L'algorithme binaire récursif de calcul de pgcd.

Damien STEHLÉ

Rocquencourt, 15-03-2004 Travail en commun avec Paul Zimmermann

http://www.loria.fr/~stehle/

Sommaire

- 1. Quelques rappels.
- 2. Les divisions standard et binaire.
- 3. L'algorithme de Knuth et l'algorithme binaire récursif.
- 4. Analyse de complexité et considérations pratiques.

Arithmétique des entiers

- Nombres représentés en binaire, avec au plus n chiffres.
- Comparaison, addition, soustraction (naïves) en O(n).
- Multiplication en $M(n) = O(n \log n \log \log n)$, à base de FFT.
- Division (naïve) d'un nombre de taille m par un nombre de taille n < m en $O((m-n) \cdot m)$.
- Division d'un nombre de taille 2n par un nombre de taille n en O(M(n)), par itération de Newton et multiplication rapide.

Le problème du pgcd

- But : étant donnés a et b, calculer g = pgcd(a, b).
- Mieux : calculer aussi A et B tels que Aa + Bb = g (pgcd étendu).
- Modèle de complexité : opérations élémentaires sur les bits.
- Applications : calculs sur les rationnels, inversions modulaires, ...
- Dans la suite, $a, b \in \mathbb{Z}$ et $n = \max(\text{bits}(a), \text{bits}(b))$.

Petite histoire du pgcd

- $-\approx -300$, Euclide : algo. d'Euclide, en temps quadratique $O(n^2)$.
- 1938, Lehmer : accélération de l'algorithme d'Euclide (les bits forts suffisent pour calculer les premiers quotients).
- 1970, Schönhage et Strassen : multiplication rapide en temps $M(n) = O(n \log n \log \log n).$
- 1970, Knuth : algorithme de Lehmer récursif, basé sur la multiplication rapide de Schönhage-Strassen. Complexité quasi-linéaire $O(M(n) \log^4 n)$.
- 1971, Schönhage : analyse précise de l'algorithme de Knuth. Complexité quasi-linéaire $O(M(n)\log n)$.

Le calcul de pgcd en pratique

- Algo. de Knuth efficace seulement pour de très grands nombres.
- Pgcd sous-quadratique rarement implanté (Mathematica, Magma).
- Deux techniques pour accélérer facilement l'algorithme d'Euclide :
 - 1) Lehmer: "Tant que c'est facile, n'utiliser que les bits forts".
 - 2) Binaire: "Shifter et additionner sont plus rapides que diviser".

Les résultats

- Incompatibilité des deux idées précédentes : bits forts dans $1) \leftrightarrow$ bits faibles dans 2).

- Résultats:
 - 1. Définition d'une division (GB) par les bits faibles ayant la propriété de Lehmer (pour les bits faibles).
 - 2. Transposition de l'algo. de Knuth pour cette division.
 - 3. Au passage, l'algo. de Knuth garde la même complexité mais devient nettement plus simple.

La division Euclidienne "standard"

– Étant donnés a, b > 0, il existe un unique couple (q, r) t.q. :

$$a = bq + r, \ 0 \le r < b, \ q \ge 0.$$

- Exemple : a = 157 = 10011101, b = 59 = 111011.
- -(q,r) = (2,39) = (10,100111).
- Remarque : 10011 = 19, 111 = 7 donnent le même quotient.
- Calcul de q en O(M(n)) par itération de Newton (théorie).
- Calcul de q en O(n) car q = O(1) (pratique).

L'algorithme d'Euclide "standard"

Input : $a, b \in \mathbb{Z}$ avec a > b.

Output:
$$g = \operatorname{pgcd}(a, b)$$
, et M t.q. $M \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} g \\ 0 \end{pmatrix}$.

- 1. Si b = 0, renvoyer a et I_2 .
- 2. $q, r := \lfloor a/b \rfloor$.
- 3. g, M' := Euclide(b, r).
- 4. Renvoyer g et $M = M' \begin{pmatrix} 0 & 1 \\ 1 & -q \end{pmatrix}$.

