
A Binary Recursive Gcd Algorithm

Damien Stehlé and Paul Zimmermann

LORIA/INRIA Lorraine, 615 rue du jardin botanique, BP 101, F-54602
Villers-lès-Nancy, France, {stehle,zimmerma}@loria.fr

Abstract. The binary algorithm is a variant of the Euclidean algorithm
that performs well in practice. We present a quasi-linear time recursive
algorithm that computes the greatest common divisor of two integers
by simulating a slightly modified version of the binary algorithm. The
structure of our algorithm is very close to the one of the well-known
Knuth-Schönhage fast gcd algorithm; although it does not improve on
its O(M(n) log n) complexity, the description and the proof of correctness
are significantly simpler in our case. This leads to a simplification of the
implementation and to better running times.

1 Introduction

Gcd computation is a central task in computer algebra, in particular when com-
puting over rational numbers or over modular integers. The well-known Eu-
clidean algorithm solves this problem in time quadratic in the size n of the
inputs. This algorithm has been extensively studied and analyzed over the past
decades. We refer to the very complete average complexity analysis of Vallée for
a large family of gcd algorithms, see [10]. The first quasi-linear algorithm for the
integer gcd was proposed by Knuth in 1970, see [4]: he showed how to calculate
the gcd of two n-bit integers in time O(n log5 n log log n). The complexity of
this algorithm was improved by Schönhage [6] to O(n log2 n log log n). A com-
prehensive description of the Knuth-Schönhage algorithm can be found in [12].
The correctness of this algorithm is quite hard to establish, essentially because
of the technical details around the so-called “fix-up procedure”, and a formal
proof is by far out of reach. As an example, several mistakes can be noticed in
the proof of [12] and can be found at http://www.cs.nyu.edu/cs/faculty/

yap/book/errata.html. This “fix-up procedure” is a tedious case analysis and
is quite difficult to implement. This usually makes the implementations of this
algorithm uninteresting except for very large numbers (of length significantly
higher than 105 bits).

In this paper, we present a variant of the Knuth-Schönhage algorithm that
does not have the “fix-up procedure” drawback. To achieve this, we introduce
a new division (GB for Generalized Binary), which can be seen as a natural
generalization of the binary division and which has some natural meaning over
the 2-adic integers. It does not seem possible to use the binary division itself in
a Knuth-Schönhage-like algorithm, because its definition is asymmetric: it elim-
inates least significant bits but it also considers most significant bits to perform

comparisons. There is no such asymmetry in the GB division. The recursive GB
Euclidean algorithm is much simpler to describe and to prove than the Knuth-
Schönhage algorithm, while admitting the same asymptotic complexity.

This simplification of the description turns out to be an important advantage
in practice: we implemented the algorithm in GNU MP, and it ran between
three and four times faster than the implementations of the Knuth-Schönhage
algorithm in Magma and Mathematica.

The rest of the paper is organized as follows. In §2 we introduce the GB di-
vision and give some of its basic properties. In §3, we describe precisely the new
recursive algorithm. We prove its correctness in §4 and analyze its complexity
in §5. Some implementation issues are discussed in §6.

Notations: The standard notation O(.) is used. The complexity is measured in
elementary operations on bits. Unless specified explicitly, all the logarithms are
taken in base 2. If a is a non-zero integer, `(a) denotes the length of the binary
representation of a, i.e. `(a) = blog |a|c + 1; ν2(a) denotes the 2-adic valuation
of a, i.e. the number of consecutive zeroes in the least significant bits of the
binary representation of a; by definition, ν2(0) = ∞. r := a cmod b denotes the
centered remainder of a modulo b, i.e. a = r mod b and − b

2 < r ≤ b
2 . We recall

that M(n) = Θ(n log n log log n) is the asymptotic time required to multiply two
n-bit integers with Schönhage-Strassen multiplication [7]. We assume the reader
is familiar with basic arithmetic operations such as fast multiplication and fast
division based on Newton’s iteration. We refer to [11] for a complete description
of these algorithms.

2 The Generalized Binary Division

In this section we first recall the binary algorithm. Then we define the generalized
binary division — GB division for short — and give some basic properties about
it. Subsection 2.4 explains how to compute modular inverses from the output of
the Euclidean algorithm based on the GB division.

2.1 The Binary Euclidean Algorithm

The binary division is based on the following properties: gcd(2a, 2b) = 2gcd(a, b),
gcd(2a + 1, 2b) = gcd(2a + 1, b), and gcd(2a + 1, 2b + 1) = gcd(2b + 1, a− b). It
consists of eliminating the least significant bit at each loop iteration. Fig. 1 is a
description of the binary algorithm. The behavior of this algorithm is very well
understood (see [1] and the references there). Although it is still quadratic in the
size of the inputs, there is a significant gain over the usual Euclidean algorithm,
in particular because there is no need to compute any quotient.

2.2 The Generalized Binary Division

In the case of the standard Euclidean division of a by b with |a| > |b|, one
computes a quotient q such that when qb is added to a, the obtained remainder

Algorithm Binary-Gcd.
Input: a, b ∈ Z.
Output: gcd(a, b).

