
On the Randomness of Bits Generated by

Sufficiently Smooth Functions

Damien Stehlé

LORIA / Université Nancy 1.
http://www.loria.fr/~stehle — stehle@maths.usyd.edu.au

Abstract. Elementary functions such as sin or exp may naively be con-
sidered as good generators of random bits: the bit-runs output by these
functions are believed to be statistically random most of the time. Here
we investigate their computational hardness: given a part of the binary
expansion of expx, can one recover x? We describe a heuristic technique
to address this type of questions. It relies upon Coppersmith’s heuristic
technique — itself based on lattice reduction — for finding the small roots
of multivariate polynomials modulo an integer. For our needs, we improve
the lattice construction step of Coppersmith’s method: we describe a way
to find a subset of a set of vectors that decreases the Minkowski theorem
bound, in a rather general setup including Coppersmith-type lattices.

1 Introduction

Using expansions of real numbers is a natural idea to build pseudo-random num-
ber generators (PRNG). In the paper [2] in which Blum, Blum and Shub in-
troduce the celebrated “x2 mod N” PRNG, they first investigate the so-called
“1/N” generator. A secret integer N is chosen, and the output bits are consecu-
tive bits of the binary expansion of 1/N , starting from a specified rank (the most
significant bits are hidden, otherwise one would recover N by simply applying
the inverse function). The PRNG is efficient but, unfortunately, it is crypto-
graphically insecure: with a run of 2 log2 N + O(1) bits, one can recover N in
time polynomial in the bit-size of N , and thus compute the bits that are to come
next. This bit-run is not random since one can predict the remainder from the
beginning of it. Instead of rationals, one could use algebraic numbers, i.e., roots
of a degree d monic univariate integer polynomial P (x), where d and a bound H
on the magnitude of the coefficients are specified. This question was raised by
Manuel Blum and answered negatively in [10]: if the first O(d2 + d log H) bits
of a root of P are known then one can recover P in polynomial time and thus
compute the sequence himself.

In the present paper, we address a generalization of this type of questions to
smooth mathematical functions like trigonometric functions, exponentials, loga-
rithms, . . . Let f be such a function over [0, 1] and x an n-bit long secret integer.
The output of the PRNG is the bit-run of the binary expansion of f

(
x
2n

)
, starting

from a specified rank: the first bits (or digits, the base being irrelevant) are kept
hidden to make impossible the use of f−1 if it exists. These generated bits are
believed to be statistically random. They would correspond to so-called normal
numbers [1]. They were introduced by Borel [5] who showed they are overwhelm-
ing. Besides, statistical randomness is far weaker than unpredictability. Here we

will consider the PRNG as weak if from a sequence of length polynomial in n
one can recover the integer x in time polynomial in n.

The problem described above is connected to the so-called table maker’s
dilemma [11], a difficulty encountered while implementing an elementary math-
ematical function f in a given floating-point (fp for short) precision — for ex-
ample in double precision (with 53-bit long mantissæ). In tight to all cases, the
image f(x) of the fp-number x cannot be represented exactly. The value f(x) has
to be rounded to �(f(x)), where �(a) is a closest fp-number to a. Unfortunately,
the exact value f(x) can be extremely close to the middle of two consecutive
representable numbers (or even worse, it could be exactly the middle) and thus
many bits of f(x), that is to say a very sharp approximation to f(x), may be
needed to compute �(f(x)). The maximum of the number of needed bits, taken
over the input fp-numbers, helps getting an efficient implementation of f : for any
input x, one computes a close enough approximation to f(x), and then round
this approximation to the closest representable number. This quantity is usually
computed by finding the fp-numbers x for which f(x) has a long run of zeros,
or a long run of ones, starting just after the rounding bit. Instead of “inverting”
an arbitrary sequence of bits in the context of the PRNG described above, we
“invert” a sequence of zeros or a sequence of ones. The overall approach we de-
scribe generalizes and improves the technique developed in [21] to find bad cases
for the rounding of functions.

We tackle these issues with Coppermith’s lattice-based technique for calcu-
lating the small roots of multivariate polynomials modulo an integer [7]. It is
heuristic, which is the only reason why our result is heuristic. For our needs, we
improve the lattice construction step of this technique. In Coppersmith’s tech-
nique, a family of polynomials is first derived from the polynomial whose roots
are wanted. This family naturally gives a lattice basis and short vectors of this
lattice possibly provide the wanted roots. The main difficulty is to choose clev-
erly the family: the goal is to find polynomials for which the Minkowski bound
of the corresponding lattice is as low as possible, making possible the compu-
tation of larger roots. We present a general technique to choose a good subset
of polynomials within a family of polynomials. Boneh and Durfee already pre-
sented such a technique in [3] but it applies only to very specific lattice bases.
Our technique is more general, though slightly less powerful in the case of [3],
and could be of interest wherever Coppersmith’s method is used.

Road-map of the Paper. In Section 2 we describe the problem we tackle
and related issues. In Section 3 we give the minimal background on lattices
and Coppersmith’s method. We describe our algorithm in Section 4, give its
complexity analysis in Section 5 and demonstrate experimentally its efficiency
in Section 6. In Section 7, we discuss a few generalizations and open problems.

Notation. We define Ja, bK as the set of integers in [a, b]. For any integer n, we
let [a, b)n denote the m

2n ’s where a ≤ m
2n < b and m ∈ Z. For example [1/2, 1)53

corresponds to the positive fp-numbers in double precision with exponent −1.
For any real x, we let bxc, dxe, bxe and (x cmod 1) denote its floor, ceiling, closest
integer and centered fractional part x−bxe. For bxe and (x cmod 1), if x is half

an odd integer, we choose any of the two possibilities. In the following, vectors
are written in bold and for a vector x ∈ R

n, ‖x‖ and ‖x‖1 are its L2 and L1

norms, i.e.,
√∑n

i=1 x2
i and

∑n
i=1 |xi|. For the complexity results, we use the

bit complexity model. The notation P(x0, . . . , xk) shall be read as “polynomial
in x0, . . . , xk”. Finally, all logarithms are in base 2.

2 Bits Generated by Mathematical Functions

In the present section, after describing the equation we tackle, we explain how
it relates to the problems mentioned above: the PRNG and the search of bad
cases for the rounding of functions. We describe our results afterwards.

