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Give some important ideas about lattice algorithms;
Strong focus on lattice basis reduction;
Some (sketches of) proofs;

but primarily ideas.
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Introduction

Lattice basis reduction — general issues

Lattice basis reduction — “optimal” algorithms
Lattice basis reduction — “blockwise” algorithms
Approximate and exact algorithms for SVP / CVP
Application : Coppersmith’s method
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Introduction (2)

Natural problems (linear problems in integers). Eg. Knapsack
application:

® x1,...,% €N M =31, ¢ix;, find (¢;) € {0,1}" ;
@ NP-complete ;
L generated by the columns of

1 0 ... 0 O

0o 1 ... 0 O
M — ) ) )

0 O 1 0

X1 Xo ... xp —S

o If n S Zn+11 M77 = (7717 o 777n—1u77n727:1 nixXi — 77n+15)t-
@ A short vector in L is Mn for nj = €j, npy1 =1 ;
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@ ... but lattice problems are hard:

s SVP NP-hard under randomized reductions (even with almost
poly approx factor);

@ CVP NP-hard (same) ;

@ BDD NP-hard for r = ¢ - A(L).

@ = approximation algorithms, exponential algorithms.

@ Lattice basis reduction.
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l. 1. Generalities on lattice basis reduction
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Lattice basis reduction - Gram-Schmidt process

@ £ =<by,...,bi_1 >, ﬂ-Eil'
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Lattice basis reduction - Gram-Schmidt process

o £ :=<by,...,bj_1 >, TEL.
o Put b;-k =b; — Zj<,-,u,-jb}k = 7TE;_(b;).
o pyj = (bi, b))/ b1,
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Lattice basis reduction

@ What is a good basis?
@ Geometrically: almost orthogonal;
@ Small orthogonality defect:

oD = H7:1 ”bIH _ H:'v:l ||bl|| >
- IT bl detL —

o ||bf|| decreases slowly with i.

@ Algorithmically: short vectors;

o Length defect: LD; := %
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Lattice basis reduction

What is a good basis?
Geometrically: almost orthogonal;
@ Small orthogonality defect:

oD = H7:1 ”bIH _ H:'v:l ||bl|| >
- IT bl detL —

o ||bf|| decreases slowly with i.

@ Algorithmically: short vectors;
o Length defect: LD; := %

o Hermite factor: HF := | by||/(det L)/,
e SVP approximation factor: || b1]|/A1(L)

Algebraically, U € GL,(Z) st. MU is “small”.

~ preprocessing of the lattice.
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Lattice basis reduction — Example

1 00 00 O0 0 O O 7038304916
01 00 0O0O0O 0 6175729875
0 01 00 0 OO0 O 9983710959
0 001 O0O0O0O0 0 9161878375
0 00 010 0 0 0 9322349340
0 000 O0O1O0 0 0 9870475629
0 00 0O O0OOT1O0 0 6280159867
0 00 0O O0OOOT1 0 2020850175
0 00 0O O0OOOO 1 893775148
0 00 0O OO0 OO0 0 37842496080
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Lattice basis reduction — Example

After LLL reduction

2 -11 5 1 2 3 1 0 5
-3 6 0 0 8 5 -3 1 3 -3
1 2 0 1 -4 -5 -7 5 4 6
2 -6 4 3 0 0 1 3 5 -3
-4 -1 -5 2 2 -2 5 -2 0 -3
7T -3 4 1 1 -2 -4 1 4 3

o 3 -4 -3 -3 7 1 4 -4 0
0 -4 4 1 4
-3 -1 3 3 4
3 0 -4 7 O
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Lattice basis reduction

Relationship “orthogonal < short”
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Lattice basis reduction

Relationship “orthogonal < short” through

@ Minkowski's second thm :

det L < [JAi(L) < vn"det L,
i=1

since OD/[[LD; = [[7_; Ni(L)/ det L.
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Lattice basis reduction

Relationship “orthogonal < short” through

@ Minkowski's second thm :

det L < [JAi(L) < vn"det L,
i=1
since OD/[[LD; = [[7_; Ni(L)/ det L.
@ Recall A(L) > min; ||b}];
o HE" =TIy l[ball/ 1171
Reduction notion: quantitative version of all these.
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Lattice basis reduction — notations

Notations :
@ L a n-dim. lattice of R", basis (b1,..., bp);
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Lattice basis reduction — notations

Notations :
@ L a n-dim. lattice of R", basis (b1,..., bp);
o (u,v) = Zlgign ujvi;
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Lattice basis reduction — notations

Notations :
@ L a n-dim. lattice of R", basis (b1,..., bp);
o (u,v) = Zlgign ujvi;
@ vollL := \/det((bj, b;)) = | det(b;)|;
@ || - || is the Euclidean norm, ||x|| = (x,x)¥?;

@ size of the basis = = log maxi<j<p || bi|
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Lattice basis reduction — general strategy

To make b; small and orthogonal :
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Lattice basis reduction — general strategy

To make b; small and orthogonal :
o |[bill* = lIbFII* + IIbi — b I
e Work on 7, 1 (bj,..., b,) to improve ||b¥].

@ Make second term small = size reduction :
o Find x € L,' = Zbl +-- -—l—Zb,',l close to b,‘ — bl*, b,‘ — b,'—X.
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Lattice basis reduction — general strategy

To make b; small and orthogonal :
o |Ibill* = IIb; 1% + Ilbi — b7||%;
e Work on 7, 1 (bj,..., b,) to improve ||b¥].
@ Make second term small = size reduction :
o Findxe€ L;:=7Zby+---+ Zbj_1 close to b; — bl*, b; <+ b; — x.
@ ~ (approx-)CVP.
General philosophy:
@ size-reduction + reduce projected sublattices;

@ ... propagate these reductions on the whole lattice.
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Lattice basis reduction — size reduction

Common feature to all lattice basis reduction algorithms.
® Find x € L; := Zby + - - - + Zb;_1 close to t := b; — b};
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Lattice basis reduction — size reduction

Common feature to all lattice basis reduction algorithms.
® Find x € L; := Zby + - - - + Zb;_1 close to t := b; — b};
© Want w1 (t) close to Zbj_;, ~ tj_1bj_;

@ and t — tj_1bj_q1 close to Zby + -+ -+ Zb;_»
o Repeat with t — t;_1b;_1 until i = 0.
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Lattice basis reduction — size reduction

Common feature to all lattice basis reduction algorithms.
® Find x € L; := Zby + - - - + Zb;_1 close to t := b; — b};
© Want w1 (t) close to Zbj_;, ~ tj_1bj_;
@ and t — tj_1bj_q1 close to Zby + -+ -+ Zb;_»
o Repeat with t — t;_1b;_1 until i = 0.
Algorithm:
@ For j from i — 1 downto 1 do
o bj < bj — |pilb;
o For k from 1toj—1do
O Hik = ik — XjHjk
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Lattice basis reduction — a panorama

Strong notions
@ Minkowski: b; shortest possible;

@ HKZ (Hermite-Korkine-Zolotarev):

o by shortest possible = A (L)
o size-reduced
e 7y, (b2, ..., bn) HKZ reduced

(Very) costly notions, 2°(") for HKZ.
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Lattice basis reduction — a panorama (2)

Weaker / cheaper : blockwise algorithms :
@ Use k-dim. HKZ to reduce projections of sublattices;
@ size-reduced;
o (167 > a6}l
Main examples:
o LLL: ar = 2/\/§ :
o slide, BKZ: oy ~ k¥/k;
@ Hermite factor HF = \/a_k"_l;
@ Approx-SVP = az_l.
Polynomial time up to k = O(log n).
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l. 2. Lattice basis reduction — algorithms
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Lattice basis reduction — outline

@ Case d = 2, Gauss' algorithm.
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e HKZ
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Lattice basis reduction — “optimal” algorithms

Case d = 2, Gauss' algorithm.

