
Faster LLL-type reduction of lattice bases

Arnold Neumaier
Universität Wien, Austria
Fakultät für Mathematik

Arnold.Neumaier@univie.ac.at

Damien Stehlé
ENS de Lyon, France

Laboratoire LIP
(U. Lyon, CNRS, ENSL, INRIA, UCBL)

damien.stehle@ens-lyon.fr

ABSTRACT
We describe an asymptotically fast variant of the LLL lat-
tice reduction algorithm. It takes as input a basis B ∈
Zn×n and returns a (reduced) basis C of the Euclidean lat-
tice L spanned by B, whose first vector satisfies ‖c1‖ ≤
(1 + c)(4/3)(n−1)/4(detL)1/n for any fixed c > 0. It ter-
minates within O(n4+εβ1+ε) bit operations for any ε > 0,
with β = log maxi ‖bi‖. It does rely on fast integer arith-
metic but does not make use of fast matrix multiplication.

Keywords
Lattice reduction; LLL; blocking

1. INTRODUCTION
A Euclidean lattice is a set L = BZn of all integer lin-

ear combinations of the columns of a full column rank ma-
trix B ∈ Rm×n. In this setup, the columns bi of B are
said to form a basis of the lattice. Any lattice of dimen-
sion n ≥ 2 admits infinitely many lattice bases and two ba-
sis matrices B,C span the same lattice if and only if there
exists U ∈ Zn×n of determinant ±1 such that B = CU.
Such a matrix U is said unimodular. Note that this implies
that the lattice determinant detL =

√
det(BTB) does not

depend on the choice of the basis B of L.
Many interesting computational problems can be reduced

to finding a basis C of a lattice L consisting of short vectors,
from an arbitrary input basis B of L (see, e.g., [12]). This
task, called lattice reduction, comes in different flavors. The
most standard variant is LLL reduction [6], as it can be per-
formed in polynomial time (if the input basis B is integral)
and provides reasonable output guarantees. In particular,
the first vector of a LLL-reduced basis C satisfies:

‖c1‖ ≤ α(n−1)/4(detL)1/n, (1)

where α can be any constant greater than 4/3.
Assume now that the input basis B is integral. Let β =

log maxi ‖bi‖. Observe that we may assume that β ≥ Ω(n),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’16 July 20–22, 2016, Waterloo, Ontario, CANADA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

as else (1) is already reached by the input basis B. For the
sake of simplicity, we further assume that m = n. The orig-
inal LLL algorithm terminates within O(n5β2+ε) bit opera-

tions [6, 4], where ε > 0 is arbitrary. The L̃1 algorithm [13]
produces bases satisfying (1) in time O(n5+εβ1+ε). If β =

O(nc) for some c < 2 − 1/(5 − ω) ≈ 1.619, then L̃1 is out-
performed by Storjohann’s algorithm [18], whose run time

is O(n3+1/(5−ω)+εβ2+ε). Here ω < 2.373 refers to the matrix
multiplication exponent.

Our result. We present an algorithm that takes as input
a basis matrix B ∈ Zn×n of an arbitrary integer lattice L
and returns a basis matrix C of L whose first vector satisfies

‖c1‖ ≤ (1 + c)(4/3)(n−1)/4(detL)1/n. (1a)

Here c > 0 is an algorithm parameter that can be set ar-
bitrarily close to 0 (and can even tend to 0). The algo-
rithm terminates within O(n4+εβ1+ε) bit operations, for
any ε > 0. Note that (1a) is a little stronger than (1).
Further, the cost increase when c > 0 gets lower is quite lim-
ited. The algorithm is not only the (asymptotically) fastest
known today, but is also arguably simpler than those of [13,
18]: it does not rely on basis roundings as [13] or fast matrix
multiplication as [18].

Techniques. A classical approach to decrease the cost de-
pendency of LLL-type algorithms with respect to n is to
rely on blocking techniques. This was first proposed by
Schönhage [15] and further investigated in [18, 5]. We use
a recursive blocking technique inspired from that of [5]: the
Gram-Schmidt orthogonalisation (GSO) of the basis is split
into large blocks such that consecutive diagonal blocks over-
lap by half, and the reduction algorithm makes recursive
calls on these blocks. Unfortunately, the algorithm of [5]
suffers from several drawbacks. First, the guaranteed out-
put quality is worse than (1): the first output vector is only

known to satisfy ‖c1‖ ≤ 2O(n logn)(detL)1/n. Second, its
cost bound O(n3+εβ2+ε) is (more than) quadratic in β: this
is because there are Ω(β) recursion leaves, and the cost of
each one is Ω(β).

We overcome both limitations by changing the strategy
used at each recursion level for selecting the inputs to the
recursive calls. Instead of a local (LLL-like) strategy con-
sisting in choosing the first (or an arbitrary) block for which
some progress can be made, we use a “rolling pin” strategy à
la Block-Korkin-Zolotarev [14, 3]: BKZ reduces the blocks
by increasing value of their starting index, and repeats such
a “rolling pin tour” sufficiently many times for the basis to
be reduced. This global strategy allows to avoid spending

time making little local progress on the GSO and instead en-
suring some significant global progress at every tour. More
concretely, it was shown in [3] that O(log β) block calls suf-
fice for a fixed value of n, rather than O(β), to obtain bases
that are well reduced. Note that BKZ was introduced in
a different context: it aims at finding much shorter lattice
vectors than guaranteed by (1), by using for each block an
HKZ-reduction algorithm such as the one from [8]. The

cost of BKZ grows as 2O(s)(nβ)O(1), if s denotes the block-
size. The convergence analysis from [3] can be adapted to
recursive blocking for LLL-type reduction (rather than non-
recursive calls to an HKZ-reduction). We adapt the simpler
analysis by Neumaier in [10] of the SDBKZ variant of BKZ
recently proposed by Micciancio and Walter [9]. The fact we
obtain (1a) rather than (1) is a side-product of using a global
(“rolling pin”) strategy. This phenomenon was already noted
in [3].