2.1 The Equation to be Solved

Let f : [0, 1] → [α, β] (for some reals α and β) be a function, and N1, N2, M be
three integers. Let c ∈ R. We are interested in solving the following equation:

∣
∣
∣
∣

[

N2 · f
(

x

N1

)

− c

]

cmod 1

∣
∣
∣
∣
≤ 1

M
, for x ∈ J0, N1K . (1)

We are given an approximation c to the exact value f(x/N1), but the most
significant bits are hidden. If the outputs of f behave sufficiently randomly, then
as soon as M = Ω(N1), the solution x, if there is one, should be unique.

The Pseudo-Random Number Generator. We study the following PRNG,
based on a given function f . Fix two security parameters n1 and n2. Choose a
secret seed x0 ∈ J0, 2n1K. Compute f(x0/2n1), throw away the first bits up to the
one of weight 2−n2 , and then output as many as needed of the following ones.
More precisely, the output corresponds to the bits of (2n2 ·f(x0/2n1) cmod 1), up
to some rank. One must choose a large enough n2 to make out of reach the guess
of the hidden bits and the use of f−1 if it exists. To obtain an efficient PRNG
one may choose an efficiently computable function f . For example sin, log, exp
are computable in time quasi-linear in n1, n2 and the number of output bits [6].
In this context, n1 and n2 are thus polynomially related. Breaking this PRNG
can be reduced to (1). Indeed, suppose that one has seen the first m + 1 output
bits, giving some y0 ∈

q
2m, 2m+1 − 1

y
. The seed x0 satisfies:

∣
∣
[
2n2 · f (x0/2n1) − y0/2m+1

]
cmod 1

∣
∣ ≤ 2−m.

It is an instance of (1): take N1 = 2n1 , N2 = 2n2 , M = 2m and c = y0/2m+1.

The Table Maker’s Dilemma. Let f be an elementary function, and n be
the input-output precision for an implementation of f over [1/2, 1)n. The input
fp-numbers such that �(f(x)) is hard to compute are the x’s in [1/2, 1)n with:

|[2n+1 · f(x) + 1/2] cmod 1| ≤ ε in the case of a rounding to nearest,

|2n · f(x) cmod 1| ≤ ε in the case of a directed rounding,

where directed roundings are the roundings towards ∞,−∞ and 0. Obviously
these equations are instances of (1). The smaller ε, the more difficult the com-
putation of �(f(x)), because a tighter approximation of the exact value needs

to be computed to decide the last bit of �(f(x)). If f behaves randomly enough
and we want to find the worst input, then ε will be set to ≈ 2−n: we expect O(1)
solutions (the bits should be independent and uniformly distributed), containing
the worst input. If this equation cannot be solved efficiently for this ε, it may
be interesting to show that it has no solution for a much smaller ε, in order to
ensure that f has no “exact output”: such outputs (at the middle between two
fp-numbers in the case of the rounding to nearest, and exactly a fp-number in the
case of a directed rounding) are in full generality impossible to handle because
even very accurate approximations do not help deciding the rounding direction.

Other Related Problems. Integer factorization can also be reduced to (1).
Take an n-bit long integer N = pq with p ≤ q. Then p is a solution to:∣

∣
∣2bn/2c ·

(
N
2n

1
x/2dn/2e

)

cmod 1
∣
∣
∣ = 0 for x ∈

q
0, 2dn/2e

y
.

Similarly, solving (1) could help obtaining integer points on curves. For ex-
ample, take two integers a and b and suppose we want to find the pairs of
integers (x, y) satisfying y2 = x3 + ax + b and 0 ≤ x ≤ 2n for an even n. Then
we can consider (1) with f(x) =

√

x3 + (a2−2n)x + (b2−3n) and N2 = 23n/2.
Unfortunately, our heuristic method seems to fail for algebraic functions and

does not help solving the two problems above.

2.2 Description of the Results

From now on, we fix f : [0, 1] → [α, β] and suppose that f is C∞ and that its
successive derivatives satisfy: ∀i ≥ 0, ∀x ∈ [0, 1], |f (i)(x)| ≤ i!K for some K. We
suppose that the derivatives of f are efficiently computable (the first n2 bits
of f (i)(x) where x is n1-bit long shall be computable in time P(i, n1, n2)). We
also suppose that the quantities maxx∈[0,1] |f (i)(x)| are efficiently computable.
For example, we can choose f = exp or f = sin.

In the following sections, we describe and analyze an algorithm that, given
as inputs N1, N2, M and c satisfying MN2 ≥ N1, finds all the solutions to (1)
in essentially (see Theorem 3 for the exact statement):

P(log(N1N2M)) · 2
log2(N1N2)

4 log(MN2) bit operations.
Some comments need to be made on this statement. Firstly, the algorithm al-

ways finishes and gives the correct output but its running time is only heuristic:
in the worst case, it might fall down to an exhaustive search. The heuristic as-
sumption under which the result holds will be made explicit below. Secondly, no-
tice that in the case of the table maker’s dilemma, we get a (heuristic) P(n)2n/2

running time by choosing N1 = N2 = M = 2n. This improves the best com-
plexity bound previously known, i.e., a (heuristic) P(n)24n/7 running time [21].

Finally, by choosing M = 2log2(N1N2), we obtain a polynomial time algorithm
that breaks the PRNG: a run of (n1+n2)

2 output bits suffices to recover the seed
efficiently. Amazingly, this quadratic bound matches the result of Nesterenko and
Waldschmidt [17] for exp when specialized to our context: their result implies

that for f = exp, c = 0 and M ≥ 2k(n1+n2)
2

for some constant k, there is no
non-trivial solution to (1). Our work can be seen as a constructive variant of [17].

3 Preliminaries

We start this section by stating some algorithmic results on lattices (see [13]
for more details) before describing Coppersmith’s technique and our method for
selecting a good subset of polynomials within a set of polynomials.

