

Lattice Reduction: Problems and Algorithms

Damien STEHLÉ

Pythagorion, Samos, Greece

http://www.loria.fr/~stehle/
 stehle@loria.fr

- Mathematical definitions: lattices, lattice invariants, reduction.
- Algorithmic lattice problems: γ -SVP, γ -CVP.
- Lattice algorithms: Gauss, LLL, BKZ.
- Practical lattice reduction.

- Great tool for cryptanalysis.
- Interesting for building cryptosystems.
- Computer algebra: factorization of polynomials over \mathbb{Z} .
- Algorithmic number theory: ideals in number fields, small roots of polynomials, minimal polynomials ...

A lattice is a discrete subgroup of a Euclidean space.

- Euclidean space: we are living in \mathbb{R}^n .
- Subgroup: 1) $\mathbf{b} \in L \Rightarrow -\mathbf{b} \in L$, 2) $\mathbf{b}_1, \mathbf{b}_2 \in L \Rightarrow \mathbf{b}_1 + \mathbf{b}_2 \in L$.
- Thus: $\mathbf{0} \in L$, and L is stable by linear integer combinations.
- Discrete: no accumulation point,

i.e., there is a small open ball containing only $\mathbf{0}$.

First examples.

- Simplest non-trivial example: $\mathbb{Z} \subset \mathbb{R}$.
- Quite simple too: $\mathbb{Z}^d \subset \mathbb{R}^n$ with $d \leq n$.
- Any subgroup of $\mathbb{Z}^d \subset \mathbb{R}^n$ with $d \leq n$.

• $\mathbf{b}_1, \ldots, \mathbf{b}_d$ is a lattice basis. It is not unique.

The second definition is not always the good one.

Let $A = (a_{i,j})_{i,j}$ be an $n \times m$ matrix of integers with n < m. Consider the system of integer equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,m}x_m = 0$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,m}x_m = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,m}x_m = 0$$

The set of solutions (x_1, \ldots, x_m) is a lattice L. If the rows of A are linearly independent, dim(L) = m - n.

12/05/2005

Lattice minima: $\lambda_i(L)$.

- There exists a shortest non-zero vector, its length is $\lambda_1(L)$.
- For $i \leq d$, $\lambda_i(L)$ is the minimum radius r for which $B(\mathbf{0}, r)$ contains i linearly independent lattice vectors.
- Fact: there exist linearly independent vectors reaching the λ_i 's.

- A reduced basis is made of rather orthogonal and short vectors.
- What would be the best definition?
- A basis reaching the λ_i 's? Not always possible when $d \ge 5$:

 $\forall i, \lambda_i = 2$, but any basis made of norm-2 vectors is orthogonal.

- Several definitions to work around the failure of the natural one.
- A basis is reduced if the lengths of its vectors are close to the λ_i 's.
- Minkowski, Hermite-Korkine-Zolotarev: very strong reductions.
- LLL, BKZ: weaker definitions, but easier to get.

The shortest vector problem: SVP.

- Given a basis of L, compute a vector of length $\lambda_1(L)$.
- γ -SVP: Compute a vector of length $\leq \gamma \cdot \lambda_1(L)$.
- Expected solution: a vector of length $\approx \det(L)^{1/d}$.
- If λ_1 is much shorter than this, it might be easier.

Effective Minkowski theorem problem: EMTP.

- EMTP: Compute a lattice vector **b** with $\|\mathbf{b}\| \leq \sqrt{n} \cdot \det(L)^{1/d}$.
- γ -EMTP: Compute a lattice vector **b** with $\|\mathbf{b}\| \leq \gamma \cdot \det(L)^{1/d}$.
- γ -EMTP2: Compute a lattice basis $(\mathbf{b}_1, \dots, \mathbf{b}_d)$ with $\|\mathbf{b}_1\| \dots \|\mathbf{b}_d\| \leq \gamma \cdot \det(L)$.

The closest vector problem: CVP.

- Given a basis of L and a vector t of the embedding space, compute a lattice vector closest to t.
- γ -CVP: Given a basis of L and a target vector \mathbf{t} , compute a lattice vector \mathbf{b}_0 such that $\|\mathbf{b}_0 \mathbf{t}\| \leq \gamma \cdot \min_{\mathbf{b} \in L} \|\mathbf{b} \mathbf{t}\|$.

More on CVP.

- A "general" solution should be at distance $det(L)^{1/d}$ of t.
- Intuition of the difficulty: Consider $\mathbf{t} = (1/2, \dots, 1/2)$ and slightly shake \mathbb{Z}^d . Which one of the 2^d vertices is the solution?
- CVP is considered harder than SVP.

- Gauss (Lagrange?) algorithm solves everything.
- Vectorial generalization of Euclid's algorithm.
- Running time: $O(\log^2 B)$, where $B = \max(\|\mathbf{b}_1^{init}\|, \|\mathbf{b}_2^{init}\|)$.
- Algorithm: shorten the long vector by adding to it an integer multiple of the short one, until this is possible.

- Suppose we want a *d*-dimensional HKZ-reduced basis.
- For small d, exponential algorithms remain feasible.
- Algorithms: Kannan, Ajtai-Kumar-Sivakumar.
- SVP and CVP solved in practice up to dimension $\approx 25 30$.

12/05/2005

Quoting Shoup's NTL documentation.

"I think it is safe to say that nobody really understands how the LLL algorithm works. The theoretical analyses are a long way from describing what "really" happens in practice. Choosing the best variant for a certain application ultimately is a matter of trial and error."

Lattices arising in real life (1/2).

- Small-dimensional lattices (e.g., in Wiener's attack).
- Knapsack-like lattices (knapsacks):

with rather large X_i 's, and a large d (100-200).

Sometimes LLL suffices, but BKZ is usually required.

Coppersmith-type lattices: very large entries, medium dimension (70), LLL suffices.

Lattices arising in real life (2/2).

NTRU-like lattices: small entries (< 10 bits), very large dimension (167-503), very good reduction is required.

1	0	•••	0	h_0	h_1	•••	h_{n-1}	
0	1	•••	0	h_1	h_2	•••	h_0	
:	:	·	:	÷	÷	·.	÷	
0	0	•••	1	h_{n-1}	h_0	•••	h_{n-2}	
0	0	•••	0	q	0	•••	0	_
0	0	•••	0	0	q	•••	0	
:	:	·	:	÷	÷	·.	:	
	$ \begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \vdots \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

What can one do in practice?

- Complete (KZ) reduction in low dimensions: $d \le 25$ to 30.
- LLL-reduction of large lattices ($d \le 1000$). Knapsack-type lattice with d = 121 and $\log B = 29000$: 15 min. Knapsack-type lattice with d = 50 and $\log B = 100000$: 6 min.
- BKZ₃₀ in dimension ≤ 300 takes some time but should terminate.

• Yet much remains unknown about its behavior.

- Comprehension of the practical behavior of LLL and BKZ.
- Faster lattice reduction algorithms.
- An efficient algorithm solving Poly(d)-SVP.

- Siegel, Lectures on the Geometry of Numbers.
- Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity.
- Cohen, A Course in Computational Algebraic Number Theory.
- Micciancio & Goldwasser:

Complexity of Lattice Problems, A Cryptographic Perspective.