Our “rolling pin” strategy differs from that of BKZ in two
ways. First, our blocks overlap by half (like [5]), instead
of s − 1 dimensions out of s, in order to decrease the cost
dependence in n. Note that considering blocks overlapping
by half was also considered in [1], in the context of finding
much shorter vectors than provided by (1). Second, the
“rolling pin tours” proceed backwards (from the end of the
diagonal to the start) rather than forwards, in order to prove
that the first vector of the output basis satisfies (1a). Note
that for block-size s = 2, the BKZ and SDBKZ algorithms
produce short bases satisfying (1a), but the analyses from [3,
10] lead to a run-time bound of O(n6+εβ1+ε).

Extensions. The algorithm also works for rational input
matrices B ∈ Qn×n. If β denotes the maximum over all
entries of B of the sum of the bit-sizes of the numerator and
denominator, then the cost can be bounded as O(n5+εβ1+ε).
If the input matrix has real entries, then it may be rounded
and our algorithm can be used to compute a reducing uni-
modular transformation. We refer the reader to [2] for a
sufficient bound on the rounding precision to guarantee re-
ducedness of the final basis.

The algorithm may be adapted to take as input the Gram
matrix BTB rather than the basis matrix B. If BTB is in-
tegral, then the time bound O(n4+εβ1+ε) still applies, and
the algorithm returns an equivalent Gram matrix CTC =
UTCTCU and the associated unimodular transformation
U ∈ Zn×n such that ‖c1‖ is bounded as in (1a). If B ∈
Zm×n is not square, one may first compute BTB ∈ Zn×n,
run the latter algorithm on BTB and apply to B every uni-
modular operation made. This results in an algorithm whose
run time is O(mnω+εβ1+ε + n4+εβ1+ε).

2. REMINDERS
In this section, we give the background that is necessary

for presenting our algorithm. We refer to [7, 12] for introduc-
tions on lattices and to the LLL lattice reduction algorithm.

Magnitudes of reducing matrices. Assume B,C ∈
Qn×n are two basis matrices of the same lattice. Let U =
B−1C. As mentioned above, matrix U is integral and has
determinant ±1. We may bound the magnitude of every
entry of U as

max
i,j
|ui,j | ≤ (max

i
‖bi‖)n−1(max

i
‖ci‖)/| detB|. (2)

Note that if B is integral, then the latter is bounded from

above by (maxi ‖bi‖)n−1(maxi ‖ci‖).
Lattice reduction aims at finding U such that BU has

nice properties, such as (1). In our algorithm, such a matrix
will be computed by progressively updating a U initially set
to Id. We will use the latter bound to update U modulo a
large integer during the execution of our algorithm: this is
to master the arithmetic cost of updating U, while making
sure that the final value of U is correct as it is guaranteed
to be smaller than half that modulus. Note that to use such
a bound, we need to possess an a priori bound on the norms
of the columns of the output matrix C = BU. As proved
in Subsection 3.1, we have an a priori bound maxi ‖ci‖ ≤√
nmaxi ‖bi‖.

Gram-Schmidt orthogonalisation. Let (b1| . . . |bn) ∈
Zn×n be non-singular. We recall that the Gram-Schmidt
orthogonalisation (GSO) (b∗1| . . . |b∗n) ∈ Qn×n is defined as
follows (for 1 ≤ j < i ≤ n):

b∗i := bi −
∑
j<i

µi,jb
∗
j , with µi,j :=

〈bi,b∗j 〉
‖b∗j‖2

.

Our algorithm will work on B = (b1| . . . |bn) only implic-
itly, by instead manipulating the pair (d,M) ∈ Qn × Qn×n
with d := (‖b∗i ‖2)i≤n and mi,j = µi,j if j < i and mi,j = 0
otherwise. We call this pair the GSO coefficients of B.

We recall that the numerators and denominators of the
GSO coefficients (d,M) are of magnitudes bounded from
above by(

max
i≤n

det
(
(b1| . . . |bi)T (b1| . . . |bi)

))(
max
i
‖bi‖2

)
=
(

max
i≤n

∏
j≤i

dj
)(

max
i

(di +
∑
j<i

djm
2
i,j)
)

(3)

(see, e.g., [6, Proof of (1.26)]). Applying a transformation
matrix U on B incurs an update of the GSO coefficients
which can be computed from U and the GSO coefficients
only. Further, when this transformation corresponds to a
swap of two consecutive columns of B or the subtraction
of an integer multiple of column to another column, the
update of the GSO may be performed on O(n) arithmetic
operations.