3.1 Lattices and the L3 Algorithm

A lattice L is a set of all linear integer combinations of d ≤ n linearly independent
vectors bi over R, that is L = {∑d

i=1 xibi, xi ∈ Z}. The bi’s are called a basis
of L. A given lattice has infinitely many bases (as soon as d ≥ 2). The lattice
dimension dim L = d does not depend on the choice of the basis, neither does
the embedding dimension n. The determinant of the lattice L is defined by:

det L =
d∏

i=1

‖b∗
i ‖, (2)

where [b∗
1, . . . ,b

∗
d] is the Gram-Schmidt orthogonalization of [b1, . . . ,bd], that

is: b∗
1 = b1, and b∗

i = bi −
∑i−1

j=1

〈bi,b
∗
j 〉

‖b∗
j‖

2 b∗
j . This definition extends the usual

definition of the determinant to non-square matrices (except for the sign). The
determinant is a lattice invariant: it is independent of the chosen basis of L.

Most often, bases of interest are made of rather short vectors. Minkowski [16]
showed that any lattice L contains a vector b 6= 0 satisfying the so-called
Minkowski bound:

‖b‖ ≤
√

dim L · (det L)
1

dim L .

Unfortunately, Minkowski’s proof is not constructive and no efficient way to find
such a short vector is known. In 1982, Lenstra, Lenstra and Lovász [12] gave a
polynomial time algorithm computing a so-called L3-reduced basis that, among
others, contains a vector that satisfies a weakened version of Minkowski’s bound.

Theorem 1 ([18]). Let B1, . . . ,Bd ∈ Z
n be independent vectors with lengths

smaller than B, and d = O(log B). In O(d4n log2 B) bit operations, one can find
a basis b1, . . . ,bd of the lattice spanned by the Bi’s that satisfies:

‖b1‖ ≤ 2d(det L)
1
d and ‖b2‖ ≤ 2d(det L)

1
d−1 .

This theorem covers up all we need to know about the L3 algorithm for our cur-
rent needs: lattice reduction is to be used as a black box. Of course, for practical
issues, one should dismantle the black box and tune it for the application.

3.2 Small Roots of Bivariate Polynomials Modulo an Integer

Coppersmith’s method [7] is a general technique to find all small roots of polyno-
mial equations modulo an integer. It heavily relies upon the L3 algorithm, that
dominates the running time. It is provable in the case of univariate polynomials:
if P is a degree d monic polynomial in (Z/NZ)[x], then one can find all its roots

smaller than N1/d in time polynomial in d and log N . It is only heuristic for mul-
tivariate polynomials. It has proved very powerful in public-key cryptography:
the univariate variant [4, 7, 15] as well as the multivariate one [3, 8, 14].

Suppose we search the solutions to the equation:

P (x, y) = 0 mod N, (3)

where P is a bivariate polynomial with integer coefficients, the modulus N is
an integer, and x and y are integer unknowns. Since in general solving such a
polynomial equation is hard, we restrict ourselves to finding the small solutions:
|x| ≤ X and |y| ≤ Y , for some bounds X and Y that are as large as possible.

Coppersmith’s technique depends on an integer parameter α ≥ 1 to be chosen
to maximize the reachable bounds X and Y (most often, α growing to infinity
is asymptotically the optimal choice). The method is made of four main steps.

1. First, a large set P of polynomial equations modulo Nα is derived from (3).
We use powers of P shifted by powers of variables: Nα−iP (x, y)ixjyk for i ∈
[|0, α|] and j, k ≥ 0. This is the polynomials selection step. If (x0, y0) is a
solution to (3), then it must be a root modulo Nα of all the polynomials in P.

2. In the polynomials-to-lattice step, we transform the family of polynomials P

into a lattice LX,Y [P]. We list and sort (arbitrarily) the monomials xjyk ap-
pearing in the polynomials of P. Suppose there are n such monomials. If a
polynomial Q(x, y) has all its monomials belonging to the monomials appear-
ing in the selected family, then we map it to an n-dimensional vector whose co-
efficient corresponding to the monomial xjyk is the coefficient of Q(x ·X, y ·Y)
for this monomial. This map is obviously a bijection. The lattice LX,Y [P] we
consider is spanned by the vectors of R

n that are obtained from the selected
polynomials via the map described above. Since any vector of this lattice is an
integral linear combination of the vectors corresponding to the selected poly-
nomials, any solution (x0, y0) to (3) is a root modulo Nα of all the polynomials
corresponding to the vectors of LX,Y [P].

3. If the polynomials of P were linearly independent, we got a lattice basis in the
previous step, and we now run an L3-type algorithm on it. If the polynomials
are linearly dependent, this is not a problem since L3 can be modified to
manage generating vectors instead of basis vectors (but the analysis of the
method becomes more intricate). After this lattice-reduction step, which is the
computationally dominating step, we have a basis of L made of vectors whose
lengths are related to det(LX,Y [P]), as described in Theorem 1.

4. In the reduced basis of LX,Y [P], we take all the vectors of L1 norm < Nα.
Any solution (x0, y0) to (3) modulo N is a root over Z of all the polynomials
corresponding to these vectors. It therefore remains to solve these equations
over the integers. We call this the root-finding step. There are several ways to
perform this step: with any variable elimination method (for example through
a resultant computation) or with Hensel’s lifting. In all cases, we need at
least two lattice vectors with small L1 norm to solve the system of equations.
Furthermore these polynomials can share factors, in which case it may be
impossible to recover any useful information. It is not known how to work

around this difficulty. This step is the heuristic one in Coppersmith’s method
for bivariate polynomials. This is the reason why the running-time bound
of our method for solving (1) is only heuristic. At the end, all the possible
solutions to (3) need to be checked, since some might be spurious.

The heuristic assumption. In the present paper, we do the following heuris-
tic assumption: if two polynomials correspond to the first two vectors of an
L3-reduced basis computed during any lattice reduction step of Coppersmith’s
bivariate method, then they do not share any factor.

Theorem 1 ensures we will obtain two sufficiently short vectors, as long as:√
n2dimL[P] · (det L[P])

1
dim L[P]−1 < Nα.

When expliciting the above inequality as a relation on X and Y , we obtain what
we call the Coppersmith equation. The goal of the analysis of a particular use of
Coppersmith’s method is to find the family P providing the best Coppersmith
equation, that is to say the one allowing the largest reachable X and Y . The

target is thus to minimize Minkowski’s quantity (det L[P])
1

dim L[P]−1 .

