x

(k)
3

∣

∣

∣
= 2 and

(

|x(k)
1 |, |x(k)

2 |
)

6=
(1, 1) (respectively

∣

∣

∣
x

(k)
i

∣

∣

∣
≥ 3 or etc. for i ∈ {1, 2}),

(3)
∥

∥

∥
u(k) + x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥

2

−
∥

∥u(k)
∥

∥

2 → 0 when k → ∞.

If no such sequence exists, then the lemma is proved. We assume that there is
one and we look for a contradiction with Voronöı coords.

Claim 3: For any sufficiently small ε, α > 0, the sequences x
(k)
3 , x

(k)
2 and x

(k)
1 are

bounded.

Suppose this is not the case. We show that this implies that the quantity
∥

∥

∥
u(k) + x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥

2

−
∥

∥u(k)
∥

∥

2
is not bounded, which is

impossible. By the Cauchy-Schwarz inequality, we have:

∥

∥

∥
u(k) + x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥

2

−
∥

∥

∥
u(k)

∥

∥

∥

2

≥
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥

·
(∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥
− 2

∥

∥

∥
u(k)

∥

∥

∥

)

.

Since the sequence
∥

∥u(k)
∥

∥ is bounded, it suffices to show that the quantity
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥
is not bounded. We take a small enough ε > 0

to apply Lemma 9.2.2. Let C > 0 denote the corresponding constant. We have:
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥
≥
∣

∣

∣
x

(k)
3

∣

∣

∣
·
∥

∥

∥
b

(k)∗
3

∥

∥

∥
≥ C ·

∣

∣

∣
x

(k)
3

∣

∣

∣
.

Therefore, the sequence x
(k)
3 is bounded. If the sequence x

(k)
2 is bounded, by the

triangular inequality, so is the sequence x
(k)
1 . Now we show that the sequence x

(k)
2

remains bounded. We have the following inequality:
∥

∥

∥
x

(k)
1 · b(k)

1 + x
(k)
2 · b(k)

2 + x
(k)
3 · b(k)

3

∥

∥

∥
≥
∣

∣

∣
x

(k)
2

∣

∣

∣
·
∥

∥

∥
b

(k)∗
2

∥

∥

∥
−
∣

∣

∣
x

(k)
3

∣

∣

∣
·
∥

∥

∥
b

(k)
3

∥

∥

∥
.

Since
[

b
(k)
1 ,b

(k)
2

]

≤
are ε-greedy-reduced and 1 ≥

∥

∥

∥
b

(k)
2

∥

∥

∥
≥
∥

∥

∥
b

(k)
1

∥

∥

∥
≥ α, we have

a situation similar to the third claim of Lemma 9.3.2 and this gives us a strictly
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positive lower bound on ‖b(k)∗
2 ‖ that depends on ε and α. This completes the proof

of the claim.

This claim and Lemma 9.3.1 imply that
(

b
(k)
1 ,b

(k)
2 ,b

(k)
3 ,u(k), x

(k)
1 , x

(k)
2 , x

(k)
3

)

re-

mains in a compact subset of R
4n+3. Therefore we can extract a subsequence that

converges to a limit (b1,b2,b3,u, x1, x2, x3) that is in the same compact and satis-
fies: ‖u+x1 ·b1 +x2 ·b2 +x3 ·b3‖ = ‖u‖. This means that x1 ·b1 +x2 ·b2 +x3 ·b3

is a Voronöı vector of the lattice spanned by [b1,b2,b3]≤ ∈ K ′
3(ε, α). From

Lemma 9.2.6, this is impossible.

Like in the previous subsections, we now consider the case of the possible Voronöı
coords (±1,±1,±2) modulo any permutation of coordinates.

Lemma 9.3.4. There exist two constants ε, C > 0 such that for any ε-greedy-
reduced vectors [b1,b2,b3]≤ and any vector u ∈ Vor(b1,b2,b3), if at least one of
the following conditions holds, then:

‖u + x1 · b1 + x2 · b2 + x3 · b3‖2 ≥ ‖u‖2 + C · ‖b3‖2.

(1 ) (x1, x2, x3) = (s1, s2, 2), |si| = 1 for i ∈ {1, 2} and at least one of the following
conditions holds:
‖b1‖ ≤ (1 − ε)‖b3‖, or ‖b2‖ ≤ (1 − ε)‖b3‖, or |〈b1,b2〉| ≥ ε‖b3‖2, or
∣

∣〈b1,b3〉 + s1

2 ‖b1‖2
∣

∣ ≥ ε‖b3‖2, or
∣

∣〈b2,b3〉 + s2

2 ‖b1‖2
∣

∣ ≥ ε‖b3‖2.

(2 ) (x1, x2, x3) = (s1, 2, s3), |si| = 1 for i ∈ {1, 3} and ‖b1‖ ≤ (1 − ε)‖b2‖.
(3 ) (x1, x2, x3) = (s1, 2, s3), |si| = 1 for i ∈ {1, 3}, ‖b1‖ ≥ (1 − ε)‖b3‖ and at

least one of the following conditions holds: |〈b1,b3〉| ≥ ε‖b3‖2, or |〈b1,b2〉 +
s1

2 ‖b1‖2| ≥ ε‖b3‖2, or |〈b3,b2〉 + s3

2 ‖b1‖2| ≥ ε‖b3‖2.