1. If |b| > |a|, return Binary-Gcd(b, a).
2. If b = 0, return a.
3. If a and b are both even then return 2 · Binary-Gcd(a/2, b/2).
4. If a is even and b is odd then return Binary-Gcd(a/2, b).
5. If a is odd and b is even then return Binary-Gcd(a, b/2).
6. Otherwise return Binary-Gcd((|a| − |b|)/2, b).

Fig. 1. The binary Euclidean algorithm.

is smaller than b. Roughly speaking, left shifts of b are subtracted from a as
long as possible, that is to say until a has lost its `(a) − `(b) most significant
bits (approximately). The GB division is the dual: in order to GB-divide a by b
with |a|2 > |b|2, where |a|2 := 2−ν2(a) is the 2-adic norm of a, one computes a
quotient q

2k such that when q

2k b is added to a, the obtained remainder is smaller
than b for the 2-adic norm. Roughly speaking, right shifts of b are subtracted
from a as long as possible, that is to say until a has lost its ν2(b) − ν2(a) least
significant bits.

Lemma 1 (GB Division). Let a, b be non-zero integers with ν2(a) < ν2(b).
Then there exists a unique pair of integers (q, r) such that:

r = a + q
b

2ν2(b)−ν2(a)
, (1)

|q| < 2ν2(b)−ν2(a), (2)

ν2(r) > ν2(b). (3)

The integers q and r are called respectively the GB quotient and the GB remain-

der of (a, b). We define GB(a, b) as the pair (q, r).

Proof. From (1), q = − a

2ν2(a) · (b

2ν2(b))
−1 mod 2ν2(b)−ν2(a)+1. Since q is odd, the

second condition is fulfilled and gives the uniqueness of q. As a consequence,
r is uniquely defined by (1). Moreover, since r = a + q b

2ν2(b)−ν2(a) , we have

r = 0 mod 2ν2(b)+1, which gives condition (3).

The GB division resembles Hensel’s odd division, which was introduced by
Hensel around 1900. A description can be found in [8]. For two integers a and b
with b odd, it computes q and r in Z, such that: a = −bq + 2pr and r < 2b,
where p = `(a) − `(b) is the difference between the bit lengths of a and b. In
other words, Hensel’s odd division computes r := (2−pa) mod b, which may be
found efficiently as shown in [5]. Besides, there is also some similarity with the
PM algorithm of Brent and Kung [2]. When ν2(a) = 0 and ν2(b) = 1, i.e. a is

odd and b = 2b′ with b′ odd, the GB division finds q = ±1 such that (a + qb′)/2
is even, which is exactly the PM algorithm. Unlike the binary, Hensel and PM
algorithms, the GB division considers only low order bits of a and b: there is
no need comparing a and b nor computing their bit lengths. It can be seen as a
natural operation when considering a and b as 2-adic integers.

We now give two algorithms to perform the GB division. The first one is the
equivalent of the naive division algorithm, and is asymptotically slower than the
second one, which is the equivalent of the fast division algorithm. For most of the
input pairs (a, b), the Euclidean algorithm based on the GB division performs
almost all its divisions on pairs (c, d) for which ν2(d) − ν2(c) is small. For this
reason the first algorithm suffices in practice.

Algorithm Elementary-GB.
Input: Two integers a, b satisfying ν2(a) < ν2(b) < ∞.
Output: (q, r) = GB(a, b).

1. q := 0, r := a.
2. While ν2(r) ≤ ν2(b) do

3. q := q − 2ν2(r)−ν2(a),

4. r := r − 2ν2(r)−ν2(b)b.

5. q := q cmod 2ν2(b)−ν2(a)+1, r := q b

2ν2(b)−ν2(a) + a.

6. Return (q, r).

Fig. 2. Algorithm Elementary-GB.

Lemma 2. The algorithm Elementary-GB of Fig. 2 is correct and if the input

(a, b) satisfies `(a), `(b) ≤ n, then it finishes in time O(n · [ν2(b) − ν2(a)]).

It is also possible to compute GB(a, b) in quasi-linear time, in the case of
Schönhage-Strassen multiplication, by using Hensel’s lifting (which is the p-adic
dual of Newton’s iteration).

Lemma 3. The algorithm Fast-GB of Fig. 3 is correct and with Schönhage-

Strassen multiplication, if a and b satisfy the conditions `(a), `(b) ≤ 2n and

ν2(b) − ν2(a) ≤ n, then it finishes in time O(M(n)).

2.3 The GB Euclidean Algorithm

A GB Euclidean algorithm can be derived very naturally from the definition of
the GB division, see Fig. 4.

Lemma 4. The GB Euclidean algorithm of Fig. 4 is correct, and if we use

the algorithm Elementary-GB of Fig. 2, then for any input (a, b) satisfying

`(a), `(b) ≤ n, it finishes in time O(n2).

Algorithm Fast-GB.
Input: Two integers a, b satisfying ν2(a) < ν2(b) < ∞.
Output: (q, r) = GB(a, b).