3.3 Finding a Good Family of Polynomials

As we have seen above, the strength of Coppersmith’s method is determined by
the polynomials selection. Often, the family P is chosen so that the corresponding
lattice basis is square and triangular. This makes the determinant computation
simple (the determinant being in this case the product of the absolute values of
the diagonal entries) and this often gives the “good” bound, which means that
after many trials, one could not find a better family of polynomials. Nevertheless,
in some cases, one can improve Minkowski’s bound by choosing polynomials
giving a non-square matrix. This is the case for example in [3] and in our present
situation. Here we give a mean to bound the determinant of lattices given by
bases that are not necessarily square and triangular.

Suppose we have a d × n matrix B whose rows span a lattice L. Suppose
further that the entries of B satisfy: |Bi,j | ≤ wri ·wcj , for some wri’s and wcj ’s
(with i ≤ d and j ≤ n). This is the case for all Coppersmith-type lattice bases.
We say that such a matrix is bounded by the products of the wri’s and wcj ’s.

Theorem 2. Let B be a d × n matrix bounded by the product of some quanti-
ties wri’s and wcj ’s. Let L[B] be the lattice spanned by the rows of the matrix B,
and P the product of the d largest wcj ’s. We have:

det L[B] ≤ 2
d(d−1)

2 · √n ·
(
∏d

i=1 wri

)

· P.

The result follows from basic row and column operations and Hadamard’s
bound det L[B] ≤ ∏

i≤d ‖bi‖, where the bi’s are the vectors corresponding to
the rows of the matrix B. The proof is given in appendix. Theorem 2 can be used
to find a subset of a given set of vectors that improves the term “(det L)

1
dim L ” in

Minkowski’s bound. Suppose we have a d×n matrix B bounded by the product of
some wri’s and wcj ’s. We consider the d vectors given by the rows of B. We begin
by ordering the wcj ’s decreasingly and the wri’s increasingly. Then the subset of

cardinality k that gives the best bound via Theorem 2 is the one corresponding

to any k smallest wrk ’s. We compute the quantities
(
∏k

i=1 wri · wcn−i

)1/k

for

all k ≤ d, and keep the vectors giving the smallest value.
Notice that our method does not necessarily gives the best subset of a given

set of vectors: in particular, it makes no use of the possibly special shape (not
even triangular) of the coefficients. E.g., it fails to give the 0.292 bound of [3].

4 The Algorithm and its Correctness

The algorithm we study is described in Figure 1. It takes as input the quanti-
ties N1, N2, M and c, as well as three parameters T, d and α that will be chosen in
order to improve the efficiency of the algorithm. The output are all the solutions
to (1) for the given N1, N2, M and c. The overall architecture of the algorithm
is as follows. The initial search interval J0, N1K is divided into N1

2T subintervals
of length 2T . Each subinterval is considered independently (possibly on differ-
ent machines): for each of them, we approximate the function f by a degree d
polynomial P ; we solve (1) for P instead of f with a smaller M (to take care of
the distance between f and P); to perform this last step, we use Coppersmith’s
method with the bivariate polynomial P (x) + y.

Input: N1, N2, M ∈ Z, c ∈ R with finitely many bits. Three parameters t, d, α ∈ Z.
Output: All the x’s in J0, N1K that are solution to (1).

1. n := (α+1)(dα+2)
2

, {e1, . . . , en} := {xiyj , i + dj ≤ dα}, T := 2t, T ′ := T, S := ∅.
2. t0 := 0. While t0 ≤ N1, do

3. If t0 + 2T ′ ≥ N1, T ′ :=
¨

N1−t0
2

˝

.
4. If T ′ = 0, then
5. Add t0 in S if it is solution to (1).
6. t0 := t0 + 1, T ′ := T .
7. Else

8. tm := t0 + T ′, P (x) := c + f
“

tm
N1

”

+ f ′

“

tm
N1

”

x
N1

+ . . . + 1
d!

f (d)
“

tm
N1

”

xd

Nd
1

.

9. ε :=
“

maxx∈[0,1]

˛

˛

˛
f (d+1)(x)

˛

˛

˛

”

· N2
(d+1)!

“

T ′

N1

”d+1

, M ′ := 1
ε+1/M

.

10.
n

g1, . . . , g α(α+1)
2

o

:= {xi (N2P (x) + y)j , i + j ≤ α}.

11. Create the α(α+1)
2

× n matrix B such that Bk,l is the coefficient of the
monomial el in the polynomial gk

`

xT ′, 1
M′ y

´

.
12. L3-reduce the rows of B. Let b1,b2 be the first two output vectors.
13. test := 1. If ‖b1‖1 ≥ 1 or ‖b2‖1 ≥ 1, test := 0.
14. Let Q1(x, y), Q2(x, y) be the polynomials corresponding to b1 and b2.
15. R(x) := Resy(Q1(x, y),Q2(x, y)). If R(x) = 0, then test := 0.
16. If test = 0, then T ′ := bT ′/2c.
17. Else, for any root x0 of R belonging to J−T ′, T ′K, add tm + x0 in S if

it is a solution to (1), t0 := t0 + 2T ′ + 1, T ′ := T .
18.Return S.

Fig. 1. The algorithm solving (1).

At Step 1, we compute the embedding dimension n of the lattices we will
reduce, and the list of the monomials that will appear in the polynomials gener-

ated during Coppersmith’s method. During the execution of the algorithm, the
integer t0 increases: at any moment, all the solutions to (1) below t0 have already
been found and it remains to find those that are between t0 and N1. The set S
contains all the solutions to (1) that are ≤ t0. Finally, the value T ′ is half the
size of the current subinterval in which we are searching solutions to (1): usu-
ally, we have T ′ = T , but if Coppersmith’s method fails, then we halve T ′. The
quantity T ′ makes the algorithm valid even if Coppersmith’s method repeatedly
fails. As a drawback the running time bound only heuristic. If there are too many
consecutive failures of Coppersmith’s method, then we might have T ′ = 0: in
this case we test if the current value t0 is a solution to (1) (Step 5). At Step 8,
we approximate the function f by its degree d Taylor expansion P at the center
of the considered interval. At Step 9, we compute the error ε made by approxi-
mating f by P . We update M accordingly. At Step 10, we generate the family of
polynomials that will be used in Coppersmith’s method for the bivariate polyno-
mial N2P (x)+y: we are searching the roots (x0, y0) of N2P (x)+y modulo 1 such
that |x0| ≤ T ′ and |y0| ≤ 1/M ′. Coppersmith’s method can fail for two reasons:
either we do not find two vectors of small enough L1 norm (this is detected at
Step 13), or the two bivariate polynomials corresponding to these vectors share
a factor (this is detected at Step 15). If Coppersmith’s method does not fail, we
go to Step 17: all the solutions of (1) that are in the considered subinterval must
be roots of the y-resultant of the polynomials corresponding to the two small
vectors that we found. If this polynomial has no integer root in the considered
subinterval, then it means there were no solution to (1) in this subinterval; if it
has roots, we test them to avoid those that are not solution to (1).