Size-reduce + swap.
ai

an

Lattice algorithms 18/03/2013 25/90



Lattice basis reduction — “optimal” algorithms

Case d = 2, Gauss' algorithm.
Size-reduce + swap.

Lattice algorithms 18/03/2013 25/90



Lattice basis reduction — “optimal” algorithms

Case d = 2, Gauss' algorithm.
Size-reduce + swap.
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,
Q [[b1]| = A1(L), [|b2]l = A2(L)
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,

Q [[br]l = Ai(L), [[b2] = Aao(L)

Q ||b3]l > V3/2|bi]]

Q in time O(max(||ul],[|v])?).
Proof (sketch).
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,
Q [[baf = Au(L), [[b2] = Aa(L)
Q ||b3]l > V3/2|bi]]
Q in time O(max(||ul],[|v])?).
Proof (sketch).
o flut VI = V]2 = I(u,v)] < ull2/2.
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,
Q [[baf = Au(L), [[b2] = Aa(L)
Q ||b3]l > V3/2|bi]]
Q in time O(max(||ul],[|v])?).
Proof (sketch).
o [l vI2 > V]2 = [(u, V)] < lulP/2
o If [aw + | < [lul?, we get

(0 = JafB| = ull* + B2|[v|[* < 0
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (v, v), Gauss algorithm returns (by, by)
st.

Q@ Zu—+ Zv = Zby + Zb,,
Q [[baf = Au(L), [[b2] = Aa(L)
Q ||b3]l > V3/2|bi]]
Q in time O(max(||ul],[|v])?).
Proof (sketch).
o [l vI2 > V]2 = [(u, V)] < lulP/2
o If [aw + | < [lul?, we get

(0 = JafB| = ull* + B2|[v|[* < 0

hence (o — 8)? + |aB] — 1 < 0.
Lattice algorithms 18/03/2013



Lattice basis reduction — “optimal” algorithms

Complexity of Gauss’ algorithm (sketch):

o Current step # (v, V') + (v £ u, u);
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Lattice basis reduction — “optimal” algorithms

Complexity of Gauss’ algorithm (sketch):
o Current step # (v, V') + (v £ u, u);
@ Otherwise, ||u/||? < ||v||?/3
® = logarithmic number of steps
@ Cost of one step O(log ||vi||(log ||u;||||vi|| — log ||ui||? + 1))

@ Overall cost

> Olog ||vil(log || vi[| — log |us| + 1))

1

A quasi-linear time variant (similar to fast gcd) exist.
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Lattice basis reduction — “optimal” algorithms

Summary of Gauss' algorithm:

© Start with any (u, v) linearly independent;
@ Return (by, by) s.t. ||b3| > v/3/2|b%]|
© Complexity quadratic (quasi-linear)

NB. (2) is a worst case profile.
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Lattice basis reduction — HKZ reduction

@ (b1,...,bn) HKZ reduced :
o [|baf| = Au(L);
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Lattice basis reduction — HKZ reduction

@ (b1,...,bn) HKZ reduced :
o [1bell = Ma(L);
@ size-reduced;
o (b, ..., by) again size-reduced.
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Lattice basis reduction — HKZ reduction

@ (b1,...,bn) HKZ reduced :
o ||l = Ad(L);
@ size-reduced;
o (b, ..., by) again size-reduced.
Remarks:
@ Need SVP oracle;
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Lattice basis reduction — HKZ reduction

o Let e = SVP(L).

Lattice algorithms 18/03/2013 30/90



Lattice basis reduction — HKZ reduction

o Let e = SVP(L).
o (e, en,...,e,) < Basis(ey, b1,...,bp);

Lattice algorithms 18/03/2013 30/90



Lattice basis reduction — HKZ reduction

o Let e = SVP(L).
o (e, en,...,e,) < Basis(ey, b1,...,bp);
@ get T with (WLIL(eg), . ,WLll(en)) - T HKZ-reduced;

Lattice algorithms 18/03/2013 30/90



Lattice basis reduction — HKZ reduction

o Let e = SVP(L).
o (e, en,...,e,) < Basis(ey, b1,...,bp);
@ get T with (WLIL(eg), . ,WLll(en)) - T HKZ-reduced;

@ Size-reduce ey, (ez,...,e,)T.
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Lattice basis reduction — HKZ reduction

Let e = SVP(L).
(e1,€,...,ey) < Basis(ey, by, ..., by);
get T with (WLIL(eg), . ,WLll(en)) - T HKZ-reduced;

Size-reduce eq, (e2,...,e,)T.

Return product of transformation matrices of step 2, 3, 4.
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (eq,...,e,), HKZ algorithm returns
(bl, ceey b,,) st.

Q Zby+...Zb, = Zey + - - + Zey,
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Theorem. Starting with (e, ..., e,), HKZ algorithm returns
(bl, ceey b,,) st.

Q Zbi+ ... Zby, =Zey+ -+ ZLep,

Q [[b1] = Ai(L)

Q |[|ba]|/||b3|| = O(nllogm/4+1/2)
Q in time 201
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Lattice basis reduction — “optimal” algorithms

Analysis:
Theorem. Starting with (e, ..., e,), HKZ algorithm returns
(bl, ceey b,,) st.

Q Zbi+ ... Zby, =Zey+ -+ ZLep,

Q [[b1] = Ai(L)

@ [[ball/|Ib3]l = O(nllosm/4+1/2)
Q in time 201
More generally, (3) implies:

167 ]| ~ exp(log?(n — i +1)/4) | by .

Proof: tedious manipulation of Minkowski's inequalities.
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Lattice basis reduction — blockwise algorithms overview

General strategy :
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Lattice basis reduction — blockwise algorithms overview

General strategy :
@ Use a “dim k"-oracle : Gauss (k = 2), or HKZ (bounded k,
or k ~ log n);
@ Use dim k-oracle over 7, 1 (bj41,...,bjik), for some values of
Ji '
@ Choosing j: adaptive versions / non-adaptive ones
@ Halting criterion = no room for foreseeable improvement.

@ ... hence FLf(be’ ..., bjtk) almost HKZ-reduced for all j

@ ... hence bounds on ||b}||.

Lattice algorithms 18/03/2013 32/90



Lattice basis reduction — blockwise algorithms, history

@ LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful
position);
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@ Schnorr semi-2¢ (1987) : k = 2¢, HKZ, adaptive (j = smallest
useful multiple of ¢) ;

@ Schnorr-Euchner's BKZ (1994) : k = ¢, HKZ, non adaptive
(j = step modn).
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Lattice basis reduction — blockwise algorithms, history

@ LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful
position);

@ Schnorr semi-2¢ (1987) : k = 2¢, HKZ, adaptive (j = smallest
useful multiple of ¢) ;

@ Schnorr-Euchner's BKZ (1994) : k = ¢, HKZ, non adaptive
(j = step modn).