(4 ) (x1, x2, x3) = (2, s2, s3), |si| = 1 for i ∈ {2, 3}, ‖b1‖ ≥ (1 − ε)‖b3‖ and at
least one of the following conditions holds: |〈b2,b3〉| ≥ ε‖b3‖2, or |〈b2,b1〉 +
s2

2 ‖b1‖2| ≥ ε‖b3‖2, or |〈b3,b1〉 + s3

2 ‖b1‖2| ≥ ε‖b3‖2.

Proof. Wlog we suppose that ‖b3‖ = 1. We consider each subcase and each
triple (x1, x2, x3) separately (there is a finite number of subcases and of triples to
consider). The constant ε > 0 is fixed such that if any of the conditions of the
considered subcase is not fulfilled, then the result of Lemma 9.2.7 is wrong. In
that case, the triple (x1, x2, x3) cannot be a Voronöı coord for the ε-greedy-reduced
vectors [b1,b2,b3]≤. This implies that dist(V + x1 · b1 + x2 · b2 + x3 · b3, V ) > 0,
where V = Vor(b1,b2,b3). The facts that the function dist(V + x1 · b1 + x2 ·
b2 + x3 · b3, V ) is continuous as regard to the variables (b1,b2,b3) and that the
variables (b1,b2,b3) belong to a compact set provide the expected result.

10. DIFFICULTIES ARISING IN DIMENSION 5

We have seen that the greedy algorithm can output arbitrarily bad bases in di-
mension 5. By using Minkowski’s conditions, it is easy to see that the following
generalization of the greedy algorithm computes a Minkowski-reduced basis in di-
mensions five and six: at Steps 2 and 3 of the iterative version of the greedy
algorithm, instead of shortening the vector bk by using an integer linear combina-
tion of b1, . . . ,bk−1, the algorithm may also use bk+1, . . . ,bd, see Figure 8. We
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Input: An basis [b1, . . . ,bd]≤ with its Gram matrix.
Output: An ordered basis of L[b1, . . . ,bd] with its Gram matrix.

1. k := 2. While k ≤ d, do:
2. Compute a vector c closest to bk, in L[b1, . . . ,bk−1, bk+1, . . . ,bd],
3. bk := bk − c and update the Gram matrix,
4. If ‖bk‖ ≥ ‖bk−1‖, k := k + 1
5. Else insert bk at his length rank k′, update the Gram matrix, k := k′ + 1.

Fig. 8. A generalization of the greedy algorithm.

know very little about this algorithm when the dimension is higher than six: does
it compute a Minkowski-reduced basis? is there a good bound on the number of
loop iterations? does this algorithm admit a polynomial-time complexity bound?

Despite the fact that the greedy algorithm does not return a Minkowski-reduced
basis, one may wonder if the quadratic complexity bound remains valid. To make
the technique developed in Section 7 ready for use, it suffices to show that the
iterative greedy algorithm in dimension 5 admits a linear bound (as regard to the
input size) on its number of loop iterations. In dimensions below four, it was
possible to use both local and global approaches.

With the global approach, it seems possible to show that the number of loop
iterations of the recursive version of the greedy algorithm in dimension five is linear,
which does not suffice. Besides, the result seems hard to get: Lemma 6.1.1 is not
valid anymore. Nevertheless, it seems possible to determine precisely the bad cases:
roughly speaking, these are the bases that resemble the one given in Lemma 4.3.3.
It could then be shown that if we are not in this situation then Lemma 6.1.1 is
correct, and that we can use Lemma 6.2.1 (it remains valid in dimension five).
If we are in the bad situation, the geometry of the current basis could be made
precise, and it should be possible to show that two loop iterations after the end of
the η-phase, there is some significant length decrease.

The local analysis in dimensions two, three and four essentially relies on the
fact that if one of the xj ’s found at Step 5, of the recursive version of the greedy

algorithm, has absolute value higher than 2, then
∥

∥

∥
b

(i)
d

∥

∥

∥
is significantly shorter

than
∥

∥

∥
a

(i)
d

∥

∥

∥
. This fact is derived from the so-called Gap Lemma. In dimension

four, this was only partly true, but the exception (the 211-case) occurred in very
few cases and could be dealt with by considering the very specific shape of the
lattices for which it could go wrong. Things worsen in dimension five. Indeed, for
Minkowski-reduced bases, (1, 1, 1, 2) and (1, 1, 2, 2) — modulo any change of sign
and permutation of coordinates — are possible Voronöı coords. Here is an example
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of a lattice for which (1, 1, 2, 2) is a Voronöı coord:








1 −1 0 0
1 1 −1 0
0 0 1 −1
0 0 0 1









.

The lattice basis given by the columns is Minkowski-reduced (since it is greedy-
reduced), but:

‖b1 + b2 + 2 · b3 + 2 · b4‖ = 2 = ‖b1 + b2‖
≤ ‖(2k1 + 1) · b1 + (2k2 + 1) · b2 + 2k3 · b3 + 2k4 · b4‖,

for any k1, k2, k3, k4 ∈ Z. Notice that (1, 1, 2, 2) cannot be a strict Voronöı coord:
if b1 + b2 + 2 · b3 + 2 · b4 reaches the length minimum of its coset of L/2L, then
so does b1 + b2. Thus it might be possible to work around the difficulty coming
from (1, 1, 2, 2) like in the 211-case. However, the case (1, 1, 1, 2) would still remain,
and this possible Voronöı coordinate can be strict.
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