In the algorithm of Figure 1, the calculations are described with real num-
bers (at Steps 8 to 15). It is possible to replace these real numbers by others
with finitely many bits, or by integers. At Step 8, we can replace the polyno-
mial P by a polynomial P̃ whose coefficients approximate those of P : it suffices
that maxx∈[−T ′,T ′] |N2 · [P (x)− P̃ (x)]| = O(1/M). This can be ensured by taking
the O(log M + log N2 + d log T) = O(log M + log N2 + d log N1) most signifi-

cant bits of each coefficient. At Step 9, we can take M ′ :=
⌊

1
2ε+1/M

⌋

instead

of M ′ := 1
ε+1/M . The computations of Step 10 and 11 are then performed ex-

actly. At Step 12, we need integer entries to use Theorem 1. Since all the entries
of the matrix B are reals with finitely many bits, it suffices to multiply them by a
sufficiently large power of 2: since we took reals with O(log M +log N2+d log N1)
bits to construct the polynomial P̃ , multiplying by 2` with ` = O(α(log M +
log N2 + d log N1)) is sufficient. Once these modifications are performed, the re-
maining steps of the algorithm compute over the integers. In the following, we
will keep the initial description (of Figure 1) to avoid unnecessary technicalities.

The main result of the paper is the following:

Theorem 3. Let N1, N2, M ∈ Z and c ∈ R with finitely many bits. Let t, d, α ≥
0. Given N1, N2, M, c, t, d, α as input, the algorithm of Figure 1 outputs all the
solutions x ∈ J0, N1K to (1). If test is never set to 0 at Step 15, the algorithm

finishes in time P(n1, n2, m, d, α)N1

2t , as long as N1 ≤ MN2, log d = O(α) and:

t ≤ min

(

n1 −
m + n2 + O(1)

d + 1
, n1 −

(n1 + n2)
2

4(m + n2)
(1 + ε1) + ε2

)

,

with n1 = log N1, n2 = log N2, m = log M and, for α growing to ∞:

ε1 = O(1/α) + dO(1/α2)

ε2 =
1

m + n2
O(α2) +

n1

m + n2
(O(α) + dO(1/α))

+(n1 + n2)(O(1/α) + d(1/α3)) + mO(1/α2).

Corollary 4 (Table Maker’s Dilemma). Let N1 = 2n and N2 = 2n+e

with e ∈ {0, 1}. Let ε > 0. Suppose that d = 3, M = 2n, and t = n
2 (1−ε). Suppose

also that test is never set to 0 at Step 15. Then one can choose α, d and t such
that the algorithm of Figure 1 finds the solutions to (1) in time P(n) · 2 n

2 (1+ε).

Corollary 5 (Inverting the PRNG). Let N1 = 2n1 and N2 = 2n2 . Suppose

that M = 2(n1+n2)
2

. Suppose also that test is never set to 0 at Step 15. Then
one can choose α, d and t such that the algorithm of Figure 1 finds the solutions
to (1) in time polynomial in n1 and n2.

The following table gives the parameters providing the two corollaries above.

M α d t

Corollary 4 2n O(n) 3 n/2

Corollary 5 2(n1+n2)2 O(n1 + n2) O((n1 + n2)
2) n1 + O(1)

We can give a precise complexity estimate in Corollary 5 by using Theorem 1.
The most expensive step of the algorithm is Step 12. The dimension of the lattice
is O(α2) = O((n1 + n2)

2), its embedding dimension is O(dα2) = O((n1 + n2)
4),

and the entries, when considered as integers (see the discussion above) are of
length O((n1 + n2)

4). Therefore, the overall cost is O((n1 + n2)
20).

Proof of correctness of the algorithm. Since we test any returned solution, it
suffices to check that we do not miss any. Let x0 ∈ J0, N1K be such a so-
lution. The integer x0 belongs to at least one of the considered subintervals:
let Jtm − T ′, tm + T ′K be the smallest of them. For this subinterval, at Step 15 we
have test = 1. Besides, for any x ∈ Jtm − T ′, tm + T ′K we have, with x′ = x− tm:
|N2P (x′) cmod 1| ≤ |N2P (x′) − N2f(x/N1) − c| + |(N2f(x/N1) + c) cmod 1|

≤ ε + 1/M ≤ 1/M ′.

As a consequence, we have |N2P (x0−tm) cmod 1| ≤ 1/M ′. Let y0 = −N2P (x0−
tm) cmod 1. The pair (x0−tm, y0) is a root of the bivariate polynomial N2P (x)+y
modulo 1. It is therefore a root of any of the gk’s modulo 1, and of their integer
linear combinations. In particular, it is a root of Q1 et Q2 modulo 1.

Besides, we have the inequalities |x0−tm| ≤ T ′ and |y0| ≤ 1/M ′. Since the L1

norms of the vectors b1 and b2 are smaller than 1, the pair (x0−tm, y0) is a root of
the polynomials Q1 and Q2 over Z. It implies that if R = Resy(Q1(x, y), Q2(x, y))
is non-zero, then we find x0 at Step 17 of the algorithm.

5 Analysis of the Algorithm

This section is devoted to proving the complexity statement of Theorem 3. We
suppose that test is never set to 0 at any Step 15. It implies that with a correct
choice of the input parameters we always have T ′ = T (except possibly when t0 is
close to N1). The definition of M ′ gives M ′ = O(M). Besides, Taylor’s theorem

and the condition t ≤ n1 − m+n2+O(1)
d+1 of Theorem 3 ensure that for any x ∈

Jtm − T, tm + T K the quantity ε computed at Step 9 satisfies ε = O(1/M). We
thus have M ′ = Θ(M). To simplify, we identify M ′ with M and T ′ with T .