@ Slide-reduction (Gama-Nguyen, 2008) : HKZ, adaptive, more
involved.
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Lattice basis reduction — LLL reduction

[LLL82] A basis (b1, ..., bp) is d-LLL reduced (¢ < 1) iff.
Q (b1,...,bn) is size-reduced
Q 7,1 (bi, bi+1) is almost Gauss-reduced.
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Lattice basis reduction — LLL reduction

[LLL82] A basis (b1, ..., bp) is d-LLL reduced (¢ < 1) iff.
Q (b1,...,bn) is size-reduced
Q 7,1 (bi, bi+1) is almost Gauss-reduced.

(2) (with (1)) < Lovasz' condition

Iy (biva)l®
= |bfs + pirnyibi I
= |67l +N%i+1)i||b;')<”2a

o167 11®

IN

Lattice algorithms 18/03/2013 34/90



Lattice basis reduction — LLL reduction

[LLL82] A basis (b1, ..., bp) is d-LLL reduced (¢ < 1) iff.
Q (b1,...,bn) is size-reduced
Q 7,1 (bi, bi+1) is almost Gauss-reduced.

(2) (with (1)) < Lovasz' condition

Iy (biva)l®
= |bfs + pirnyibi I
= |67l +N%i+1)i||b;')<”2a

o167 11®

IN

Weaker Siegel condition
(O = 1/8617 < 1bFal*

Geometric decrease, v = /6 — 1/4 < /3/2.
Lattice algorithms 18/03/2013



Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.

Q /j«+1
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q /j«+1
Q@ While j < n—1do
Q Ifm . 1(bj),7rL; 1(ij) (almost) reduced, then j < j +1
J— J—
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q1
Q@ While j < n—1do
Q If ﬂLﬁl(bj),ﬂLﬁl(ij) (almost) reduced, then j < j +1
Q else Reduce (ﬂLf__l(bj),ﬂLjJ__l(ij,_l)), Jj—j—1
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q1
Q@ While j < n—1do
Q If ﬂLﬁl(bj),ﬂLﬁl(ij) (almost) reduced, then j < j +1
Q else Reduce (ﬂLf__l(bj),ﬂLjJ__l(ij,_l)), Jj—j—1
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q1
Q@ While j < n—1do
Q If ﬂLﬁl(bj),ﬂLﬁl(ij) (almost) reduced, then j < j +1
Q else Reduce (ﬂLf__l(bj),ﬂLjJ__l(ij,_l)), Jj—j—1
© End do.
@ Size-reduce the basis.
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q1
Q@ While j < n—1do
Q If ﬂLﬁl(bj),ﬂLﬁl(ij) (almost) reduced, then j < j +1
Q else Reduce (ﬂLf__l(bj),ﬂLjJ__l(ij,_l)), Jj—j—1
© End do.
@ Size-reduce the basis.

Actual LLL :

@ Reduce — one Gauss step, i.e. size-reduce + swap
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Lattice basis reduction — LLL algorithm

Adaptive, oracle = Gauss.
Q1
Q@ While j < n—1do
Q If ﬂLﬁl(bj),ﬂLﬁl(ij) (almost) reduced, then j < j +1
Q else Reduce (ﬂLf__l(bj),ﬂLjJ__l(ij,_l)), Jj—j—1
© End do.
@ Size-reduce the basis.

Actual LLL :
@ Reduce — one Gauss step, i.e. size-reduce + swap

o Full size-reduction of b; wrt by, ..., bj_; after each Gauss
step.

Lattice algorithms 18/03/2013 35/90



Lattice basis reduction — A typical LLL execution
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Lattice basis reduction — LLL theorem

Theorem. On input E = (ey,. .., e,) of size 3, the §-LLL
algorithm computes a § — LLL reduced basis (b1, ..., bp) in time
O(n?p) steps of cost O(n*(3 + log n)?) such that

o [[bF[l = /0 — 1/4[b}_4l,
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algorithm computes a § — LLL reduced basis (b1, ..., bp) in time
O(n?p) steps of cost O(n*(3 + log n)?) such that

o [[bF[l = /0 — 1/4[b}_4l,

o (approx-SVP) ||by|| < (6 — 1/4)("=D/2 X (L),
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Lattice basis reduction — LLL theorem

Theorem. On input E = (ey,. .., e,) of size 3, the §-LLL
algorithm computes a § — LLL reduced basis (b1, ..., bp) in time
O(n?p) steps of cost O(n*(3 + log n)?) such that

o |67l = /& — 1/4][bi_4l,
o (approx-SVP) [|by|| < (8 — 1/4)""D/2 x(L),
o (Hermite factor) HF < (§ — 1/4)("=1/4,

= Can solve gap-SVP with gap 2°0(").
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Lattice basis reduction — LLL theorem

Proof. Want to prove:

Q I67]| = /6 — 1/4(|b;_4]|
@ (approx-SVP) ||by| < (6 — 1/4)"1/2 \y (1)
© (Hermite factor) ||by|| < (6 — 1/4)(" D/ det L
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Lattice basis reduction — LLL theorem

Proof. Want to prove:

Q I67]| = /6 — 1/4(|b;_4]|
@ (approx-SVP) ||by| < (6 — 1/4)"1/2 \y (1)
© (Hermite factor) ||by|| < (6 — 1/4)(" D/ det L

@ First one follows by algorithm;
@ 2.: A(L) > mini<i<n ||6F;
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Lattice basis reduction — LLL theorem

Proof. Want to prove:

Q I67]| = /6 — 1/4(|b;_4]|
@ (approx-SVP) ||by| < (6 — 1/4)"1/2 \y (1)
© (Hermite factor) ||by|| < (6 — 1/4)(" D/ det L

@ First one follows by algorithm;
@ 2.: A(L) > mini<i<n ||6F;

o Third one : ||bE[| < /6 —1/4 [|bF||
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Lattice basis reduction — complexity

@ When swap
(b}, bi1) = (bis1, bi) = b = WL,i_l(bi) = bi\q + pit1,ib}

1
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Lattice basis reduction — complexity

@ When swap
(b, biy1) = (bia, bi) = bi" = w1 (bi) = bfyy + piva,ib}
o Hence [|b"[[2 < 8|
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Lattice basis reduction — complexity

@ When swap
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@ Hence ||b;"||* < 4]|b; .
o Put V =TJ", det(by,..., b;)?
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Lattice basis reduction — complexity

@ When swap

(b, b;_,_l) — (bit1, bi) = bﬁ* = WLiL_l(bi) = by + piy1,ib;
@ Hence ||b;"||* < 4]|b; .
o Put V =TJ", det(by,..., b;)?

@ One has
V= det(bl, ..., bi_1, b:)2

o det(b17~~'7bl—17bl)2

@ hence
VIV = 167112/ 116117 < 6

o VeZ=logVy/logd steps;
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Lattice basis reduction — complexity

@ When swap

(b, b;_'_l) — (bit1, bi) = bﬁ* = WLiL_l(bi) = by + piy1,ib;
@ Hence ||b;"||* < 4]|b; .
o Put V =TJ", det(by,..., b;)?

@ One has

Vi det(by, ..., bi_1,b)>
o det(b17”‘7bl—17bl)2

@ hence
VIV = 167112/ 116117 < 6

o VeZ=logVy/logd steps;
o But Vo < TJ, ||bi]|2("=*1) (Hadamard bound)
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Lattice basis reduction — complexity

@ When swap
(B biyq) = (biyy, bi) = b = w1 (bi) = by + pira,ib]

o Hence [|b1"| < o] b¢ 7.
o Put V =TJ", det(by,..., b;)?