1. A := − a

2ν2(a) , B := b

2ν2(b) , n := ν2(b) − ν2(a) + 1.

2. q := 1.
3. For i from 1 to dlog ne do

4. q := q + q(1 − Bq) mod 22i

.
5. q := Aq cmod 2n.
6. r := a + q

2n−1 b.
7. Return (q, r).

Fig. 3. Algorithm Fast-GB.

Algorithm GB-gcd.
Input: Two integers a, b satisfying ν2(a) < ν2(b).
Output: The odd part g

2ν2(g) of the greatest common divisor g of a and b.

1. If b = 0, return a

2ν2(a) .

2. (q, r) := GB(a, b).
3. Return GB-gcd (b, r).

Fig. 4. The GB Euclidean algorithm.

Proof. Let r0 = a, r1 = b, r2, . . . be the sequence of remainders that appear in
the execution of the algorithm. We first show that this sequence is finite and
thus that the algorithm terminates.

For any k ≥ 0, Eqs. (1) and (2) give |rk+2| ≤ |rk+1| + |rk|, so that |rk| ≤
2n+1

(

1+
√

5
2

)k

. Moreover, 2k divides |rk |, which gives 2k ≤ |rk| ≤ 2n+1
(

1+
√

5
2

)k

and (1− log 1+
√

5
2)k ≤ n+1. Therefore there are O(n) remainders in the remain-

der sequence. Let t = O(n) be the length of the remainder sequence. Suppose
that rt is the last non-zero remainder. From Lemma 2, we know that each
of the calls to a GB-division involves a number of bit operations bounded by
O(log |rk| · [ν2(rk+1) − ν2(rk)]) = O(n · [ν2(rk+1) − ν2(rk)]), so that the overall
complexity is bounded by O(n · ν2(rt)).

For the correctness, remark that the GB remainder r from a and b satisfies
r = a mod b′ where b′ = b

2ν2(b) is the odd part of b, thus gcd(a, b′) = gcd(r, b′).

Remark. For a practical implementation, one should remove factors of two in
Algorithm GB-gcd. If one replaces the return value in Step 1 by a, and in Step 3
by 2ν2(a)GB-gcd(b

2ν2(b) ,
r

2ν2(b)), the algorithm directly computes g = gcd(a, b).
A better bound on |rk| and thus on t is proved in §5.1. Nonetheless the present

bound is sufficient to guarantee the quasi-linear time complexity of the recursive

algorithm. The improved bound only decreases the multiplying constant of the
asymptotic complexity.

For n ≥ 1 and q ∈ [−2n + 1, 2n − 1] we define the matrix [q]n =

(

0 2n

2n q

)

.

Let r0, r1 be two non-zero integers with 0 = ν2(r0) < ν2(r1), and r0, r1, r2, . . .
be their GB remainder sequence, and q1, q2, . . . be the corresponding quotients:
ri+1 = ri−1 + qi

ri

2ν2(ri)−ν2(ri−1) for any i ≥ 1. Then the following relation holds
for any i ≥ 1:

(

ri

ri+1

)

=
1

2ν2(ri)
[qi]ni

. . . [q1]n1 ·
(

r0

r1

)

,

where nj = ν2(rj) − ν2(rj−1) ≥ 1 for any j ≥ 1.
In what follows, we use implicitly the following simple fact several times.

Lemma 5. Let r0, r1 be two non-zero integers with 0 = ν2(r0) < ν2(r1), and

r0, r1, r2, . . . be their GB remainder sequence. Let d ≥ 0. Then there exists a

unique i ≥ 0 such that ν2(ri) ≤ d < ν2(ri+1).

2.4 Computing Modular Inverses

This subsection is independent of the remainder of the paper but is justified
by the fact that computing modular inverses is a standard application of the
Euclidean algorithm.

Let a, b be two non-zero integers with 0 = ν2(a) < ν2(b) and `(a), `(b) ≤ n.
Suppose that we want to compute the inverse of b modulo a, by using an extended
version of the Euclidean algorithm based on the GB division. The execution of
the extended GB Euclidean algorithm gives two integers A and B such that
Aa + Bb = 2αg, where α = O(n) and g = gcd(a, b). From such a relation, it is
easy to check that g = 1. Suppose now that the inverse B ′ of b modulo a does
exist. From the relation Aa + Bb = 2α, we know that:

B′ =
B

2α
mod a.

Therefore, in order to obtain B′, it is sufficient to compute the inverse of 2α

modulo a. By using Hensel’s lifting (like in the algorithm Fast-GB of Fig. 3),
we obtain the inverse of a modulo 2α. This gives x and y satisfying: xa+y2α = 1.
Clearly y is the inverse of 2α modulo a.

Since multiplication, Hensel’s lifting and division on numbers of size O(n)
can be performed in time O(M(n)) (see [11]), given two n-bit integers a and b,
the additional cost to compute the inverse of b modulo a given the output of an
extended Euclidean algorithm based on the GB division is O(M(n)).