Our goal is to prove that if the conditions of Theorem 3 are fulfilled, then test
if never set to 0 at Step 13, which means that the L1 norms of the first two
vectors output by L3 are smaller than 1. Theorem 1 ensures that if the following
condition is satisfied, then b1 and b2 will be short enough:

√

dα(α + 1)

2
· 2O(log M+log N2+d log N1

α−1) · 2
α(α+1)

2 · (det L[P])
2

α(α−1) < 1, (4)

where we used the classical relation between the L1 and L2 norms, took care of
the fact that we have to scale the lattice to the integers to use Theorem 1, and P

is the family of polynomials {xi(N2P (x) + y)j , 0 ≤ i + j ≤ α}.
Let B be the α(α+1)

2 × dα(α+1)
2 matrix where the entry B[(i, j); (i′, j′)] is the

coefficient of the polynomial Qi,j(x, y) = (xT)i(N2P (xT)+y/M)j corresponding

to the monomial xi′yj′ . We order the rows and columns of B by increasing value
of i + dj, and by increasing value of j in case of equality. We can write:

B =

(
B1 0
B2 B3

)

,

where B1 is square, lower-triangular and corresponds to the rows such that 0 ≤
i + dj ≤ α, and B3 is rectangular and corresponds to the rows such that α <
i + dj ≤ dα and 0 ≤ i + j ≤ α. We easily obtain det L[P] = | det B1| · | det B3|.
Lemma 6. We have | det B1| = T

1
6d (α3+O(α2))M− 1

6d2 (α3+O(α2)).

We are to bound the determinant of the matrix B3 by using Theorem 2.

Lemma 7. The matrix B3 is bounded by the product of the quantities:

wri,j = 2j(d + 1)jKjN i
1N

j
2 and wci′,j′ = T i′/(M j′N i′

1 N j′

2),

with i + j ∈ J0, αK , i + dj ∈ Jα + 1, dαK and i′ + j′ ∈ Jα + 1, dαK.
Theorem 2 gives the inequality | det B3| ≤ 2O(α4) ·

√
d ·R · P , where R is the

product of the wri,j ’s with i + j ∈ J0, αK and i + dj ∈ Jα + 1, dαK, and P is the
product of the (dim B3) largest wci,j ’s with i + dj ∈ Jα + 1, dαK.
Lemma 8. We have the following relations, for α growing to infinity:

dim B3 =
(

1
2 − 1

2d

)
(α2 + O(α)),

R = 2O(α3)(d + 1)O(α3)N
d−1
6d (α3+O(α2))

1 N
d2−1

6d2 (α3+O(α2))

2 .

In order to bound P , we write P ≤ 2O(α3)
∏kmax

k=τ 2k·ck , with ck =]{(i, j), α <
i + dj ≤ dα and k ≤ (t − n1)i − (m + n2)j < k + 1}. We also define the param-

eter τ = −
√

(n1 − t)(m + n2)α. It is fixed so that
∑kmax

k=τ ck ≈ dim B3, which

means that we take sufficiently many columns. Finally we define:

kmax =

{
bα(t − n1)c if MN2 ≥ (N1/T)d,

b−(m + n2)α/dc if MN2 ≤ (N1/T)d.

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

PSfrag replacements

j

α

0

α/d

α

i + dj ≤ α

decreasing k

dα i
k = kmax = b(t − n1)αc

k = −(m + n2)α/d

k = d(t − n1)α

Z1

Z2

Z3

k = kmin = −(m + n2)α

Fig. 2. Relations between i, j and k when (N1/T)d ≤ MN2 ≤ (N1/T)d+1.

Figure 2 shows the relations between the variables i, j and k when MN2 ∈
[(N1/T)d, (N1/T)d+1]. The dashed area corresponds to the submatrix B1 of B
and is not considered in the study of B3. We split the set of valid pairs (i, j)
(the largest triangle, without the dashed area) into three zones Z1, Z2 and Z3

depending on the value of k. In the lemma below we consider only Z1 and Z2

since τα corresponds to an index k belonging to Z2.

Lemma 9. If MN2 ∈ [N1/T, (N1/T)d+1] and α grows to infinity, then:

kmax∑

k=τ

ck =

(
1

2
− 1

2d

)
(
α2 + O(α)

)
= (dim B3)(1 + O(1/α))

kmax∑

k=τ

kck =
(n1 − t)d + (m + n2) − 2d2

√

(n1 − t)(m + n2)

6d2
(α3 + O(α2)).

We can now batch the partial results of Lemmata 6, 8 and 9.

Theorem 10. If N1/T ≤ MN2 ≤ (N1/T)d+1 and α grows to infinity, we have:

det L[P] ≤ 2O(α4) · (N1N2)
α3

6 +O(α2) · 2− 1
3

√
(n1−t)(m+n2)(α3+O(α2)) · (MT)O(α2).

By using (4) and Theorem 10, it is easy to end the proof of Theorem 3.

6 Experimental Data

A C implementation of the algorithm is available at the URL http://www.

loria.fr/~stehle/bacsel.html. The code relies on GNU MP [9] for the in-
teger arithmetic, on MPFR [19] for the fp-arithmetic and on a fp-L3 available
at the URL http://www.loria.fr/~stehle/fpLLL-1.3.tar.gz. The code is
not meant to be efficient, but to be a proof of feasibility. The timings given in
Figure 3 are thus overestimations of what may be possible with a more accu-
rate implementation. Tuning the code is not an obvious task since the algorithm

depends on many parameters. A previous implementation for the particular pa-
rameters d = α = 2 was written by Paul Zimmermann and is available at the
URL http://www.loria.fr/~zimmerma/free/wclr-1.6.1.tar.gz. This for-
mer implementation was used to find the worst cases for the correct rounding of
the function 2x over [1/2, 1) in double extended precision (64-bits mantissæ) for
all rounding modes. For example, the worst case for the rounding to nearest is:

2
15741665614440311501

264 = 1.110 . . .110
︸ ︷︷ ︸

64

1 0 . . . 0
︸ ︷︷ ︸

63

11 . . .