@ One has
V= det(bl, ..., bi_1, b:)2
det(bl, ..., bi_1, b,‘)2
@ hence
V!V = |62 /1167 |1 < 6
o VeZ=logVy/logd steps;

But Vo < [17, IIbi]|2"~"*1) (Hadamard bound)
Thus O(n? log max || b;||) steps.
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@ One has
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@ hence
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Cost : O(n3) steps; cost of one step — close to GSO cost?

@ Rational arithmetic = control denominators;
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Cost : O(n3) steps; cost of one step — close to GSO cost?
@ Rational arithmetic = control denominators;
) b;-k = b; + Zj<,-yjbj.
© (b, bj) + > k< yi(bk, bj) = 0 (= (b}, bj))
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Cost : O(n3) steps; cost of one step — close to GSO cost?

@ Rational arithmetic = control denominators;
® (bi,bj) + > ki yk(bk, b)) =0 (= (b, by))
® .. hencey = —B! b;j/det Bl |Bj_1

18/03/2013  [IEYED)



Cost : O(n3) steps; cost of one step — close to GSO cost?

(]

Rational arithmetic = control denominators;
bf = bi + > ;. yibj.

(bi, bj) + > ke Yk(bi, b)) = 0 (= (b}, b))
... hence y = —B} ;b;/det Bf | Bj_1

Denominators = O(3"2") (works for 1 too).

e © ¢ ¢
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Cost : O(n3) steps; cost of one step — close to GSO cost?

(]

Rational arithmetic = control denominators;
bf = bi + > ;. yibj.

(bi, bj) + > ke Yk(bi, b)) = 0 (= (b}, b))
... hence y = —B} ;b;/det Bf | Bj_1

Denominators = O(3"2") (works for 1 too).

e © ¢ ¢ ¢

where (' is the largest ||b;|| throughout the algorithm;
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Cost : O(n3) steps; cost of one step — close to GSO cost?
@ Rational arithmetic = control denominators;

bf = bi + > ;. yibj.

(bi, bj) + > ke Yk(bi, b)) = 0 (= (b}, b))

... hence y = —B} ;b;/det Bf | Bj_1

Denominators = O(3"2") (works for 1 too).

(]

where (' is the largest ||b;|| throughout the algorithm;
can prove ' = O(log n+ 3)
@ Overall O(n?- n?(log n+ 3)?) = O(n*B?) in the typical case
B > log n.
Total cost : O(n°33).
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Lattice basis reduction — LLL, recent progresses

@ Floating-point GSO;

@ Quasi-linear LLL.
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Floating-point GSO :

@ GSO expensive (big rational / integer computations);
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Lattice basis reduction — LLL, recent results
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Lattice basis reduction — LLL, recent results

Floating-point GSO :
@ GSO expensive (big rational / integer computations);
@ Need little information (|uil);
@ Use approximation / floating-point computations;
@ ... but numerically unstable.
@ Recompute GSO when instability is detected;
@ Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision
O(d), giving a cost O(d*3(d + f3)).
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Lattice basis reduction — LLL, recent results

Quasi-linear LLL :

@ Novocin-Stehlé-Villard, inspired of fast gcd — might be
practical;

@ H.-Pujol-Stehlé, using BKZ analysis and fast Gauss' algorithm;

@ Schnorr, choosing best index j for LLL at each step + fast
Gauss.

Theorem (Novocin-Stehlé-Villard). almost-LLL can be done in
time O(n°B + n*+1p).
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Lattice basis reduction — LLL in practice

@ (old) Folklore: LLL performs better than analysis;
@ Often finds first minimum.
Thorough experimental studies by Nguyen and Stehlé (2007).
@ In small dimensions < 20, it works more or less;
@ Otherwise, SVP approx factor ~ (1.04)".

@ Analysis is sharp.
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Lattice basis reduction — BKZ

(b1,...,bpn)is k-BKZ reduced if:
@ (b1,...,by) size-reduced,;
@ Forall i, m 1 (bi, ..., bmin(n,i+k—1)) is HKZ-reduced.

Use a k-HKZ oracle.
Theorem(Schnorr, 1994) If (b, ..., bp) is k-BKZ reduced, then

o [|bi]l < kFTEBN(L).
o ||b|| < KETA(L).

o HF < VK1,
Proof. Combine Minkowski inequalities over projected sublattices.
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Lattice basis reduction — BKZ, algorithmic aspects

Strategies :
@ LLL-like: HKZ-reduce at the smallest possible /;
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Lattice basis reduction — BKZ, algorithmic aspects

Strategies :

@ LLL-like: HKZ-reduce at the smallest possible /;

@ Schnorr-Euchner: reduce at1,2,3,...,n—k+1,1,2,3,....
Cost :

@ LLL-type arguments do not seem to work;

@ hard to control a potential when reduction occurs;

@ Does the LLL strategy even terminate?

@ Schnorr-Euchner behaves well in practice, can prove 20(")
bound.

Lattice algorithms 18/03/2013 46/90



Lattice basis reduction — BKZ, algorithmic aspects

A dual strategy :

@ Stop after a polynomial number of steps;
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Lattice basis reduction — BKZ, algorithmic aspects

A dual strategy :
@ Stop after a polynomial number of steps;

@ ... but what is the quality of the basis?
3
Theorem. After O (%(Iogn—i— log Iogﬁ)) calls to HKZ, BKZ
returns a basis (b1, ..., b,) of L such that:

n—1
by < 2KZE T3 (det L)L/
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Lattice basis reduction — BKZ, a picture

Progress made during the execution of BKZ

Quality of BKZ output
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Lattice basis reduction — BKZ, a picture

Progress made during the execution of BKZ
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Lattice basis reduction — BKZ, analysis

@ |dea: sandpile model;
o Let x; := log ||b}]|.

X1 X2 X3 X4 X5 X6 X7 X8 X9
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Lattice basis reduction — BKZ, analysis

@ |dea: sandpile model;

o Let x; := log ||b}]|.
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BKZ's sandpile as a dynamic system

X1 X2 X3 X4 X5 X X7 X8 Xo
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X = (x1,.,xn)"
Xos +— A1 X
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BKZ's sandpile as a dynamic system

L X = (x1,.,xn)"
S Xos  AX
— X1+ A X+
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BKZ's sandpile as a dynamic system

— X = (x1,.,x0)"
] X0.5<—A1X

. — X1+ A X+

] Xo — A X1+ 1>

X1 X2 X3 X4 X5 X X7 X8 Xo
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BKZ's sandpile as a dynamic system

— X = (x1,.,xn)"
] Xos +— A1 X

] X1+ A X+
Xo — A X1+ 1>

Xj=AiX;+ 1T
with j=n—k+1

X1 X2 X3 X4 X5 X X7 X8 Xo
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BKZ's sandpile as a dynamic system

— X = (x1,.,xn)"
] Xos +— A1 X

] X1+ A X+
Xo — A X1+ 1>

Xj=AiX;+ 1T
with j=n—k+1

A full tour:
X1 Xo X3 Xa X5 Xg X7 Xg Xo X' +— AX +T
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Properties of the model

X~ AX+T
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@ Reducedness of the output = fixed poi nts.
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XA

( _ k) log k T

O(log? k)
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Properties of the model

( _ k)logk

O(log? k)

@ Speed of convergence = eigenvalues of AT A.

X~ AX+T

@ Reducedness of the output = fixed poi nts.
Xi

Lattice algorithms

18/03/2013



Properties of the model

X~ AX+T

@ Reducedness of the output = fixed poi nts.
XA

~ (n— k)'&x

O(log® k)

@ Speed of convergence = eigenvalues of AT A.