Size-reduction. A basis matrix B is said size-reduced if
its GSO coefficients satisfy |µi,j | ≤ 1/2 for all i > j. A size-
reduction algorithm is described in [6, Eq. (21)]: for a given
index i, it makes all |µi,j |’s smaller or equal to 1/2 by adding
to bi appropriate integer multiples of bj for j < i. Using
this algorithm for i = 2, 3, . . . , n leads to a size-reduction
algorithm for basis matrices. For a given column, the al-
gorithm performs O(n2) arithmetic operations on rational
numbers whose numerators and denominators stay bounded
from above by

2n

max
i≤n

∏
j≤i

dj

(max
i
di +

∑
j<i

djm
2
i,j

)
, (4)

where (d,M) are the GSO coefficients of B (see [6, Proof
of (1.26)]). Size-reduction can be performed using and up-
dating the GSO coefficients only. The unimodular transfor-
mation obtained by size-reducing a column has O(n) non-
trivial coefficients which are easily obtained during the exe-
cution of the algorithm.

Reduction of 2-dimensional lattices. Schönhage’s al-
gorithm [16] takes as input the GSO coefficients of a ba-
sis B ∈ Q2×2 and returns a unimodular U ∈ Z2×2 such that
matrix C = BU has smallest possible ‖c1‖. This implies,

by Minkowski’s theorem, that ‖c1‖ ≤ (4/3)1/4|detB|1/2.
Its run time is O(M(k) log k), where k denotes the (total)
bit-size of the input GSO coefficients, andM(`) denotes the
time required to multiply two `-bit long integers.

We observe that Yap’s algorithm [19] allows one to re-
duce 2-dimensional lattice bases in quasi-linear time. We
use Schönhage’s algorithm instead as we have GSO coeffi-
cients as inputs rather than a basis matrix.

3. THE ALGORITHM(S)
Algorithm Reduce, presented in Figure 1, is our main al-

gorithm. However, the complexity gain over previous works
stems from RecursiveReduce, described in Figure 2, which
Reduce may call several times. Algorithm Reduce is needed
as RecursiveReduce works only in specific dimensions, be-
cause of its recursive nature. If the dimension n of the input
of Reduce is one of those specific dimensions, then Reduce

may call RecursiveReduce only once. Else, the number of
calls to Reduce is (nβ)o(1).

The sequence of specific dimensions is driven by the cor-
rectness and cost analyses of RecursiveReduce. It is de-
fined recursively: the base case is n1 = 2, and, for k ≥
2, we define nk as the largest multiple of nk−1 that is ≤√

2
4−k

Lk(k−1)/4. Here L = O(log(nβ/η)), where η > 0
is an algorithm parameter that drives the strength of the
reduction (the smaller η > 0, the more reduced). We re-
fer to Lemma 9 for the precise definition of L. Note that
each nk is even, and, assuming that L is sufficiently large, we

have nk ∈ [
√

2
3−k

Lk(k−1)/4,
√

2
4−k

Lk(k−1)/4] for all k. As a
result, the number of recursion levels r of RecursiveReduce
satisfies

r = O(
√

logn/ logL) = O(
√

logn/ log log(nβ/η)).

Algorithms Reduce and RecursiveReduce use the GSO
coefficients to define the lower-dimensional inputs of the re-
cursive calls. Given the GSO (d,M) ∈ Qn×Qn×n, we define
the GSO block of starting index t + 1 and dimension s as
(d′,M′) ∈ Qs × Qs×s, with d′i = dt+i for 1 ≤ i ≤ s and
m′i,j = mt+i,t+j for 1 ≤ i, j ≤ s. Note that (d′,M′) are

exactly the GSO coefficients of the vectors b
(t)
t+1, . . . ,b

(t)
t+s

obtained by projecting bt+1, . . . ,bt+s orthogonally to the
span of b1, . . . ,bt.

A call to RecursiveReduce on (d′,M′) provides an s-
dimensional unimodular matrix U′ that reduces the basis
b
(t)
t+1, . . . ,b

(t)
t+s. This matrix may be extended into an n-

dimensional matrix U′′ so that when applied on the ma-
trix B corresponding to (d,M), it does not change columns bi
for i ≤ t and i > t + s, and modifies vectors bt+1, . . . ,bt+s
exactly by applying U′ to them. This is the purpose of
Step 9 of Reduce and Step 6 of RecursiveReduce. The
transformation may be applied to (d,M) directly. This may
modify di for i ∈ [t+1, t+s], and mi,j for i ∈ [t+1, t+s] and
j > i, and for j ∈ [t + 1, t + s] and i < j. Updating (d,M)
costs O(ns2) arithmetic operations. This is performed at
Step 10 of Reduce and Step 8 of RecursiveReduce.

In Reduce, the first four steps are meant to prepare the
actual computation. Reduce calls RecursiveReduce on nr-
dimensional GSO blocks, with starting indices k = 0, . . . , n−

Inputs: A basis matrix B ∈ Zn×n of a lattice L.
A reduction parameter η ∈ (0, 1].

Output: A reduced basis matrix of L.

1. Let nr be the largest specific dimension that is ≤ n.
2. Compute the GSO coefficients (d,M) of B.
3. Size-reduce B while updating (d,M) accordingly.

4. Define β = 2 + dlog2(
√
n(maxi≤n ‖bi‖)n)e.

5. Repeat the following (n/nr)2dln(β/η)e times,
unless n = nr, in which case once suffices.

6. For k = 0 to n− nr, do:
7. Let (d′,M′) be the GSO block of starting

index k + 1 and dimension nr.