The corresponding computation lasted a time equivalent to ≈ 7 years on a single
Opteron 2.4 GhZ. With the new code and d = 3 and α = 2, this computation
should be speeded up significantly. Nevertheless, for the application to the table
maker’s dilemma, n = 64 seems to be the bound of feasibility. In particular, the
quadruple precision (113-bit mantissæ) remains far out of reach.

n d α M T time

53 3 2 253 220.45 7.7 days

64 2 2 264 223.95 3.2 years (estimated time)
64 3 2 264 224.60 2.6 years (estimated time)

113 3 2 2113 244.45 3 · 109 years (estimated time)

Fig. 3. Estimated time to find a worst case of exp over [1/2, 1), on an Opteron 2.4 GhZ.

For the inversion of the PRNG, the complexity, though polynomial, remains
too high for extensive computations with a growing value of n. As an example,
we found the seed x0 = 17832265507654526358 · 2−64 ∈ [1/2, 1)64 such that:

exp x = b−1b0.b1b2 . . . b64c1c2c3 . . . c400 . . . ,

with the 400 bits ci known. The computation was performed in time equivalent
to less than one week on an Opteron 2.4 GhZ.

For the transcendental functions we tried, we did not encounter a single
failure of Coppersmith’s method. On the contrary, the method failed for all
algebraic functions f that we tried: in this case the running-time is between
what is expected and that of an exhaustive search, and it does not seem to
decrease when we increase the parameter d. We have two heuristic explanations
for this phenomenon: firstly, for some algebraic functions, there can be too many
solutions to write them in polynomial time; secondly, as described in Section 2,
it would give a polynomial time algorithm for integer factorization.

7 Generalizations and Open Problems

One can extend the algorithm and its analysis to the case of functions of several
variables [20]. For the PRNG, if the input precision is of n bits for all variables,
and the first n bits of the output are kept hidden, the number of bits needed to
recover the multivariable seed is O(nk+1), where k is the number of variables.

An open problem related to our algorithm is to prove Theorem 3 without
the heuristic assumption on the resultant computation. Since the method fails
in practice for some functions (in particular for algebraic functions), the task
would be to give a sufficient condition on the function f for the method to work.

An intermediate question is to determine under which conditions Coppersmith’s
method can be made provable for multivariate polynomials.

Another interesting problem is to determine if the O(n2) bound is the best
possible: can we invert in polynomial time the PRNG with significantly fewer
than n2 bits? This bound matches the one of [17] and might thus be considered
as somehow natural. The gap between the probabilistic injectivity of the PRNG
(m = O(n)) and its polynomial-time invertibility (m = O(n2)) is puzzling.

Acknowledgments. The author thanks Guillaume Hanrot, Vincent Lefèvre
and Paul Zimmermann for their helpful comments. The writing of the present
paper was completed while the author was visiting the University of Sydney,
whose hospitality is gratefully acknowledged.

References

1. D. H. Bailey and R. E. Crandall. Random generators and normal numbers. Experimental
Mathematics, 11(4):527–546, 2002.

2. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator.
SIAM Journal on Computing, 15(2):364–383, 1986.

3. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. IEEE

Transactions on Information Theory, 46(4):233–260, 2000.
4. D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring n = pqr for large r. In Proc. of

Eurocrypt 1999, volume 1666 of LNCS, pages 326–337. Springer-V., 1999.
5. É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del

Circolo Matematico di Palermo, 27:247–271, 1909.
6. R. Brent. Fast multiple precision zero-finding methods and the complexity of elementary func-

tion evaluation. Journal of the ACM, 23:242–251, 1976.
7. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabili-

ties. Journal of Cryptology, 10(4):233–260, 1997.
8. M. Ernst, E. Jochens, A. May, and B. de Weger. Partial key exposure attacks on RSA up to full

size exponents. In Proc. of Eurocrypt 2005, number 3494 in LNCS, pages 371–386. Springer-V.,
2005.

9. T. Granlund. The GNU MP Bignum Library. Available at http://www.swox.com/.
10. R. Kannan, A. K. Lenstra, and L. Lovász. Polynomial factorization and nonrandomness of bits

of algebraic and some transcendental numbers. In Proc. of STOC 1984, pages 191–200. ACM,
1984.

11. V. Lefèvre. Moyens arithmétiques pour un calcul fiable. PhD thesis, ÉNS Lyon, 2000.
12. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-

cients. Mathematische Annalen, 261:513–534, 1982.
13. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM Publications,

1986. CBMS-NSF Regional Conference Series in Applied Mathematics.
14. A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis, University

of Paderborn, 2003.
15. A. May. Computing the RSA secret key is determinisitic polynomial time equivalent to factoring.

In Proc. of Crypto 2004, volume 3152 of LNCS, pages 213–219. Springer-V., 2004.
16. H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, 1896.
17. Yu. V. Nesterenko and M. Waldschmidt. On the approximation of the values of exponential

function and logarithm by algebraic numbers. Matematicheskie Zapiski, 2:23–42, 1996.
18. P. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proc. of Eurocrypt 2005, volume

3494 of LNCS, pages 215–233. Springer-V., 2005.
19. The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-point computa-

tions with exact rounding. Available at http://www.mpfr.org/.
20. D. Stehlé. Algorithmique de la réduction de réseaux et application à la recherche de pires

cas pour l’arrondi de fonctions mathématiques. PhD thesis, Université Nancy 1, 2005.
21. D. Stehlé, V. Lefèvre, and P. Zimmermann. Searching worst cases of a one-variable function.

IEEE Transactions on Computers, 54(3):340–346, 2005.