Geometric convergence: ||[X — X°|| decreases by a constant
2 .3
factor every % tours, i.e. % calls to HKZ,.
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Lattice basis reduction — Polynomial LLL

bi, ... by € KIX]", L= K[X]b1 @ --- & K[X]bp.
@ Orthogonality defect = >, deg bj — degdet(by, ..., by);

@ OD = 0 < up to row permutation max degrees are on the
diagonal.

@ also known as Popov normal form.

Theorem. There is a polynomial-time algorithm which returns a
basis for which OD = 0, and (up to permutation) b; is the i-th
minimum of the lattice.
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Lattice basis reduction — Polynomial LLL

Algorithm (see whiteboard).
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Il. Algorithms for SVP / CVP
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Il. 1. Approximate algorithms for SVP / CVP
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SVP and CVP algorithms — approximate algorithms

L= L(b1,...,bn), (b1,...,b,) reduced;
Approx-SVP(by, ..., by) :
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SVP and CVP algorithms — approximate algorithms
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SVP and CVP algorithms — approximate algorithms

L= L(b1,...,bn), (b1,...,b,) reduced;
Approx-SVP(by, ..., by) :

@ Return by;

@ Approx factor : LLL = 20(”), k-BKZ =~ k”/k;
Approx-CVP(t, by, ..., by):

@ Babai algorithms;

@ Kannan's embedding technique
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SVP and CVP algorithms — Babai algorithms

L= L(b1,...,bn), (b1,...,b,) reduced, t € R".
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SVP and CVP algorithms — Babai algorithms

L= L(b1,...,bn), (b1,...,b,) reduced, t € R".
Babai roundoff algorithm :

o Compute t; such that t = > 7, t;b; (, ie. B71t)
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SVP and CVP algorithms — Babai algorithms

L= L(b1,...,bn), (b1,...,b,) reduced, t € R".
Babai roundoff algorithm :
o Compute t; such that t = > 7, t;b; (, ie. B71t)
o Return :=>"" . |¢t;]b;.
Theorem. If (by,...,by) is LLL-reduced, then
| — t|| =20 d(t, L).

18/03/2013



SVP and CVP algorithms — Babai algorithms

L= L(b1,...,bn), (b1,...,b,) reduced, t € R".
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SVP and CVP algorithms — Babai algorithms

L= L(b1,...,bn), (b1,...,b,) reduced, t € R".
Babai nearest-plane algorithm :

@ Size-reduce t wrt (b, ..., bp);
oty [(¢,b7)/]1b 12T
o Continue with (t — tybp, b1,. .., bp_1).
@ Return t:= Y t;b;.
Theorem. We have
o [[E—t2 < 37, [167]2/4 = 200)||b3]| (LLL-reduced);
o ||F—t|? =29Md(t, L).

Much better than roundoff in theory and in practice.
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SVP and CVP algorithms — Kannan's embedding technique

L=1L(by,...,by), B=(b1,...,b,) reduced, t € R".
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“Reduce” CVP to SVP by using

;[ B —t
(5 2)

@ LLL-reduce L, read 7 on first vector:

for a large constant C.

@ Short vectors in L' = (u — xp41t, xp+1C), u € L;
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SVP and CVP algorithms — Kannan's embedding technique

L=1L(by,...,by), B=(b1,...,b,) reduced, t € R".
“Reduce” CVP to SVP by using

;[ B —t
(5 2)

for a large constant C.
@ LLL-reduce L, read 7 on first vector:
@ Short vectors in L' = (u — xp41t, xp+1C), u € L;

o if C>29(Nd(L, t), need to have x,;1 = 1 = actual close
vector.

@ Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.
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Il. 2. Exact algorithms for SVP / CVP
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SVP and CVP algorithms — outline

@ The KFP enumeration-based algorithm

o R. Kannan: Improved algorithms for integer
programming and related lattice problems, STOC'83

o U. Fincke & M. Pohst: A procedure for determining
algebraic integers of given norm, EUROCAL'83

@ Saturating the space: The AKS solver and its descendants

@ Using the Voronoi cell: the Micciancio-Voulgaris algorithm
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The Kannan-Fincke-Pohst enumeration algorithm

Given (bj)i<, and t € R", we look for all (x;); € Z" s.t.
1D b =t = 37 (i — b+ D i) 7| < A
i i J>i

where t = ) . t.b¥ and A is arbitrary.

it
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The Kannan-Fincke-Pohst enumeration algorithm

Given (bj)i<, and t € R", we look for all (x;); € Z" s.t.
2 2%
37 st = 37 Gt + D)l 12 < A
i i j>i
where t = . t;b? and A is arbitrary.

By successive projections:

(Xn — tn)szZHZ < A
(Xn—1 — th-1+ /‘n,n—lxn)zub:—lnz + (xn — tn)szZHZ < A
DG —ti+ > mex)’IbillP < A

jzi k>j
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The Kannan-Fincke-Pohst enumeration algorithm

(xn — tn)zub:Hz < A
(Xn—1 — th—1 + /‘n,n—lxn)zub:—lnz + (X0 — tn)szZHZ < A
Z(Xj— U+Z#kJXk)2||b7||2 < A
Jjzi k>j
@ For each value of (xk,...,x,), xk—1 belongs to a finite set.

@ KFP is a tree traversal, where one is interested in the leaves.
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The Kannan-Fincke-Pohst enumeration algorithm

(xn — tn)szZHZ < A
(Xn—1 — th—1 + /‘n,n—lxn)zub:—lnz + (X0 — tn)szZHZ < A
Z(Xj— U+Z#kJXk)2||b7||2 < A
Jjzi k>j
@ For each value of (xk,...,x,), xk—1 belongs to a finite set.

@ KFP is a tree traversal, where one is interested in the leaves.

@ Cost analysis reduces to counting lattice points in balls.

Gaussian heuristic

For any “nice” K, we have [LN K| ~ ‘Zjoeltf'
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SVP - the KFP enumeration algorithm
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CVP, SVP — the KFP enumeration algorithm
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CVP, SVP — The KFP enumeration algorithm (I1)
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Kannan's improvement

@ The shorter the basis vectors, the faster the enumeration.

@ Kannan pre-processes the basis by performing enumerations in
lower dimensions ;

@ quasi-HKZ reduced basis as input to SVP;
= Recursive process, using SVP solver in dim n— 1.
o Complexity n"/(28)+o(n)  [hasio7]
(upper and lower worst-case bound).
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KFP: the most practical SVP & CVP solver

@ Basis is pre-processed before enumeration [Kannang3]
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KFP: the most practical SVP & CVP solver

Basis is pre-processed before enumeration [Kannang3]

Computations rely on floating-point arithmetic [PuSt08]

°
°
@ The tree search can be parallelized [DHPS10]
@ The choice of bound A can be optimized

°

The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:
Vi, > 05—+ > k)05 17 < pi - A,
jzi k>j
where 1 > p; > ... > p, > 0.
Practical limits (a few days on a modern processor):

@ For a guaranteed answer: n ~ 70.

@ If heuristic answer suffices: n ~ 110.
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The saturation principle

Kabatyansky & Levenshtein

Let E C R"\ 0. Assume that for any u # v in E, the angle
between u and v is > ¢o. Then |E| < 2"°(") for some c(¢g).