3 The Recursive Algorithm

We now describe the recursive algorithm based on the GB division. This de-
scription closely resembles the one of [12]. It uses two routines: the algorithm

Half-GB-gcd and the algorithm Fast-GB-gcd. Given two non-zero integers
r0 and r1 with 0 = ν2(r0) < ν2(r1), the algorithm Half-GB-gcd outputs
the GB remainders ri and ri+1 of the GB remainder sequence of (r0, r1) that
satisfy ν2(ri) ≤ `(r0)/2 < ν2(ri+1). It also outputs the corresponding ma-
trix 2−(n1+...+ni)[qi]ni

. . . [q1]n1 . Then we describe the algorithm Fast-GB-gcd,
which, given two integers a and b, outputs the gcd of a and b by making successive
calls to the algorithm Half-GB-gcd.

The algorithm Half-GB-gcd works as follows: a quarter of the least signifi-
cant bits of a and b are eliminated by doing a recursive call on the low `(a)/2 of
the bits of a and b. The crucial point is that the GB quotients computed for the
truncated numbers are exactly the same as the first GB quotients of a and b.
Therefore, by multiplying a and b by the matrix obtained recursively one gets
two remainders (a′, b′) of the GB remainder sequence of (a, b). A single step of
the GB Euclidean algorithm is performed on (a′, b′), which gives a new remain-
der pair (b′, r). Then there is a second recursive call on approximately `(a)/2 of
the least significant bits of (b′, r). The size of the inputs of this second recursive
call is similar to the one of the first recursive call. Finally, the corresponding
remainders (c, d) of the GB remainder sequence of (a, b) are computed using the
returned matrix R2, and the output matrix R is calculated from R1, R2 and the
GB quotient of (a′, b′). Fig. 5 illustrates the execution of this algorithm.

Note that in the description of the algorithm Half-GB-gcd in Fig. 6, a
routine GB’ is used. This is a simple modification of the GB division: given a
and b as input with 0 = ν2(a) < ν2(b), it outputs their GB quotient q, and r

2ν2(b)

if r is their GB remainder. The algorithm Fast-GB-gcd uses several times the
algorithm Half-GB-gcd to decrease the lengths of the remainders quickly.

The main advantage over the other quasi-linear time algorithms for the in-
teger gcd is that if a matrix R is returned by a recursive call of the algorithm
Half-GB-gcd, then it contains only “correct quotients”. There is no need to go
back in the GB remainder sequence in order to make the quotients correct, and
thus no need to store the sequence of quotients. The underlying reason is that
the remainders are shortened by the least significant bits, and since the carries
go in the direction of the most significant bits, these two phenomena do not
interfere. For that reason, the algorithm is as simple as the Knuth-Schönhage
algorithm in the case of polynomials.

4 Correctness of the Recursive Algorithm

In this section, we show that the algorithm Fast-GB-gcd of Fig. 7 is correct.
We first give some results about the GB division, and then we show the correct-
ness of the algorithm Half-GB-gcd which clearly implies the correctness of the
algorithm Fast-GB-gcd.

4.1 Some Properties of the GB Division

The properties described below are very similar to the ones of the standard
Euclidean division that make the Knuth-Schönhage algorithm possible. The first

GB Division

Recursive Call

Truncation

R1x

Truncation

Recursive Call

R2x

R2

n 3n/4 n/2 n/4 0

c,d

a’,b’

b’,r

a,b

c2,d2

b’0,r0

c1,d1

a0,b0

R1

Fig. 5. The recursive structure of the algorithm Half-GB-gcd.

result states that the ν2(b)− ν2(a) + 1 last non-zero bits of a and of b suffice to
compute the GB quotient of two integers a and b.

Lemma 6. Let a, b, a′ and b′ be such that a′ = a mod 2l and b′ = b mod 2l

with l ≥ 2ν2(b) + 1. Assume that 0 = ν2(a) < ν2(b). Let (q, r) = GB(a, b) and

(q′, r′) = GB(a′, b′). Then q = q′ and r = r′ mod 2l−ν2(b).

Proof. By definition, q := −a
(

b

2ν2(b)

)−1
cmod 2ν2(b)+1. Therefore, since l ≥

2ν2(b)+1, b

2ν2(b) = b′

2ν2(b′) mod 2ν2(b)+1, we have a = a′ mod 2ν2(b)+1 and q = q′.

Moreover, r = a+q b

2ν2(b) and r′ = a′+q b′

2ν2(b′) . Consequently r = r′ mod 2l−ν2(b).

This result can be seen as a continuity statement: two pairs of 2-adic integers
(a, b) and (a′, b′) which are sufficiently close for the 2-adic norm (i.e. some least

Algorithm Half-GB-gcd.
Input: a, b satisfying 0 = ν2(a) < ν2(b).
Output: An integer j, an integer matrix R and two integers c and d with

0 = ν2(c) < ν2(d), such that

„

c
d

«

= 2−2jR ·

„

a
b

«

, and c∗ = 2jc, d∗ = 2jd

are the two consecutive remainders of the GB remainder sequence of (a, b)
that satisfy ν2(c

∗) ≤ `(a)/2 < ν2(d
∗).

1. k := b`(a)/2c.