Missing Proofs

Proof of Theorem 2. Recall that the determinant is defined by (2). If one of
the wri’s is zero, the determinant is obviously zero and the result holds. Suppose

now that all wri’s are positive. Let B′ be the matrix B after having divided
the i-th row by wri for all i. Wlog we suppose that wc1 ≥ wc2 ≥ . . . ≥ wcn

(otherwise we perform a permutation of the columns, which does not change the

determinant). It suffices to show that: det B′ ≤ 2
d(d−1)

2
√

n · wc1 · . . . · wcd.
We prove it by induction on d and n. If n < d, this is obvious since the rows

must be linearly dependent, so that det B′ = 0. If d = 1, the determinant is
exactly the length of the unique vector. Suppose now that n ≥ d ≥ 2. We apply
a permutation on the rows of the matrix B′ in order to have |B′

1,1| ≥ |B′
i,1|

for any i. This last operation does not change the determinant. For all i ≥ 2,

we perform the transformation B′
i := B′

i −
B′

i,1

B′
1,1

B′
1, which does not change the

determinant either (B′
i is the i-th row of the matrix B′). Wlog we suppose

that B′
1,1 6= 0: otherwise all the B′

i,1’s are zero, and we obtain the result by
induction on n by removing the first column. The transformations we have per-
formed on the matrix B′ have given a new matrix B′ for which |B′

1,1| ≤ wc1,
B′

i,1 = 0 for any i ≥ 2 and |B′
i,j | ≤ 2wcj , for any pair (i, j). This last statement

follows from the fact that for any i ≤ d, we have
∣
∣
∣

B′
i,1

B′
1,1

∣
∣
∣ ≤ 1. We apply the result

inductively on the (d − 1) × n matrix B′′ at the bottom of the matrix B′:

det B′′ ≤ 2
(d−1)(d−2)

2
√

n · (2wc2) · . . . · (2wcd) ≤ 2
d(d−1)

2
√

n · wc2 · . . . · wcd.

Proof of Corollary 4. Let m = n1 = n2 = n and d = 3. If α grows to infinity,
we have: ε1 = O(1/α), ε2 = 1/n ·O(α2) + O(α) + nO(1/α). We fix α sufficiently
large to ensure that the terms “O(1/α)” of ε1 and ε2 become smaller than ε (with
absolute values). We get, for n growing to infinity: |ε1| ≤ ε, |ε2| ≤ O(1) + nε.
Finally, the equation to be satisfied becomes, for n growing to infinity:

t ≤ min
(

n
2 − O(1), n − n

2 (1 + ε) − nε + O(1)
)
.

For n larger than some constant, this inequality is satisfied if t = n(1 − 4ε)/2.

Proof of Corollary 5. Let d = O((n1 + n2)
2) and α = O(n1 + n2). Then

for n1 + n2 growing to infinity, we have ε1 = O(1) and ε2 = O(1). The equation
to be satisfied becomes t ≤ n1 − O(1), for n1 + n2 growing to infinity.

Proof of Lemma 6. The determinant of B1 is:
∏

i+dj≤α

(xT)i · (P (xT) +
y

M
)j [xiyj] =

∏

i+dj≤α

T iM−j = (T
1
6d M

−1

6d2)α3+O(α2).

Proof of Lemma 7. The row (i, j) of B3 with i + j ∈ J0, αK and i + dj ∈
Jα + 1, dαK corresponds to the polynomial (xT)i

(
P (xT) + y

M

)j
. Its column (i′+

j′) with i′ + j′ ∈ Jα + 1, dαK corresponds to the coefficient of this polynomial for
the monomial xi′yj′ . We have the following inequalities:

|B3[(i, j); (i
′, j′)]| ≤ (xT)i

(

P (xT) +
y

M

)j

[xi′yj′]

≤ T i

[
j
∑

k=0

(
j

k

)

(P (xT))j−kM−kyk

]

[xi′−iyj′]

≤ 2jT iM−j′

[
d∑

k=0

akT kxk

]j−j′

[xi′−i].

Besides, we have ak ≤ K N2

Nk
1
, which gives that:

|B3[(i, j); (i
′, j′)]| ≤ 2jKj−j′T iN j−j′

2 M−j′

[
d∑

k=0

(
T

N1

)k

xk

]j−j′

[xi′−i].

≤ 2jKj−j′T iN j−j′

2 M−j′
(

T

N1

)i′−i
[

d∑

k=0

xk

]j−j′

[xi′−i]

≤
(

2j(d + 1)jKjN i
1N

j
2

)

·
(

T i′

M j′N i′
1 N j′

2

)

.

Proof of Lemma 8. For the first relation, one can write:
dim B3 = dim B − dim B1 = 1

2 (α2 + O(α)) − 1
2d (α2 + O(α)).

The proof of the second relation is similar:

∏

i + j ∈ J0, αK
i + dj ∈ Jα + 1, dαK

N i
1N

j
2 =

∏

i+j≤α

N i
1N

j
2

 ·

∏

i+dj≤α

N i
1N

j
2

−1

= N
d−1
6d (α3+O(α2))

1 N
d2−1

6d2 (α3+O(α2))

2 .

Proof of Lemma 9. We restrict ourselves to the first statement and to the case
where MN2 ∈ [(N1/T)d, (N1/T)d+1]. The other proofs are similar. We have:

kmax∑

k=τ

ck =

α−1∑

i=0

]

s⌊
α − i

d

⌋

,

⌊
(t − n1)i − τ

m + n2

⌋{
+

j

τ
t−n1

k

∑

i=α

]

s
0,

⌊
(t − n1)i − τ

m + n2

⌋{

=

j

τ
t−n1

k

∑

i=0

(t − n1)i − τ

m + n2
−

α−1∑

i=0

α − i

d
+ O(α)

=
t − n1

2(m + n2)

[
τ

t − n1
+ O(1)

]2

− τ

m + n2

[
τ

t − n1
+ O(1)

]

− α2

2d
+ O(α)

=
α2

2
(1 + O(1/α)) − α2

2d
+ O(α) =

(
1

2
− 1

2d

)

(α2 + O(α))

End of the Proof of Theorem 3. Since d = 2O(α), Theorem 10 gives that:

| det L[P]| ≤ 2
O(α4)+(n1+n2)

“

α3

6 +O(α2)
”

− 1
3

√
(n1−t)(m+n2)(α

3+O(α2))+(m+t)O(α2)
.

As a consequence, to ensure that 4 is satisfied, it suffices that:
O(α2) + (m + n2 + dn1)O(1/α) + (n1 + n2)(α + O(1)) + (m + t)O(1)

< 2
√

(n1 − t)(m + n2)(α + O(1)),
which is implied by the simpler equation:

O(α)+(n1+n2)

(

1 + O

(
1

α

)

+ dO

(
1

α2

))

+mO

(
1

α

)

< 2
√

(n1 − t)(m + n2).

This last equation is itself implied by the condition of Theorem 3.