For ¢ = 60°, we obtain |E| < 20-401n
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The saturation principle

Kabatyansky & Levenshtein

Let E C R"\ 0. Assume that for any u # v in E, the angle
between u and v is > ¢o. Then |E| < 2"°(") for some c(¢g).

For ¢ = 60°, we obtain |E| < 20-401n

Consequence: If points belong to a ball and their pairwise
distances are bounded from below, then their number is 20(n)
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The ListSieve SVP Algorithm, heuristic version

@ Sample ty,...,ty € L.

Q For all i < N, if there is j < i with [[t; — t;|| < (1 — 1)
replace t; by t; — t;.

© Return a shortest non-zero vector found.
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The ListSieve SVP Algorithm, heuristic version

@ Sample ty,...,ty € L.

O For all i < N, if there is j < i with [[t; — t;|| < (1 — 1)|t;]],
replace t; by t; — t;.

© Return a shortest non-zero vector found.

tr

. t].
[ ]

@ Time complexity < N?; Space complexity < N2.
@ Saturation principle = at most 2¢'"*°(") points at any time.
Lattice algorithms 18/03/2013



Correctness of ListSieve

How to ensure we get a shortest s € L\ 07

@ Principle: Hide the lattice to ListSieve by adding noise to
the initial vectors: t; — t; + e;.

@ Once the vector has been dealt with: t&"d — t&"d — ;.
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o If noise ~ |s||, then, with probability > 27(n):
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Correctness of ListSieve

How to ensure we get a shortest s € L\ 07

@ Principle: Hide the lattice to ListSieve by adding noise to
the initial vectors: t; — t; + e;.
@ Once the vector has been dealt with: t&"d — t&"d — ;.

@ If noise ~ ||s||, then, with probability > 2—(n).

t; +e; could be t;+ej:=(tj+s)+ (e —s).

@ N is set large enough s.t. we get the same t*"? € L twice.
= we get t"? and t*"? + s with high probability.
@ We compute all pairwise differences and return the smallest.
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SVP-CVP via the Voronoi cell

Plan of the talk

@ Reminders and context
@ The KFP enumeration-based algorithm
@ Saturating the space: The AKS solver and its descendants
@ Using the Voronoi cell: the Micciancio-Voulgaris
algorithm.
o D. Micciancio & P. Voulgaris: A deterministic single
exponential time algorithm for most lattice

problems based on Voronoi cell computations,

STOC'10

Lattice algorithms 18/03/2013



SVP-CVP via the Voronoi cell

The Voronoi cell of a lattice

V(L) = {x €R":¥be L\0,|x —b|| > |x|}.

o
70
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SVP-CVP via the Voronoi cell

The Voronoi cell of a lattice

V(L) = {x €R":¥be L\0,|x —b|| > |x|}.
V2 Vi

V3. V6

The relevant vectors

Let (v;); be s.t. £v; are the unique minima of a non-zero coset
of L/2L. Then V(L) = {x € R": Vi, ||v; — x|| > ||x]|}.
Furthermore, these v; are the smallest such set.

@ A coset of L/2L is of the form (>, e;b;) +2L with ¢; € {0, 1}.
= V(L) can be described in space < 2",
Lattice algorithms 18/03/2013



SVP-CVP via the Voronoi cell

Solving SVP & CVP with the Voronoi cell

@ SVP: A shortest non-zero vector is a relevant vector.
@ CVP: translate t by a b € L to map it to V(L).
@ It suffices to be able to do it when t € 2V(L).
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SVP-CVP via the Voronoi cell

Solving SVP & CVP with the Voronoi cell

VPt _
@ C(v;): cone of apex 0 and base the corresponding facet of V.
@ While t ¢ V: Find i s.t. t € C(v;); Subtract v; from t.

@ Decreasing walk in (t; + L) mod 2L.
Lattice algorithms 18/03/2013



SVP-CVP via the Voronoi cell

Computing the Voronoi cell

@ A relevant vector v € L is a shortest vector in a coset of L/2L.
@ It suffices to solve 2" — 1 instances of CVP:
Lattice: 2L; Targett =) . ¢;b;.

Lattice algorithms 18/03/2013



SVP-CVP via the Voronoi cell

Computing the Voronoi cell

@ A relevant vector v € L is a shortest vector in a coset of L/2L.
@ It suffices to solve 2" — 1 instances of CVP:
Lattice: 2L; Targett =) . ¢;b;.

@ But to solve CVP, we use the Voronoi cell...

Lattice algorithms 18/03/2013



SVP-CVP via the Voronoi cell

Computing the Voronoi cell

@ A relevant vector v € L is a shortest vector in a coset of L/2L.
@ It suffices to solve 2" — 1 instances of CVP:

Lattice: 2L; Targett =) . ¢;b;.
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SVP-CVP via the Voronoi cell

Computing the Voronoi cell

@ A relevant vector v € L is a shortest vector in a coset of L/2L.
@ It suffices to solve 2" — 1 instances of CVP:

Lattice: 2L; Targett =) . ¢;b;.
@ But to solve CVP, we use the Voronoi cell...

Trick: CVP in dim n can be solved with 2°(") CVP’s in dim n — 1.

CVP(t,2L) = n|?i”n {CVP(t + xs(2bp),L7) : xp €L},

o [~ =2LnSpan(by,...,by_1).

@ X, may be restricted to a small set.

Overall: Intertwined Voronoi/CVP in increasing dimensions.

Lattice algorithms

18/03/2013



SVP-CVP via the Voronoi cell

l1l. Application : Coppersmith’s method
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Lattice algorithms — Coppersmith’s method

@ P € Z[X] of degree d, monic;
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@ P € Z[X] of degree d, monic;
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@ want to solve P(x) = 0 mod N;
@ easy
@ if N prime (factoring mod p);
s or factors of N known (CRT + Hensel lifting);
@ hard in general: deg P = 2 < factoring N.
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method

@ P € Z[X] of degree d, monic;
@ N an integer;
@ want to solve P(x) = 0 mod N;

@ easy
@ if N prime (factoring mod p);
s or factors of N known (CRT + Hensel lifting);

hard in general: deg P = 2 < factoring V.

look for small solutions x.

Why small? Allow to lift the problem to Z (easy again).
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Simple example :
@ RSA: N = pq, d, e integers such that d-e = (p — 1)(g — 1);
@ N, e public;

@ Encryption is x — x¢, decryption is x — x9.
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Lattice algorithms — Coppersmith’s method (outline)

Simple example :
@ RSA: N = pq, d, e integers such that d-e = (p — 1)(g — 1);
@ N, e public;
@ Encryption is x — x¢, decryption is x — x9.
If |x| < N'/¢, can decrypt from c := x mod N:
° x| < N=x®=cinZ
@ Extract e-th root in Z (eg. Newton's method).
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Simple example :
@ RSA: N = pq, d, e integers such that d-e = (p — 1)(g — 1);
@ N, e public;
@ Encryption is x — x¢, decryption is x — x9.
If |x| < N'/¢, can decrypt from c := x mod N:
° x| < N=x®=cinZ
@ Extract e-th root in Z (eg. Newton's method).
Key argument: if
® x| < X (X small),
@ and |P|(X) < N (P small),
then P(x) =0 mod N = P(x) =0 in Z.
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

First attempt: Girault, Toffin, Vallée / Hastad.

@ Try to find small Q = P + SN,
° x,Qsmall = Q(x) < N
@ P(x) =0mod N = Q(x) =0mod N
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

First attempt: Girault, Toffin, Vallée / Hastad.