La division binaire (1)

- C'est le "miroir" de la division Euclidienne.
- Si $a \neq 0$, $\nu_2(a)$ est le plus grand k t.q. $2^k \mid a$. Et $\nu_2(0) = \infty$.
- Pour a, b avec $\nu_2(a) < \nu_2(b)$, il existe un unique couple (q, r) t.q. :

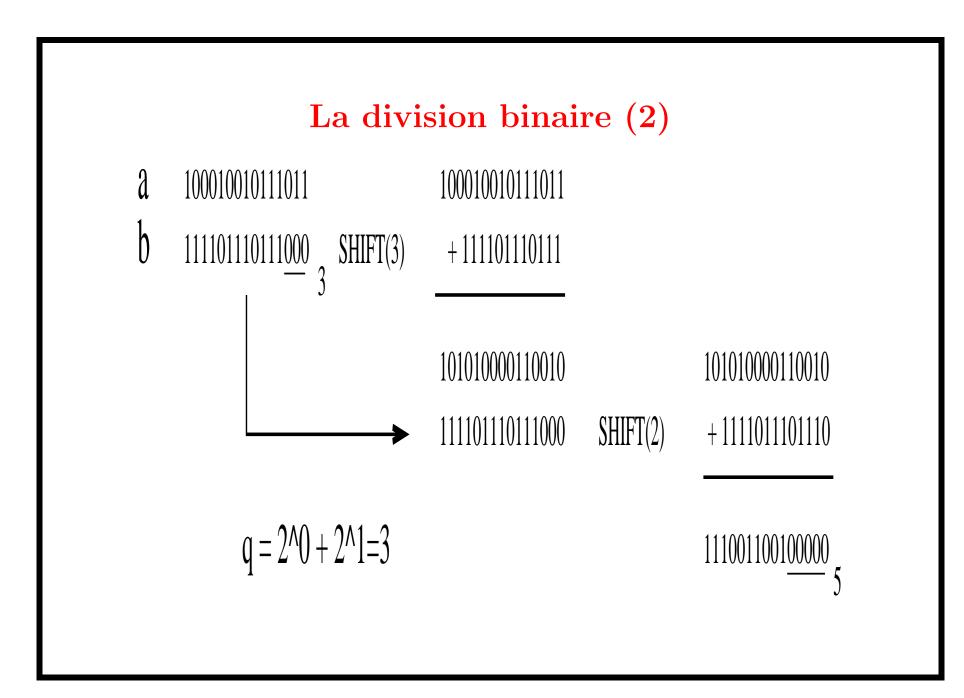
$$a = \frac{b}{2^{\nu_2(b)-\nu_2(a)}}q + r$$
, $\nu_2(r) > \nu_2(b)$, $|q| < 2^{\nu_2(b)-\nu_2(a)}$.

- Exemple: a = 157 = 10011101, b = 4 * 59 = 11101100.

$$\nu_2(b) - \nu_2(a) = 2$$

$$q = -1, \quad r = a + \frac{b}{4} = 11011000 \ (= 216)$$

$$\nu_2(r) = 3 > \nu_2(b).$$



La division binaire (3)

- Le quotient binaire de a par b est exactement

$$\frac{a}{2^{\nu(a)}} \left(\frac{b}{2^{\nu(b)}}\right)^{-1} \text{ cmod } 2^{\nu(b)-\nu(a)+1}.$$

- Calcul par itération de Newton en temps O(M(n)) (théorie).
- Calcul de q en O(n) car q = O(1) (pratique).
- Seuls les $\nu(b) \nu(a) + 1$ derniers bits non nuls de a et b importent.

L'algorithme d'Euclide binaire

Input : $a, b \in \mathbb{Z}$ avec $0 = \nu(a) < \nu(b)$.

Output:
$$g = \operatorname{pgcd}(a, b)$$
, et M t.q. $M \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} g \\ 0 \end{pmatrix}$.

- 1. Si b = 0, renvoyer a et I_2 .
- 2. q, r := Div-Bin(a, b).
- 3. $g, M := \text{Gcd-Bin}(\frac{b}{2^{\nu(b)}}, \frac{r}{2^{\nu(b)}}).$
- 4. Renvoyer g et $\frac{1}{2^{\nu(b)}}M\begin{pmatrix} 0 & 1\\ 1 & \frac{q}{2^{\nu(b)}} \end{pmatrix}$.