2. If ν2(b) > k, then return 0,

„

1 0
0 1

«

, a, b.

3. k1 := bk/2c.
4. a := a12

2k1+1 + a0, b := b12
2k1+1 + b0 with 0 ≤ a0, b0 < 22k1+1.

5. j1, R1, c1, d1 := Half-GB-gcd(a0, b0).

6.

„

a′

b′

«

:= 22k1+1−2j1R1 ·

„

a1

b1

«

+

„

c1

d1

«

, j0 := ν2(b
′).

7. If j0 + j1 > k, then return j1, R1, a
′, b′.

8. (q, r) := GB′(a′, b′).
9. k2 := k − (j0 + j1).

10. b′

2j0
:= b′12

2k2+1 + b′0, r := r12
2k2+1 + r0 with 0 ≤ b′0, r0 < 22k2+1.

11. j2, R2, c2, d2 := Half-GB-gcd(b′0, r0).

12.

„

c
d

«

:= 22k2+1−2j2R2 ·

„

b′1
r1

«

+

„

c2

d2

«

.

13. Return j1 + j0 + j2, R2 · [q]j0 · R1, c, d.

Fig. 6. Algorithm Half-GB-gcd.

significant bits of a and a′, and some of b and b′ are equal) have the same quotient
and similar remainders (the closer the pairs, the closer the remainders). The
second lemma extends this result to the GB continued fraction expansions: if
(a, b) and (a′, b′) are sufficiently close, their first GB quotients are identical. We
obtain this result by applying the first one several times.

Lemma 7. Let a, b, a′ and b′ such that a′ = a mod 22k+1 and b′ = b mod 22k+1,

with k ≥ 0. Suppose that 0 = ν2(a) < ν2(b). Let r0 = a, r1 = b, r2, . . . be the GB

remainder sequence of (a, b), and let q1, q2, . . . be the corresponding GB quotients:

rj+1 = rj−1 + qj
rj

2nj , with nj = ν2(rj) − ν2(rj−1). Let r′0 = a′, r′1 = b′, r′2, . . . be

the GB remainder sequence of (a′, b′), and let q′1, q
′
2, . . . be the corresponding GB

quotients: r′j+1 = r′j−1 + q′j
r′

j

2
n′

j
, with n′

j = ν2(r
′
j) − ν2(r

′
j−1).

Then, if ri+1 is the first remainder such that ν2(ri+1) > k, we have qj = q′j and

rj+1 = r′j+1 mod 22k+1−ν2(rj), for any j ≤ i.

Algorithm Fast-GB-gcd.
Input: a, b satisfying 0 = ν2(a) < ν2(b).
Output: g = gcd(a, b).

1. j, R, a′, b′ := Half-GB-gcd(a, b).
2. If b′ = 0, return a′.
3. (q, r) := GB′(a′, b′).
4. Return Fast-GB-gcd(b′, r′).

Fig. 7. Algorithm Fast-GB-gcd.

Proof. We prove this result by induction on j ≥ 0. This is true for j = 0, because
a′ = a mod 22k+1 and b′ = b mod 22k+1. Suppose now that 1 ≤ j ≤ i. We use

Lemma 6 with
rj−1

2ν2(rj−1) ,
rj

2ν2(rj−1) ,
r′

j−1

2ν2(rj−1) ,
r′

j

2ν2(rj−1) and l = 2k+1−2ν2(rj−1). By

induction, modulo 22k+1−ν2(rj−1), rj−1 = r′j−1 and rj = r′j . Since j ≤ i, we have,
by definition of i, 2k+1−2ν2(rj−1) ≥ 2(ν2(rj)−ν2(rj−1))+1, and consequently
we can apply Lemma 6. Thus qj = q′j and rj+1 = r′j+1 mod 22k+1−ν2(rj).

Practically, this lemma says that k bits can be gained as regard to the initial
pair (a, b) by using only 2k bits of a and 2k bits of b. This is the advantage
of using the GB division instead of the standard division: in the case of the
standard Euclidean division, this lemma is only “almost true”, because some of
the last quotients before gaining k bits can differ, and have to be repaired.

4.2 Correctness of the Half-GB-gcd Algorithm

To show the correctness of the algorithm Fast-GB-gcd, it suffices to show the
correctness of the algorithm Half-GB-gcd, which is established in the following
theorem. (Since each call to Fast-GB-gcd which does not return in Step 2
performs at least one GB division, the termination is ensured.)

Theorem 1. The algorithm Half-GB-gcd of Fig. 6 is correct.

Proof. We prove the correctness of the algorithm by induction on the size of
the inputs. If `(a) = 1, then the algorithm finishes at Step 2 because ν2(b) ≥ 1.
Suppose now that k ≥ 2 and that ν2(b) ≤ k.