@ Try to find small Q = P + SN,
° x,Q small = Q(x) < N
@ P(x)=0mod N = Q(x) =0mod N = Q(x) =0

@ solve equations over the integers, easy.
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

L lattice generated by coefficient vectors of N, Nx, ..., Nx?-1 p.
N Po
N p1
N p2
L= ] )
N pg-1
1
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@ v short vector in L <+ Q@ = P + SN with small coefficients:
@ Want very small high order coefficients, low order coefficient
are less important.
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L lattice generated by coefficient vectors of N, Nx, ..., Nx?-1 p.
N Po
N p1
N p2
L= )
N pg-1
1

@ v short vector in L <+ Q@ = P + SN with small coefficients:
@ Want very small high order coefficients, low order coefficient

are less important.
@ More precisely, |x] < X = |Q(x)| < Zj‘i:o q;X?.
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L lattice generated by coefficient vectors of N, Nx, ..., Nx?-1 p.
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@ v short vector in L <+ Q@ = P + SN with small coefficients:

@ Want very small high order coefficients, low order coefficient
are less important.

@ More precisely, |x] < X = |Q(x)| < Zj‘i:o g X’

@ = want Q(xX) = P(xX) + S(xX)N with small coefficients
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v short vector in L < @ = P + SN with small coefficients;
@ Want very small high order coefficients, low order coefficient
are less important.
@ More precisely, |x] < X = |Q(x)| < Zj‘i:o g X’
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Lattice algorithms — Coppersmith’s method (outline)

L lattice generated by coefficient vectors of N, Nx, ..., Nx?-1 p.
N Po
NX piX
. N X2 P X?

NXd_l pd_lxd—l
1x¢

v short vector in L < @ = P + SN with small coefficients;
@ Want very small high order coefficients, low order coefficient
are less important.
@ More precisely, |x] < X = |Q(x)| < Zj‘i:o g X’
@ = want Q(xX) = P(xX) + S(xX)N with small coefficients
@ = add weights to the lattice.
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Analysis.
@ vol(L) = H?;OI(NX") — Nd xd(d+1)/2.
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Lattice algorithms — Coppersmith’s method (outline)

Analysis.
e vol(L) = H;fz—ol(/\/xi) — Ndxd(d+1)/2.
@ LLL returns a vector v with ||v|> < 20(d) \yd/(d+1) xd/2
@ Hence ||v||; < 20(d) yd/(d+1) xd/2
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Analysis.
e vol(L) = Hf’:_ol(NX") — Ndxd(d+1)/2.
@ LLL returns a vector v with ||v|> < 20(d) \yd/(d+1) xd/2
@ Hence ||v||; < 20(d) yd/(d+1) xd/2
@ ok if 20(d) yd/(d+1) xd/2 ~
o ... X = O(N¥/(d(d+1))),
Time = poly(d, log N).
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Coppersmith's method.
Key idea: use multiplicities (powers of P)!

e P(x) =0mod N = Pi(x)N*=" = 0 mod N for all i;
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Coppersmith's method.

Key idea: use multiplicities (powers of P)!
e P(x) =0mod N = Pi(x)N*=" = 0 mod N for all i;
o Look for Q = 2K o PINK='Ri(X), deg R; < d, deg Ry < t;
o s.t.|Q|(X) < Nk

Lattice L
@ generated by coefficient vectors of Sj; = (xX ) P/(xX)N<—';
@ dimension 6 = dk +t +1;
o degSjj = id + J;
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Lattice algorithms — Coppersmith’s method (outline)

Coppersmith's method.
Key idea: use multiplicities (powers of P)!
e P(x) =0mod N = Pi(x)N*=" = 0 mod N for all i;

o Look for Q = 2K o PINK='Ri(X), deg R; < d, deg Ry < t;
o s.t.|Q|(X) < Nk

Lattice L
@ generated by coefficient vectors of Sj; = (xX ) P/(xX)N<—';
@ dimension § = dk + t + 1,
@ deg$j = id + J;

@ hence upper triangular matrix;
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Lattice algorithms — Coppersmith’s method (outline)

Coppersmith’s method (1996).

diagonal(L) = (N%, NkX, ... Nkx9-1
Nk—lxd’ Nk_IXd+1, . Nk—led—l

gy

kd kd+1 kd+t
Xkd xkd+1 o xkdit)
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method (outline)

Coppersmith’s method (1996).
diagonal(L) = (N%, NkX, ... Nkx9-1

Nk—lxd Nk—lxd+1 o Nk—led—l

gy

kd kd+1 kd+t
Xkd xkd+1 o xkdit)

voll = XX iy Sio(k—=)
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Lattice algorithms — Coppersmith’s method

voll = X5(5—1)/2 Ndk(k+1)/2'

o Want
20(6) 3 (6-1)/2 pyak(k+1)/285 - prk
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Lattice algorithms — Coppersmith’s method

voll = X5(5—1)/2 Ndk(k+1)/2'

o Want
20(6) 3 (6-1)/2 pyak(k+1)/285 - prk

X = O(Nk(25—d(k+1))/5(5—1) )
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SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method

voll = X5(5—1)/2 Ndk(k+1)/2'

o Want
20(6) 3 (6-1)/2 pyak(k+1)/285 - prk

X = O(Nk(25—d(k+1))/5(5—1) )

o 0 ~ dk, k = oo,
2k(26 —d(k+1))/6(6 —1)=1/d — O(1/k).
Take k = O(log N),
o get X = O(NY/9),
@ with polynomial lattice dimension.

Lattice algorithms 18/03/2013 83/90



SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method, gcd extension

Solve |x| < X, ged(P(x), N) > N&.
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Lattice algorithms — Coppersmith’s method, gcd extension

Solve |x| < X, ged(P(x), N) > N&.

@ Same strategy;
o If x| < X, gcd(Q(x), N¥) > N¥? and |Q|(X) < NK?
@ ... then Q(x) =0.
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Lattice algorithms — Coppersmith’s method, summary

Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [-NY9, N'/9] such that
P(x) = 0 mod N.
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Lattice algorithms — Coppersmith’s method, summary

Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [-NY9, N'/9] such that
P(x) = 0 mod N.

Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [—Nﬁz/d, NﬁZ/d] such that
ged(P(x), N) > NP,
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Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [-NY9, N'/9] such that
P(x) = 0 mod N.
Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [—Nﬁz/d, NﬁZ/d] such that
ged(P(x), N) > NP,
Optimality:

o take P(x) = x4, N = p“.
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Lattice algorithms — Coppersmith’s method, summary

Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [-NY9, N'/9] such that
P(x) = 0 mod N.
Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [—Nﬁz/d, NﬁZ/d] such that
ged(P(x), N) > NP,
Optimality:

o take P(x) = x4, N = p“.

@ Solutions to P(x) =0 mod N are kp, k € [0, p9~1].
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Lattice algorithms — Coppersmith’s method, summary

Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [-NY9, N'/9] such that
P(x) = 0 mod N.
Theorem. (Coppersmith). There is a polynomial-time algorithm
which on input P, N, returns all x € [—Nﬁz/d, NﬁZ/d] such that
ged(P(x), N) > NP,
Optimality:

o take P(x) = x4, N = p“.

@ Solutions to P(x) =0 mod N are kp, k € [0, p9~1].

o Number = X/N/9,

Lattice algorithms 18/03/2013 85/90



SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method, application 1

Factoring with high bits known.