Un exemple

L'algorithme de Knuth (1)

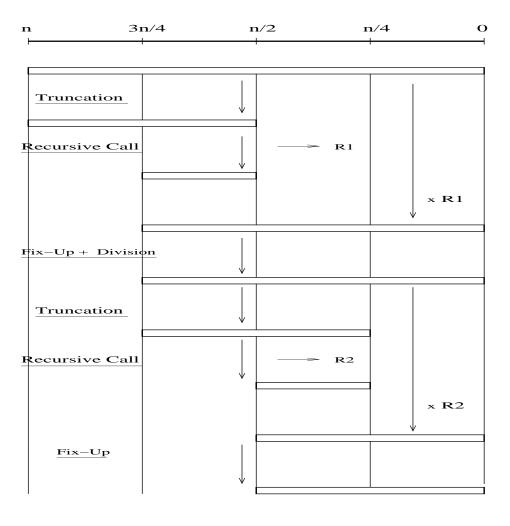
- Avec la division "standard".
- Deux remarques préliminaires :
 - 1) Stocker les restes : $O(n^2)$, stocker les quotients : O(n).
 - 2) Les k bits les plus significatifs permettent de calculer les $\approx k/2$ premiers bits de la suite des quotients.
- Algorithme de Knuth : utilisation récursive de 2) pour calculer tous les quotients et très peu de restes.
- PROBLÈME : 2) est faux si on enlève \approx .

Réparation des quotients

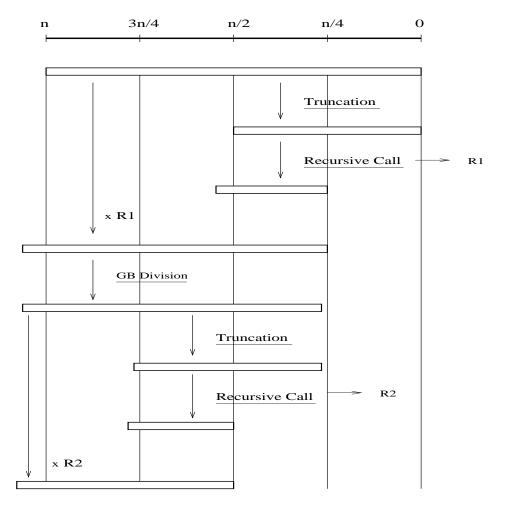
- $-a' = MSB_k(a) \text{ et } b' = MSB_k(b).$ $a', b' \longrightarrow r'_0, \dots, r'_{i+1}, \ q'_1, \dots, q'_i. \qquad a, b \longrightarrow r_0, \dots, r_{j+1}, \ q_1, \dots, q_j.$ i et j sont tels que : $\text{bits}(r'_i) \ge k/2 > \text{bits}(r'_{i+1}) \quad \text{et } \text{bits}(r_j) \ge \text{bits}(a) k/2 > \text{bits}(r_{j+1}).$ $\text{Alors } q'_1, \dots, q'_i \text{ "ressemblent" à } q_1, \dots, q_j.$
- MAIS il se peut que l'on ait :
 - 1) $j = i, q_1, \dots, q_{i-1} = q'_1, \dots, q'_{i-1}$ mais $q'_i \neq q_i$.
 - 2) j = i O(1) et $q_1, \dots, q_j = q'_1, \dots, q'_j$.
 - 3) j = i + O(1) et $q_1, \dots, q_i = q'_1, \dots, q'_i$.
 - 4) Des mélanges entre 1), 2) et 3).
 - \Longrightarrow Il existe une procédure de "réparation" des quotients, qui coûte O(M(n)), mais elle complique notablement l'algorithme.

Origine du problème propagation des retenues reduction des tailles **q**1 **q**2 etc. etc.

L'algorithme de Knuth (2)



L'algorithme récursif binaire (1)



L'algorithme récursif binaire (2)

- Droite \leftrightarrow Gauche.
- Division GB \leftrightarrow Division "standard".
- Les idées restent les mêmes sauf que :
 - 1) les bits forts sont remplacés par les bits faibles.
 - 2) les quotients calculés lors des appels récursifs sont corrects.