8. Call RecursiveReduce on inputs (d′,M′), η, β.
Let U ∈ Znr×nr be the output.

9. Let U′ ∈ Zn×n be the identity matrix, except
that u′i,j = ui−k,j−k for i, j ∈ [k + 1, k + nr].

10. Replace B by BU′, updating (d,M) accordingly.
11. Size-reduce B, updating (d,M) accordingly.
12. Return B.

Figure 1: Algorithm Reduce.

nr. Note that the blocks overlap by nr − 1 dimensions. Re-

duce may be viewed as BKZ with block-size nr and calls to
HKZ reduction within the blocks replaced by calls to Recur-

siveReduce. The analysis from [3] could be adapted from
BKZ to RecursiveReduce. We chose to adapt the analysis
of SDBKZ from [10], as it is more compact (see Section 5).

Inputs: GSO coefficients (d,M) ∈ Qn × Qn×n.

A reduction parameter η ∈ (0, 1] and β ∈ Z.
Output: A unimodular matrix U ∈ Zn×n.

1. If n = 2, return the output of Schönhage’s algorithm.
2. Let U = Id.

Repeat the following (2nr/nr−1)2dln(8β/η)e times.
3. For k from 2(nr/nr−1 − 1) down to 0, do:
4. Let (d′,M′) be the GSO block of starting

index t+ 1 = knr−1/2 + 1 and dimension nr−1.

5. Call RecursiveReduce on inputs (d′,M′), η, β.
Let U′ ∈ Znr−1×nr−1 be the output.

6. Let U′′ ∈ Znr×nr be the identity matrix, except
that u′′i,j = u′i−t,j−t for i, j ∈ [t+ 1, t+ nr−1].

7. U := UU′′ mod 2β .
8. Update (d,M) according to transformation U′′.
9. Size-reduce (d,M) from indices t+ 1 to t+ nr−1,

and update U modulo 2β accordingly.
10. Return U.

Figure 2: Algorithm RecursiveReduce.

In RecursiveReduce, the input nr-dimensional GSO is
split into 2nr/nr−1−1 blocks of dimension nr−1 and starting
indices knr−1/2 + 1 for k = 0, 1, . . . , 2(nr/nr−1 − 1). Note
that these blocks overlap by half. The nr-dimensional call
makes backwards sweeps of recursive calls on these blocks:
it considers each block by decreasing value of k, and when it
reaches k = 0, it starts a new tour with k = 2(nr/nr−1−1).
The number of tours (2nr/nr−1)2dlog2(8β/η)e is dictated
by the convergence towards reduced bases analysis of the
successive-backwards-sweeps strategy (see Section 4). Mov-
ing backwards rather than forwards is important for prov-
ing (1a): indeed, at the end, the block corresponding to

k = 0 is recursively reduced, and so is its first sub-block,
and so is its first sub-sub-block, etc. The leaves of the recur-
sion correspond to reductions of 2-dimensional lattice bases.
These are performed using Schönhage’s algorithm.

Theorem 1. Let c > 0. Given as input a basis ma-
trix B ∈ Zn×n of a lattice L and parameters η = c/(3n), r
and (ni)i≤r, Algorithm Reduce returns a basis C of L which
is size-reduced and satisfies:

‖c1‖ ≤ (1 + c)
(
4/3
)(n−1)/4

(detL)1/n.

Theorem 2. Given B ∈ Zn×n and η = Ω(1/n2) as in-
puts, Algorithm Reduce terminates within

O
(
kn3M(nβ)

)
bit operations,

with β := log maxi ‖bi‖ and

k := 2O
(√

(logn)(log log(nβ))
)

log2(nβ).

As k is (nβ)o(1), the latter cost bound is ≤ O(n4+εβ1+ε)
for all ε > 0.

3.1 Elementary properties
We start with a few basic observations. The first one

states that the algorithms are invariant under scaling of d.

Lemma 1. Consider two distinct inputs (d,M), (d′,M′)
of RecursiveReduce (with all other inputs identical). Let U
and U′ be the respective outputs. Assume M = M′ and that
there exists t > 0 such that d′ = td. Then U = U′. The
same property holds for Reduce.

The following lemma is useful to bound the bit-sizes of
all rationals occurring during the algorithm, and also the
magnitude of the output unimodular matrix U.

Lemma 2. During the execution of Reduce, the only op-
eration that may change the value of maxi di is an execution
of Schönhage’s algorithm. Further, the value of this quan-
tity after such an execution of Schönhage’s algorithm cannot
be larger than its value before this execution of Schönhage’s
algorithm.

Proof. When considering basis B, the only basis/GSO
operations that are performed during the execution of Re-
duce are either a replacement of some basis vector bi by bi+∑
j<i xjbj , or an execution of Schönhage’s algorithm on vec-

tors bi and bi+1 orthogonalized against b1, . . . ,bi−1. Only
executions of Schönhage’s algorithm can change d.

As Schönhage’s algorithm applied to 2-dimensional (d,M)
produces a (d′,M′) with smallest d′1, we must have d′1 ≤
d1 ≤ max(d1, d2). Further, Pythagoras’ theorem and the
fact that we use integer transformations imply that d′1 ≥
min(d1, d2). Now, note that d′1d

′
2 = d1d2 (the determi-

nant is preserved), which implies that min(d1, d2) ≤ d′2 ≤
max(d1, d2). Hence we have max(d1, d2) ≤ max(d′1, d

′
2).