Since 2bk
2c + 1 < `(a), Step 5 is a recursive call (its inputs satisfy the input

conditions). By induction j1, R1, c1 and d1 satisfy

(

c1

d1

)

= 2−2j1R1 ·
(

a0

b0

)

, and

2j1c1 and 2j1d1 are the consecutive remainders r′i1 and r′i1+1 of the GB remainder
sequence of r′0 = a0 and r′1 = b0 that satisfy ν2(r

′
i1

) ≤ k1 < ν2(r
′
i1+1). From

Lemma 7, we know that 2−j1R1 ·
(

a
b

)

are two consecutive remainders 2j1a′ = ri1

and 2j1b′ = ri1+1 of the GB remainder sequence of r0 = a and r1 = b, and they

satisfy ri1 = r′i1 and ri1+1 = r′i1+1 modulo 2k1+1. From these last equalities, we
have that ν2(ri1) = ν2(r

′
i1

) ≤ k1 < ν2(ri1+1) ≤ ν2(r
′
i1+1). Thus, if the execution

of the algorithm stops at Step 7, the output is correct.
Otherwise, ri1+2 is computed at Step 8. At Step 9 we compute k2 = k −

ν2(ri1+1). Step 7 ensures that k2 ≥ 0. Since ν2(ri1+1) > bk/2c, we have k2 ≤
dk/2e− 1. Therefore Step 11 is a recursive call (and the inputs satisfy the input

conditions). By induction, j2, S2, c2 and d2 satisfy:

(

c2

d2

)

= 2−2j2R2 ·
(

b′0
r0

)

, and

2j2c2 and 2j2d2 are the consecutive remainders r′i2 and r′i2+1 of the GB remain-
der sequence of (b0, r

′
0). Moreover, ν2(r

′
i2

) ≤ k2 < ν2(r
′
i2+1). From Lemma 7,

we know that 2−j2S2 ·
(

2j1b′

2j1r′

)

are two consecutive remainders ri and ri+1

(with i = i1 + i2 + 1) of the GB remainder sequence of (a, b), that ri

2j1+ν2(b′) =

2j2c2 mod 2k2+2 and that ri+1

2j1+ν2(b′) = 2j2d2 mod 2k2+1. Therefore the following

sequence of inequalities is valid: ν2(ri) = j1 + j2 + ν2(b
′) ≤ k < ν2(ri+1). This

ends the proof of the theorem.

5 Analysis of the Algorithms

In this section, we first study the GB Euclidean algorithm. In particular we
give a worst-case bound regarding the length of the GB remainder sequence.
Then we bound the complexity of the recursive algorithm in the case of the
use of Schönhage-Strassen multiplication, and we give some intuition about the
average complexity.

5.1 Length of the GB Remainder Sequence

In this subsection, we bound the size of the matrix 1
2ν2(ri)

[qi]ni
. . . [q1]n1 , where

the qj ’s are the GB quotients of a truncated GB remainder sequence r0, . . . , ri+1

with ν2(ri) ≤ ν2(r0) + d < ν2(ri+1) for some d ≥ 0. This will make possible the
analysis of the lengths and the number of the GB remainders. As mentioned in
§2, this subsection is not necessary to prove the quasi-linear time complexity of
the algorithm.

Theorem 2. Let d ≥ 1. Let r0, r1 with 0 = ν2(r0) < ν2(r1), and r0, r1, . . . , ri+1

their first GB remainders, where i is such that ν2(ri) ≤ d < ν2(ri+1). We con-

sider the matrix 1
2ν2(ri)

[qi]ni
. . . [q1]n1 , where the qj ’s are the GB quotients and

nj = ν2(rj)−ν2(rj−1) for any 1 ≤ j ≤ i. Let M be the maximum of the absolute

values of the four entries of this matrix. Then we have:

– If d = 0 or 1, M = 1,
– If d = 3, M ≤ 11/8,
– If d = 5, M ≤ 67/32,

– If d = 2, 4 or d ≥ 6, M ≤ 2√
17

(

(

1+
√

17
4

)d+1

−
(

1−
√

17
4

)d+1
)

.

Moreover, all these bounds are reached, in particular, the last one is reached

when nj = 1 and qj = 1 for any 1 ≤ j ≤ i.

The proof resembles the worst case analysis of the Gaussian algorithm in [9].

Proof. We introduce a partial order on the 2 × 2 matrices: A < B if and only
if for any coordinate [i, j], A[i, j] ≤ B[i, j]. First, the proof can be restricted to
the case where the qj ’s are non-negative integers, because we have the inequality
|[qi]ni

. . . [q1]n1 | ≤ [|qi|]ni
. . . [|q1|]n1 . This can be easily showed by induction on i

by using the properties: |A · B| ≤ |A| · |B|, and if the entries of A, A′, B, B′ are
non-negative, A ≤ A′ and B ≤ B′ implies A · B ≤ A′ · B′.

Consequently we are looking for the maximal elements for the partial or-
der > in the set: {Πn1+...+ni≤d [qi]ni

. . . [q1]n1 / ∀1 ≤ j ≤ i, 0 < qj ≤ 2nj −
1 and nj ≥ 1}. We can restrict the analysis to the case where n1 + . . .+ ni = d
and all the qj ’s are maximal, which gives the set:

{Πn1+...+ni=d [2ni − 1]ni
. . . [2n1 − 1]n1}.