⇒ Il n'y a plus de procédure de réparation (Fixup).

L'algorithme récursif binaire (3)

Input:
$$a, b$$
 t.q. $0 = \nu(a) < \nu(b)$.

Output: j et R t.q. $\begin{pmatrix} c \\ d \end{pmatrix} = 2^{-j}R \begin{pmatrix} a \\ b \end{pmatrix}$, et c, d sont les

deux restes successifs de la suite des restes de a et b t.q.

$$\nu(c) \le \text{bits}(a)/2 < \nu(d).$$

- 1) $k := \lfloor \operatorname{bits}(a)/2 \rfloor$. 2) Si $\nu(b) > k$, renvoyer 0, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

 - 3) $d := \lfloor k/2 \rfloor$. 4) $a := a_1 2^{2d+1} + a_0$, $b := b_1 2^{2d+1} + b_0$ avec $0 \le a_0, b_0 < 2^{2d+1}$.
 - 5) $j_1, R_1 = \text{Half-GB-gcd}(a_0, b_0).$

$$\mathbf{6)} \left(\begin{array}{c} a' \\ b' \end{array} \right) := 2^{2d+1-j_1} R_1 \left(\begin{array}{c} a \\ b \end{array} \right).$$

- 7) Si $\nu(b') > k$, renvoyer j_1, R_1 .
- 8) $(q,r) := \mathbf{Div} \mathbf{Bin}(a',b'), \ j_0 := \nu(b').$
- 9) $d := k \nu(b')$.
- 10) $\frac{b'}{2^{\nu(b')}} := b'_1 2^{2d+1} + b'_0, \quad \frac{r}{2^{\nu(b')}} := r_1 2^{2d+1} + r_0$ avec $0 \le b'_0, r_0 < 2^{2d+1}$.
- 11) $j_2, R_2 := \text{Half-GB-gcd}(b'_0, r_0).$

12)
$$\begin{pmatrix} c \\ d \end{pmatrix} := 2^{2d+1-j_2} R_2 \begin{pmatrix} b' \\ r \end{pmatrix}$$
.

13) Renvoyer
$$j_1 + j_0 + j_2$$
, $R_2 \begin{pmatrix} 0 & 2^{j_0} \\ 2^{j_0} & q \end{pmatrix} R_1$.

Un exemple

		q	n
F	10011111011101101101		
	111101111100010011100	-3	2
	-11010001100001000	-1	1
	100000100101000100000	1	2
	1001101111110000000	1	2
	100001110011000000000	3	2
	11110001110000000000	-1	1
	100101011000000000000000000000000000000	-1	1
	101001110000000000000	-1	1
	10000100000000000000	1	1
	1100100000000000000000	-1	2
	100000000000000000	-1	1
	110000000000000000000000000000000000000	-3	2
	-10000000000000000000000000000000000000	-1	1
	100000000000000000000000000000000000000	1	1
	0		

Half-Gcd

100111110<u>11101101101</u> 111101111<u>00010011100</u>

1er appel recursif

$$\begin{array}{c|cccc}
 & 2^{-5} \begin{bmatrix} -16 & 44 \\ 28 & -13 \end{bmatrix}
\end{array}$$

1ere multiplication

100000100101000100000

 $1001\overline{1011111}0000000$

10000111001100000000

2e appel recursif

2e multiplication

11110001110000000000

Un exemple, suite

	q	n	Fast-Gcd
10011111011101101101			10011111011101101101
1111011111000100111100	-3	2	1111011111000100111100
-11010001100001000	-1	1	Half-Gcd
100000100101000100000	1	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1001101111110000000	1	2	2 628 1023
100001110011000000000	3	2	1111000111000000000
11110001110000000000	-1	1	11110001110000000000
100101011000000000000	-1	1	100101011000000000000000000000000000000
101001110000000000000	-1	1	Half-Gcd
10000100000000000000	1	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
110010000000000000000000000000000000000	-1	2	
100000000000000000000000000000000000000	-1	1	110010000000000000000
110000000000000000000	-3	2	100000000000000000000000000000000000000
-10000000000000000000000000000000000000	-1	1	ata
100000000000000000000000000000000000000	1	1	etc.
0			

Pourquoi les quotients sont-ils corrects?