By combining Lemma 2 and the discussion at the start of
Section 2, we obtain the following.

Lemma 3. The matrix U returned at the end of the exe-
cution of RecursiveReduce is exactly the unimodular matrix
that is the product of all unimodular matrices that have been
successively applied to the GSO coefficients.

Proof. The only source of discrepancy between the out-
put matrix U and the product of all unimodular matrices
that have been successively applied to the GSO coefficients

is the update of U modulo 2β at Steps 7 and 9. Let B
and C respectively denote the bases corresponding to the
input GSO coefficients, and to the final value of the GSO
coefficients. We want to show that U = C−1B. For this,
it suffices to show that each coefficient of C−1B has magni-

tude < 2β−1 so that reductions modulo 2β in the process of
computing U have no impact on the output.

By Lemma 2 and the fact that C is size-reduced, we have
that ‖ci‖ ≤

√
nmaxj ‖b∗j‖ ≤

√
nmaxj ‖bj‖ for all i ≤ n.

By (2), this implies that each coefficient of C−1B has magni-

tude ≤
√
n(maxj ‖bj‖)n. This is < 2β−1, by design of β.

The latter result implies that Reduce indeed returns a ba-
sis of the input lattice. Together with Section 2, it also
implies that all rationals and integers that occur during the
execution of the algorithm have bit-sizes O(nβ). The cost of
Reduce can hence be bounded by the number of arithmetic
operations multiplied by O(M(nβ)).

4. CORRECTNESS OF RECURSIVEREDUCE

This section is devoted to proving Theorem 1 for Recur-

siveReduce. The main proof component is the analysis of
the convergence towards reduced bases of the repeated back-
wards sweeps of recursive calls.

4.1 Convergence of RecursiveReduce

Suppose we are at a certain recursion level r. Algorithm
RecursiveReduce reduces the nr-dimensional basis by mak-
ing recursive calls in dimension nr−1. These are grouped in
tours, and each tour consists in recursive calls on GSO blocks
with starting indices 1 + knr−1/2 for k from 2(nr/nr−1− 1)
down to 0.

We define αr as the maximum, over all input nr-dimen-
sional GSO coefficients (d,M), of the quantity(nr/2∏

i=1

d′i

)2
/(

nr∏
i=1

d′i), (5)

where (d′,M′) are the GSO coefficients at the end of the
execution of RecursiveReduce. This quantity measures how
small the first half of the GSO coefficients are, relative to
the second half. As seen in Section 2, we have α1 ≤ 4/3.

The following lemma, inspired from [10, Sec. 3.3], quanti-
fies the progress made during a tour.

Lemma 4. Let d and d′ respectively denote the values of
the GSO coefficients at the start and the end of an iteration
of the loop starting at Step 3 of RecursiveReduce. We define
(for 1 ≤ k ≤ `)

gk := ln
∏

i≤knr−1/2

di, g′k := ln
∏

i≤knr−1/2

d′i,

with ` = 2nr/nr−1. We further define:

µ := max
k<`

1

`− k

(gk
k
− g`

`

)
,

µ′ := max
k<`

1

`− k

(
g′k
k
− g′`

`

)
,

µ∗ :=
lnαr−1

2
.

Then we have

µ′ ≤ µ∗ or µ′ ≤ µ∗ + (1− 1

`2
)(µ− µ∗).

This results states that across tours, the sequence of suc-
cessive µ’s lies below an affine dynamical system. Conver-
gence is geometric: every `2 tours, the quantity µ−µ∗ either
becomes negative, or it decreases by a constant factor. Note
that the result is qualitatively similar to those of [3, 10] for
dimension ` := 2nr/nr−1 and “block size” 2.

Proof. By dividing each di by (
∏
j≤n dj)

1/n, we see that

we may assume without loss of generality that g` = g′` = 0
(by Lemma 1). Further, we define g0 = g′0 = 0.

Because of the backward ordering of the recursive calls
during a tour, and thanks to (5), we have, for k = ` − 1
down to k = 1:

2(g′k − gk−1)− (g′k+1 − gk−1) ≤ lnαr−1.

This may be rewritten as

g′k ≤
1

2
(g′k+1 + gk−1) + µ∗. (6)

Assume first that µ ≤ µ∗. We prove by induction on
k = ` down to k = 1 that g′k ≤ (` − k)kµ∗, which implies
that µ′ ≤ µ∗. The case k = ` follows by preservation of
the determinant. We now assume that k < `. Then, by
induction and (6), we have

g′k ≤ 1

2
((`− k − 1)(k + 1) + (`− k + 1)(k − 1))µ∗ + µ∗

= (`− k)kµ∗.

We now assume that µ > µ∗. We prove by induction on
k = ` down to k = 1 that

g′k ≤ (`− k)k
(
µ∗ + (1− 1

`2
)(µ− µ∗)

)
.

The case k = ` follows by preservation of the determinant.
We now assume that k < `. Let q := (`− (k− 1))(k− 1)/2.
Then (`− (k+ 1))(k+ 1) = 2((`− k)k− 1− q) and (`− (k−
1))(k − 1) = 2q. Hence, by induction and (6), we have:

g′k ≤ ((`− k)k − 1− q)
(
µ∗ + (1− 1

`2
)(µ− µ∗)

)
+ qµ+ µ∗

= (q + (1− 1

`2
)((`− k)k − 1− q))(µ− µ∗) + (`− k)kµ∗.