Remark now that [2n − 1]n ≤ [1]n1 for any n ≥ 3. Therefore, it is sufficient to
consider the case where the nj ’s are in {1, 2}. Moreover, for any integer j ≥ 0,

[3]2·[1]j1·[3]2 ≤ [1]j+4
1 , and we also have the inequalities [3]22 ≤ [1]41, [1]51·[3]2 ≤ [1]7,

[3]2 · [1]51 ≤ [1]7 and [1]21 · [3]2 · [1]21 ≤ [1]61.
From these relations, we easily obtain the maximal elements:

– For d = 1, [1]1.
– For d = 2, [1]21 and [3]2.
– For d = 3, [1]31, [3]2 · [1]1 and [1]1 · [3]2.
– For d = 4, [1]41, [3]2 · [1]21, [1]1 · [3]2 · [1]1 and [1]21 · [3]2.
– For d = 5, [1]51, [3]2 · [1]31, [1]21 · [3]2 · [1]1, [1]1 · [3]2 · [1]21 and [1]31 · [3]2.
– For d = 6, [1]61, [3]2 · [1]41, [1]31 · [3]2 · [1]1, [1]1 · [3]2 · [1]31 and [1]41 · [3]2.
– For d = 7, [1]71, [1]1 · [3]2 · [1]41 and [1]41 · [3]2 · [1]1.
– For d ≥ 8, [1]d1.

The end of the proof is obvious once we note that 2−d[1]d1 =

(

ud−1 ud

ud ud+1

)

,

where u0 = 0, u1 = 1 and ui = ui−2 + 1
2ui−1.

From this result on the quotient matrices, we can easily deduce the following
on the size of the remainders and on the length of the remainder sequence.

Theorem 3. Let r0, r1 be two non-zero integers with 0 = ν2(r0) < ν2(r1),
and r0, r1, . . . , rt+1 their complete GB remainder sequence, i.e. with rt+1 = 0.
Assume that 9 ≤ j ≤ t. Then:

2ν2(rj) ≤ |rj | ≤
2√
17

|r0|

(

1 +
√

17

4

)ν2(rj)−1

−
(

1 −
√

17

4

)ν2(rj)−1

+ |r1|

(

1 +
√

17

4

)ν2(rj)

−
(

1 −
√

17

4

)ν2(rj)

 .

The upper bound is reached by

(

r0

r1

)

= [1]−t
1 ·

(

2t

0

)

.

Moreover, if `(r0), `(r1) ≤ n, then we have: t ≤ n/ log(
√

17−1
2).

Proof. (Sketch) For the inequations concerning |rj |, use the maximal element
[1]d1 from the proof of Theorem 2, with d = ν2(ri), where i = j−1. Remark then
that the upper bound grows far slower with ν2(rj) than the lower bound: this
fact gives an upper bound on ν2(rt) and therefore on t.

As a comparison, we recall that the worst case for the standard Euclidean division

corresponds to the Fibonacci sequence, with d ≤ n/ log(1+
√

5
2) + o(n). Remark

that 1/ log(1+
√

5
2) ≈ 1.440 and 1/ log(

√
17−1
2) ≈ 1.555.

5.2 Complexity Bound for the Recursive Algorithm

In what follows, H(n) and G(n) respectively denote the maximum of the number
of bit operations performed by the algorithms Half-GB-gcd and Fast-GB-gcd,
given as inputs two integers of lengths at most n.

Lemma 8. Let c = 1
2 log 1+

√
17

2 ≈ 0.679. The following two relations hold:

– G(n) = H(n) + G(dcne) + O(n),
– H(n) = 2H(bn

2 c + 1) + O(M(n)).

Proof. The first relation is an obvious consequence of Theorem 2. We now prove
the second relation. The costs of Steps 1, 2, 3, 4, 7, 9 and 10 are negligible. Steps 5
and 11 are recursive calls and the cost of each one is bounded by H(bn

2 c + 1).
Steps 6, 12 and 13 consist of multiplications of integers of size O(n). Finally,
Step 8 is a single GB division, and we proved in Lemma 3 that it can be performed
in time O(M(n)).

From this result and the fact that c < 1, one easily obtains the following theorem:

Theorem 4. The algorithm Fast-GB-gcd of Fig. 7 runs in quasi-linear time.

More precisely, G(n) = O(M(n) log n).

The constants that one can derive from the previous proofs are rather large,
and not very significant in practice. In fact, for randomly chosen n-bit integers,
the quotients of the GB remainder sequence are O(1), and therefore Step 8
of the algorithm Half-GB-gcd has a negligible cost. Moreover, the worst-case
analysis on the size of the coefficients of the returned matrices gives a worst-case

bound O
((

1+
√

17
2

)n)

, which happens to be O(2n) in practice. With these two

heuristics, the “practical cost” of the algorithm Half-GB-gcd satisfies the same
recurrence than the Knuth-Schönhage algorithm:

H(n) ≈ 2H(
n

2
) + kM(n),

where the constant k depends from the implementation [11].

6 Implementation Issues

We have implemented the algorithms described in this paper in GNU MP [3].
In this section, we first give some “tricks” that we implemented to improve the
efficiency of the algorithm, and then we give some benchmarks.