Résultat 1 : Soient a, b, a' et b' tels que :

$$a' = a \mod 2^l$$
 et $b' = b \mod 2^l$,

avec $l \ge 2\nu(b) + 1$. Supposons que $0 = \nu(a) < \nu(b)$. Soient $(q, r) = \mathbf{Div} - \mathbf{Bin}(a, b)$ et $(q', r') = \mathbf{Div} - \mathbf{Bin}(a', b')$.

Alors:
$$q = q'$$
 et $r = r' \mod 2^{l-\nu(b)}$.

Pourquoi les quotients sont-ils corrects?

Résultat 2 : Soient a, b, a' et b' tels que :

$$a' = a \mod 2^{2k+1}$$
 et $b' = b \mod 2^{2k+1}$,

avec $k \ge 0$. Supposons que $0 = \nu(a) < \nu(b)$.

Soient $r_0 = a$, $r_1 = b$, r_2 , ... la suite des restes de (a, b),

et q_1, q_2, \ldots celle des quotients.

Soient $r'_0 = a'$, $r'_1 = b'$, r'_2 , ... la suite des restes de (a', b'), et q'_1, q'_2, \ldots celle des quotients.

Si r_{i+1} est le premier t.q. $\nu(r_{i+1}) > k$, alors pour tout $j \leq i$:

$$q_j = q'_j$$
 et $r_{j+1} = r'_{j+1} \mod 2^{2k+1-\nu(r_j)}$.

Taille des matrices renvoyées

- Pire cas $(n \ge 8) : \forall i, q_i = \pm 1 \text{ et } \nu(r_{i+1}) = \nu(r_i) + 1.$
- Similarité avec le pire cas pour la division standard (Fibonacci).
- Soient a et b avec $0 = \nu(a) < \nu(b)$. Si M est la matrice des quotients qui "fait gagner n bits", les coefficients de M ont au plus $n(1 + \log \frac{1 + \sqrt{17}}{4}) \approx 1.36 \cdot n$ bits.
- $-\Longrightarrow \text{Au plus } n/\log\frac{\sqrt{17}-1}{2}\approx 1.56\cdot n \text{ quotients}$ (1.44 · n pour la division "standard").

Complexité asymptotique de l'algorithme

$$-H_n = 2H_{\frac{n}{2}+1} + O(M(n)).$$

$$-H_n = 2H_{\frac{n}{2}+1} + O(M(n)).$$

$$-F_n = H_n + F_{\alpha n} + O(M(n)), \text{ avec } \alpha = \frac{1}{2}(1 + \log \frac{1+\sqrt{17}}{4}) < 1.$$

$$-\text{ D'où}: F_n, H_n = O(M(n) \log n)).$$

- Estimation heuristique du O():
 - 1) tous les quotients sont petits.
 - 2) une matrice qui fait gagner k bits a des coefficients de taille $\approx k$.

$$\implies G_n \approx \frac{17}{4}M(n)\log n.$$

Optimisations pratiques

- Calculer plusieurs petits quotients à la fois pour "remplir" un mot machine, en n'utilisant que deux mots machines des restes.
- Dans **Half-Gcd**, renvoyer les restes courants en plus de la matrice.
- Lors des appels à **Half-Gcd** au sommet de la récursion, ne renvoyer que les restes courants.
- Pour Karatsuba et Toom-Cook, changer **Half-Gcd** pour annuler γn bits au lieu de n/2 (avec γ à optimiser).

Benchmarks

" F_n ": Test avec les Fibonacci consécutifs F_{n-1} et F_n .

" G_n ": Idem pour un pire cas de la division binaire.

type, n	Magma V2.10-12	Mathematica 5.0	Fast-GB-gcd (GNU MP)
$F_n, 10^6$	2.89	2.11	0.70
$F_n, 2 \cdot 10^6$	7.74	5.46	1.91
$F_n, 5 \cdot 10^6$	23.3	17.53	6.74
$F_n, 10^7$	59.1	43.59	17.34
$G_n, 5 \cdot 10^5$	2.78	2.06	0.71
$G_n, 10^6$	7.99	5.30	1.94