Now, observe that q ≤ `2−1, hence q/(1+q) ≤ (`2−1)/`2 =
1− 1/`2. This gives (using the positivity of µ− µ∗):

g′k ≤ (1− 1

`2
)(`− k)k(µ− µ∗) + (`− k)kµ∗,

which completes the proof.

We now use Lemma 4 to show that at the end of the
`2dln(8β/η)e tours, the basis is quite close to being reduced.

Lemma 5. At the end of the execution of RecursiveRe-

duce, we have:

max
k<`

1

`− k

(gk
k
− g`

`

)
≤ lnαr−1

2
+
η

8
.

Proof. Let µ and µ′ respectively denote the values of
maxk<`

1
`−k (gk

k
− g`

`
) at the start and at the end of the

execution of RecursiveReduce. By Lemma 4, we have that
µ′ ≤ (lnαr−1)/2 or:

µ′ − lnαr−1

2
≤ (1− 1

`2
)`

2dln(8β/η)e(µ− lnαr−1

2
)

≤ exp(−dln(8β/η)e)µ

≤ η

8

µ

β
.

Thanks to Lemma 2, we know that µ ≤ β and hence we

obtain that µ′ ≤ lnαr−1

2
+ η

8
.

4.2 Proof of Theorem 1 for RecursiveReduce

Thanks to Lemma 3, it only remains to prove the bound
on ‖c1‖ of the output basis C of RecursiveReduce. For
this, we use the results from the previous subsection on the
convergence of RecursiveReduce.

Lemma 6. For all r ≥ 1, we have αr ≤ ((4/3)e2η)n
2
r/4.

Proof. By Lemma 5 with k = `/2, we have (using the
same notations as above):

2

`2
(2g`/2 − g`) ≤ µ′ ≤

lnαr−1

2
+
η

8
.

We obtain (using the fact that lnαr is the largest possible
value for 2g`/2 − g`)

lnαr ≤
`2

2

(lnαr−1

2
+
η

8

)
=

n2
r

n2
r−1

(
lnαr−1 +

η

4

)
.

We can then derive

1

n2
r

lnαr ≤ 1

n2
r−1

(
lnαr−1 +

η

4

)
≤ 1

n2
r−2

(
lnαr−2 +

η

4

)
+

1

n2
r−1

η

4

≤ . . .

≤ 1

4
lnα1 +

η

4

∑
i≤r

1

n2
i

.

The result follows by bounding α1 by 4/3 and
∑
i≤r 1/n2

i

by π2/6.

By Lemma 5 (with k = 2) and Lemma 6, we have, letting
d′ denote the values of the GSO coefficients at the end of
the execution of RecursiveReduce:

nr−1∏
i=1

d′i ≤
(

(4/3)e2η
)n2

r−1
4

(2nr
nr−1

−2)

(e
η
4)

2nr
nr−1

−2
(nr∏
i=1

d′i

)nr−1
nr

≤
(

(4/3)e4η
)nr−1

2
(nr−nr−1)

(nr∏
i=1

d′i

)nr−1
nr .

By raising to the power or 1/nr−1, we obtain:(nr−1∏
i=1

d′i

) 1
nr−1 ≤

(
(4/3)1/2e2η

)nr−nr−1
(nr∏
i=1

d′i

) 1
nr .

By applying the latter to all values of r, we obtain:(
d′1d
′
2

) 1
2 ≤

(
(4/3)1/2e2η

)nr−2(nr∏
i=1

d′i

) 1
nr .

Now, as the first two output vectors are reduced (by cor-
rectness of Schönhage’s algorithm), we obtain:

d′1 ≤
(

(4/3)1/2e2η
)nr−1(nr∏

i=1

d′i

) 1
nr . (7)

To complete the proof of Theorem 1 for RecursiveReduce,
note that for η = c/(3nr), we have eη(nr−1) ≤ 1 + c.

5. CORRECTNESS OF REDUCE

We now extend the correctness of RecursiveReduce to
that of Reduce. This is direct when n = nr, as in that
case Reduce makes a single call to RecursiveReduce. In the
rest of this section, we assume that n > nr. Then Reduce

calls RecursiveReduce many times, in a BKZ fashion. The
convergence analysis is adapted from [10].

The convergence analysis does not need to consider the
inner workings of RecursiveReduce: it only relies on the
fact that if (d′,M′) are the GSO coefficients at the end of
the execution of RecursiveReduce, then we have, by (7):

(d′1)nr/(

nr∏
i=1

d′i) ≤ α
(nr−1)nr
1 , (8)

with α1 = (4/3)1/2e2η.

Lemma 7. Let d and d′ respectively denote the values of
the GSO coefficients at the start and the end of an iteration
of the loop starting at Step 6 of Reduce. We define (for
1 ≤ k ≤ n)

gk := ln
∏
i≤k

di, g′k := ln
∏
i≤k

d′i.

We further define:

µ := max
k≤n−nr+1

1

n− k

(
gk
k
− gn

n

)
,

µ′ := max
k≤n−nr+1

1

n− k

(
g′k
k
− g′n

n

)
,

µ∗ := lnα1.