6.1 Some Savings

First of all, note that some multiplications can be saved easily from the fact
that when the algorithm Fast-GB-gcd calls the algorithm Half-GB-gcd, the
returned matrix is not used. Therefore, for such “top-level” calls to the algorithm
Half-GB-gcd, there is no need to compute the product R2 · [q]j0 · R1.

Note also that for interesting sizes of inputs (our implementation of the re-
cursive algorithm is faster than usual Euclidean algorithms for several thousands
of bits), we are in the domains of Karatsuba and Toom-Cook multiplications,
and below the domain of FFT-based multiplication. This leads to some im-
provements. For example, the algorithm Fast-GB-gcd should use calls to the
algorithm Half-GB-gcd in order to gain γn bits instead of n

2 , with a constant
γ 6= 1

2 that has to be optimized.

Below a certain threshold in the size of the inputs (namely several hundreds
of bits), a naive quadratic algorithm that has the requirements of algorithm
Half-GB-gcd is used. Moreover, each time the algorithm has to compute a GB
quotient, it computes several of them in order to obtain a 2 × 2 matrix with
entries of length as close to the size of machine words as possible. This is done
by considering only the two least significant machine words of the remainders
(which gives a correct result, because of Lemma 6).

6.2 Comparison to Other Implementations of Subquadratic Gcd
Algorithms

We compared our implementation in GNU MP — using the ordinary integer
interface mpz — with those of Magma V2.10-12 and Mathematica 5.0, which
both provide a subquadratic integer gcd. This comparison was performed on
laurent3.medicis.polytechnique.fr, an Athlon MP 2200+. Our implemen-
tation wins over the quadratic gcd of GNU MP up from about 2500 words of
32 bits, i.e. about 24000 digits. We used as test numbers both the worst case of
the classical subquadratic gcd, i.e. consecutive Fibonacci numbers Fn and Fn−1,
and the worst case of the binary variant, i.e. Gn and 2Gn−1, where G0 = 0,
G1 = 1, Gn = −Gn−1 + 4Gn−2, which gives all binary quotients equal to 1. Our
experiments show that our implementation in GNU MP of the binary recursive
gcd is 3 to 4 times faster than the implementations of the classical recursive gcd
in Magma or Mathematica. This ratio does not vary much with the inputs. For
example, ratios for Fn and Gn are quite similar.

type, n Magma V2.10-12 Mathematica 5.0 Fast-GB-gcd (GNU MP)

Fn, 106 2.89 2.11 0.70
Fn, 2 · 106 7.74 5.46 1.91
Fn, 5 · 106 23.3 17.53 6.74
Fn, 107 59.1 43.59 17.34

Gn, 5 · 105 2.78 2.06 0.71
Gn, 106 7.99 5.30 1.94

Fig. 8. Timings in seconds of the gcd routines of Magma, Mathematica and our im-
plementation in GNU MP.

Acknowledgements.

The first author thanks Brigitte Vallée for introducing him to fast gcd algorithms
and for very helpful discussions on that topic. We thank Jean Vuillemin for the
pointer to Hensel’s odd division, the Medicis center for allowing the comparison
to Magma and Mathematica, and Richard Brent for his comments, which helped
to improve both the contents and the form of the paper.

References

1. R. P. Brent. Twenty years’ analysis of the binary Euclidean algorithm. In
A. W. Roscoe J. Davies and J. Woodcock, editors, Millenial Perspectives in Com-
puter Science: Proceedings of the 1999 Oxford-Microsoft Symposium in honour of
Professor Sir Antony Hoare, pages 41–53, Palgrave, New York, 2000.

2. R. P. Brent and H. T. Kung. A systolic VLSI array for integer GCD computation.
In K. Hwang, editor, Proceedings of the 7th Symposium on Computer Arithmetic
(ARITH-7). IEEE CS Press, 1985.

3. T. Granlund. GNU MP: The GNU Multiple Precision Arithmetic Library, 4.1.2
edition, 2002. http://www.swox.se/gmp/#DOC.

4. D. Knuth. The analysis of algorithms. In Actes du Congrès International des
Mathématiciens de 1970, volume 3, pages 269–274, Paris, 1971. Gauthiers-Villars.

5. P. L. Montgomery. Modular multiplication without trial division. Math. Comp.,
44(170):519–521, 1985.

6. A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica, 1:139–144, 1971.

7. A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7:281–292, 1971.

8. M. Shand and J. E. Vuillemin. Fast implementations of RSA cryptography. In
E. E. Swartzlander, M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th
IEEE Symposium on Computer Arithmetic (ARITH-11), pages 252–259. IEEE
Computer Society Press, Los Alamitos, CA, 1993.

9. B. Vallée. Gauss’ algorithm revisited. Journal of Algorithms, 12:556–572, 1991.
10. B. Vallée. Dynamical analysis of a class of Euclidean algorithms. Th. Computer

Science, 297(1-3):447–486, 2003.
11. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-

versity Press, 2nd edition, 2003.
12. C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University

Press, 2000.