Then we have

µ′ ≤ µ∗ or µ′ ≤ µ∗ + (1− a)(µ− µ∗),

with a = nr−1
n−1

if nr ≥ n/2 and a =
n2
r−nr

n2/4+n2
r−nr

otherwise.

Note that in both cases we have a ≥ n2
r/n

2.

Proof. Without loss of generality, we assume that that
gn = g′n = 0. Further, we define g0 = g′0 = 0.

Because of the forward ordering of the calls to Recur-

siveReduce during a tour, and thanks to (8), we have, for
k = 1 to k = n− nr + 1:

g′k − g
′
k−1 ≤ (nr − 1)µ∗ +

1

nr
(gk+nr−1 − g

′
k−1).

This may be rewritten as

g′k ≤
1

nr
gk+nr−1 + (1− 1

nr
)g′k−1 + (nr − 1)µ∗. (9)

Assume first that µ ≤ µ∗. We prove by induction on k
that g′k ≤ (n − k)kµ∗, which implies that µ′ ≤ µ∗. The
case k = 0 follows from g′0 = 0. We now assume that k > 0.

Then, by induction and (9), we have (grouping the multiples
of 1/nr together):

g′k ≤
(
(n− k + 1)(k − 1) + (n− nr − 2k + 2) + (nr − 1)

)
µ∗

= (n− k)kµ∗.

We now assume that µ > µ∗. We prove by induction on k
that

g′k ≤ (n− k)k
(
µ∗ + (1− a)(µ− µ∗)

)
.

The case k = 0 follows from g′0 = 0. We now assume that
k > 0. By induction and (9), we have:

g′k ≤ (nr − 1)µ∗ +
1

nr
(n− k − nr + 1)(k + nr − 1)µ

+ (1− 1

nr
)(n− k + 1)(k − 1)

(
µ∗ + (1− a)(µ− µ∗)

)
=
X

nr
(µ− µ∗) + (n− k)kµ∗,

with

X = (n−k−nr+1)(k+nr−1)+(nr−1)(n−k+1)(k−1)(1−a).

Since µ − µ∗ > 0, it suffices to prove that for all k, we
have X ≤ nr(n − k)k(1 − a). By subtracting the latter
from X and differentiating with respect to k, we obtain that
the inequality is the strongest for k = 1 when nr ≥ n/2
and for k = n/2 − nr + 1 otherwise. The fact that a ≤
(nr − 1)/(n − 1) allows to handle the first case, whereas
a ≤ (n2

r − nr)/(n2/4 + n2
r − nr) allows to handle the second

one. This completes the proof.

Lemma 7 may be used to show that after O(n2/n2
r) tours,

the basis is quite close to being reduced.

Lemma 8. At the end of the execution of Reduce, we have:

max
k≤n−nr+1

1

n− k

(
gk
k
− gn

n

)
≤ lnα1 + η.

Proof. Let µ and µ′ respectively denote the values of
maxk≤n−nr+1

1
n−k (gk

k
− gn

n
) at the start and at the end of the

execution of Reduce. By Lemma 7, we have that µ′ ≤ lnα1

or:

µ′ − lnα1 ≤ (1− n2
r

n2
)(n/nr)

2dln(β/η)e(µ− lnα1).

Once may proceed exactly as in the proof of Lemma 5 to
show that the latter is ≤ lnα1 + η.

To prove Theorem 1, we instantiate Lemma 8 with k = 1.
This gives, using the definition of α1:

d′1 ≤
(

(4/3)1/2e3η
)n−1(n∏

i=1

d′i

)1/n
,

where d′ denotes the values of the GSO coefficients at the
end of the execution of Reduce. To complete the proof of
Theorem 1, note that for η = c/(3n), we have e3η(n−1)/2 ≤
1 + c.

6. COST ANALYSIS
This section is devoted to proving Theorem 2. We first

bound the bit-sizes of all integers and rationals occurring
during the executions of Reduce and RecursiveReduce.

By Lemma 2, we know that the quantity maxi di cannot

increase. Therefore, the integer 2β is always larger than the
bound (3) for any basis during the execution of the algo-
rithm, except possibly during Steps 3, 10 and 11 of Reduce
and Steps 8 and 9 of RecursiveReduce. During these steps,

the bound (4) is ≤ 2n+β . This implies that all GSO coeffi-
cients appearing during the execution of Reduce and those
of RecursiveReduce have bit-sizes O(n + β), which is it-
self O(nβ). Finally, by construction, all (integer) entries of

unimodular transformations are manipulated modulo 2β .
Overall, each arithmetic operation occurring during the

execution involves O(M(nβ)) bit operations.
The following lemma provides a recursive cost bound. The

result follows from [16] for r = 1. It follows from Sub-
section 4.2 and inspection of algorithm RecursiveReduce

for r > 1.

Lemma 9. We consider the execution of RecursiveRe-

duce given as inputs β, η and any nr-dimensional GSO co-
efficients (d,M) of a basis B with nr log ‖B‖ ≤ β. Let
Cr denote the maximum number of bit operations performed
during the execution, over all possible (d,M). Then, we
have, for some absolute constant K > 0,

C1 ≤ KM(β) log(β),

and, for r > 1,

Cr ≤
n3
r

n3
r−1

L
(
Cr−1 + nr−1n

2
rM(β)

)
,

with L = K ln(8β/η).

Now, we define Tr := Cr/(n
3
rLM(β)). From Lemma 9,

we have T1 ≤ 1 and, for r > 1,

Tr ≤ LTr−1 +
n2
r

n2
r−1

.

By design of the sequence of specific dimensions (nk)k≥1, we
have:

Tr ≤ exp
(
O(
√

(logn)(logL))
)
.

Therefore:

Cr ≤ exp
(
O(
√

(logn)(log log(nβ)))
)

log(nβ)n3
rM(nβ).

During the execution of Reduce, algorithm RecursiveRe-

duce is called O((n2/n2
r) log(nβ)) times. The cost of Reduce

is hence bounded by:

O

(
n2

n2
r

log(nβ)
(
Cr + n3M(nβ)

))
.

By choice of r, we have

n

nr
≤ exp

(
O(
√

(logn)(log log(nβ)))
)
.

This allows us to complete the proof of Theorem 2.

7. CONCLUSION
We have presented and analyzed the asymptotically fastest

LLL-type reduction algorithm known so far. The dominat-
ing component of the cost stems from the leaves of the recur-
sion, which correspond to 2-dimensional lattices. As a con-
sequence, using fast matrix multiplication and Storjohann’s

weak size-reduction (see [18, Lemma 13]) in the naive way
only affects lower order terms, and hence does not allow us
to lower the complexity upper bound.

We did not implement the algorithm as – for dimensions
of practical interest – it is very unlikely to be competi-
tive with the L2 algorithm from [11]. Indeed, the (arith-
metic) term M(nβ) of our complexity bound will asymp-
totically be reached from above, whereas the complexity
bound O(n3M(n)(n + β)β) of L2 is experimentally pes-
simistic (see [17]).

Acknowledgments
The authors thank Paul Kirchner and Gilles Villard for in-
teresting discussions. The second author was supported by
the ERC Starting Grant ERC-2013-StG-335086-LATTAC.

8. REFERENCES
[1] N. Gama, N. Howgrave-Graham, H. Koy, and P. Q.

Nguyen. Rankin’s Constant and Blockwise Lattice
Reduction. In Proc. of CRYPTO, volume 4117 of
LNCS, pages 112–130. Springer, 2006.

[2] Saruchi, I. Morel, D. Stehlé, and G. Villard. LLL
reducing with the most significant bits. In Proc. of
ISSAC, pages 367–374. ACM, 2014.

[3] G. Hanrot, X. Pujol, and D. Stehlé. Analyzing
blockwise lattice algorithms using dynamical systems.
In Proc. of CRYPTO, volume 6841 of LNCS, pages
447–464. Springer, 2011.

[4] E. Kaltofen. On the complexity of finding short
vectors in integer lattices. In Proc. of EUROCAL’83,
volume 162 of LNCS, pages 236–244. Springer, 1983.

[5] H. Koy and C.-P. Schnorr. Segment LLL-reduction of
lattice bases. In Proc. of CALC, volume 2146 of
LNCS, pages 67–80. Springer, 2001.

[6] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász.
Factoring polynomials with rational coefficients. Math.
Ann, 261:515–534, 1982.

[7] L. Lovász. An Algorithmic Theory of Numbers, Graphs
and Convexity. SIAM, 1986. CBMS-NSF Regional
Conference Series in Applied Mathematics.

[8] D. Micciancio and P. Voulgaris. A deterministic single
exponential time algorithm for most lattice problems
based on Voronoi cell computations. In Proc. of
STOC, pages 351–358. ACM, 2010.

[9] D. Micciancio and M. Walter. Practical, predictable
lattice basis reduction. In Proc. of EUROCRYPT,
volume 9665 of LNCS, page 1123. Springer, 2016.

[10] A. Neumaier. Bounding basis reduction properties.
IACR Cryptology ePrint Archive, 2016:4, 2016.

[11] P. Q. Nguyen and D. Stehlé. An LLL algorithm with
quadratic complexity. SIAM J. Comput,
39(3):874–903, 2009.

[12] P. Q. Nguyen and B. Vallée. The LLL Algorithm:
Survey and Applications. Information Security and
Cryptography. Springer, 2009.

[13] A. Novocin, D. Stehlé, and G. Villard. An
LLL-reduction algorithm with quasi-linear time
complexity. In Proc. of STOC, pages 403–412. ACM,
2011.

[14] C.-P. Schnorr and M. Euchner. Lattice basis
reduction: improved practical algorithms and solving

subset sum problems. Mathematics of Programming,
66:181–199, 1994.

[15] A. Schönhage. Factorization of univariate integer
polynomials by Diophantine approximation and
improved basis reduction algorithm. In Proc. of
ICALP, volume 172 of LNCS, pages 436–447.
Springer, 1984.

[16] A. Schönhage. Fast reduction and composition of
binary quadratic forms. In Proc. of ISSAC, pages
128–133. ACM, 1991.

[17] D. Stehlé. Floating-Point LLL: Theoretical and
Practical Aspects. 2010. Chapter of [12].

[18] A. Storjohann. Faster algorithms for integer lattice
basis reduction. Technical report, ETH Zürich, 1996.

[19] C. K. Yap. Fast unimodular reduction: planar integer
lattices. In Proc. of FOCS, pages 437–446. IEEE
Computer Society Press, 1992.