@ Assume N = pg RSA modulus, p = py + p;, where py, is
known and p; is “small”;
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Lattice algorithms — Coppersmith’s method, application 1

Factoring with high bits known.

@ Assume N = pg RSA modulus, p = py + p;, where py, is
known and p; is “small”;

e Put R(X) =X+ pp;
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Lattice algorithms — Coppersmith’s method, application 1

Factoring with high bits known.

@ Assume N = pg RSA modulus, p = py + p;, where py is
known and p; is “small”;

e Put R(X) =X+ pp;

o Have gcd(R(py), N) =~ N/2;
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Lattice algorithms — Coppersmith’s method, application 1

Factoring with high bits known.

@ Assume N = pg RSA modulus, p = py + p;, where py is
known and p; is “small”;

e Put R(X) =X+ pp;

o Have gcd(R(py), N) =~ N/2;

o Coppersmith’s method = can find p; as soon as |p;| < N/*
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Lattice algorithms — Coppersmith’s method, application 1

Factoring with high bits known.
@ Assume N = pg RSA modulus, p = py + p;, where py is
known and p; is “small”;
e Put R(X) =X+ pp;
o Have gcd(R(py), N) =~ N/2;
o Coppersmith’s method = can find p; as soon as |p;| < N/*

@ Can factor N in polynomial time from half the high order bits
of a factor of N.

Lattice algorithms 18/03/2013 86/90



SVP-CVP via the Voronoi cell

Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
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Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
@ Build a lattice from (xX)*(yY)"Q(xX,yY) Nk—/;
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Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
@ Build a lattice from (xX)!(yY)™Q(xX, yY) Nk,
@ Find two small vectors in this lattice —

Pi(x,y) =0 mod N, Py(x,y) =0 mod N.
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Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
@ Build a lattice from (xX)!(yY)™Q(xX, yY) Nk,
@ Find two small vectors in this lattice —

Pi(x,y) =0 mod N, Py(x,y) =0 mod N.

o If Py, P> small enough, Pi(x,y) = Pa(x,y) = 0;
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Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
@ Build a lattice from (xX)!(yY)™Q(xX, yY) Nk,
@ Find two small vectors in this lattice —

Pi(x,y) =0 mod N, Py(x,y) =0 mod N.

o If Py, P> small enough, Pi(x,y) = Pa(x,y) = 0;
@ May fail if P; and P, are algebraically dependent...
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Lattice algorithms — Coppersmith’s method, bivariate
version

same game with Q(x,y) =0mod N, [x| < X, |y| < Y;
Build a lattice from (xX)“(yY)™Q(xX,yY) Nk—';

Find two small vectors in this lattice —

Pi(x,y) =0 mod N, Py(x,y) =0 mod N.

If Py, P> small enough, Pi(x,y) = Pa(x,y) = 0;

May fail if P; and P, are algebraically dependent...

Otherwise, use your favorite method to solve (resultant,
Hensel lifting, etc.).
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Lattice algorithms — Coppersmith’s method, bivariate
version

@ same game with Q(x,y) =0mod N, |x| < X, |y| < Y;
@ Build a lattice from (xX)!(yY)™Q(xX, yY) Nk,
@ Find two small vectors in this lattice —

Pi(x,y) =0 mod N, Py(x,y) =0 mod N.

o If Py, P> small enough, Pi(x,y) = Pa(x,y) = 0;
@ May fail if P; and P, are algebraically dependent...

@ Otherwise, use your favorite method to solve (resultant,
Hensel lifting, etc.).

@ Details are tricky: auxiliary polynomials depend finely on
shape of P and X, Y.
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Lattice algorithms — Coppersmith’s method, application 2

RSA modulus N = ed, d small, e public.

@ Wiener's attack with continued fractions = can find d from
e, N as soon as d < N4,

@ Boneh-Durfee : ed + k(N+1— p—q) =1, hence
k(A+s) =1mod e, k,s unknown.

o dsmall= e~ N= |k| <€, |s| < e,
o f(x,y) :=x(A+y)—1, use

&i,l = Xif(X’y)lek_I’ hiJ = yjf(X’y)Iek_I’

@ Triangular matrix... find g small enough as soon as § < 0.284.
@ Using a better (non full-rank) lattice gives 6 < 0.292.
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Lattice algorithms — Coppersmith’'s method and RS codes

Let K be a finite field, n, k given.

® (xj)i<i<n pairwise distinct points in K;
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Lattice algorithms — Coppersmith’'s method and RS codes

Let K be a finite field, n, k given.
® (xj)i<i<n pairwise distinct points in K;
@ Reed-Solomon code: message is P, deg P < k, send
(P(x1),-..,P(xn)), receive (y1,...,¥n);
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Lattice algorithms — Coppersmith’'s method and RS codes

Let K be a finite field, n, k given.
® (xj)i<i<n pairwise distinct points in K;
@ Reed-Solomon code: message is P, deg P < k, send
(P(x1),-..,P(xn)), receive (y1,...,¥n);
@ Define R(x) of degree < k st. R(x;) = y; for all /;
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Lattice algorithms — Coppersmith’'s method and RS codes

Let K be a finite field, n, k given.

® (xj)i<i<n pairwise distinct points in K;

@ Reed-Solomon code: message is P, deg P < k, send
(P(x1),-..,P(xn)), receive (y1,...,¥n);

@ Define R(x) of degree < k st. R(x;) = y; for all /;

@ Decoding : Find all P € K[X], deg P < k, st.
deggcd(P(X) — R(X), []/_1(X — xi)) > 6 (correct n — &
errors).
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Lattice algorithms — Coppersmith’'s method and RS codes

Let K be a finite field, n, k given.

® (xj)i<i<n pairwise distinct points in K;

@ Reed-Solomon code: message is P, deg P < k, send
(P(x1),-..,P(xn)), receive (y1,...,¥n);

@ Define R(x) of degree < k st. R(x;) = y; for all /;

@ Decoding : Find all P € K[X], deg P < k, st.
deggcd(P(X) — R(X), []/_1(X — xi)) > 6 (correct n — &
errors).

This is (list-)decoding of Reed-Solomon codes.
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Lattice algorithms — Coppersmith’'s method and RS codes

(List) Decoding : Find all P € K[X], deg P < k, st.
deg ged(P(X) — R(X), [T/L1(X — xi)) > 6 (correct n — § errors).
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Lattice algorithms — Coppersmith’'s method and RS codes

(List) Decoding : Find all P € K[X], deg P < k, st.
deg ged(P(X) — R(X), [T/L1(X — xi)) > 6 (correct n — § errors).

@ Can use a polynomial version of Coppersmith’s ideas: look for
small degree linear combination of
YUY = ROX))(TT7Z1(X = xi))*
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Lattice algorithms — Coppersmith’'s method and RS codes

(List) Decoding : Find all P € K[X], deg P < k, st.
deg ged(P(X) — R(X), [T/L1(X — xi)) > 6 (correct n — § errors).

@ Can use a polynomial version of Coppersmith’s ideas: look for
small degree linear combination of
YUY = ROO)(TTZa (X — xi))<

o classical decoding k=1, u=0: ¢ = (n+ k)/2.
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Lattice algorithms — Coppersmith’'s method and RS codes

(List) Decoding : Find all P € K[X], deg P < k, st.
deg ged(P(X) — R(X), [T/L1(X — xi)) > 6 (correct n — § errors).
@ Can use a polynomial version of Coppersmith’s ideas: look for
small degree linear combination of
YUY = ROO)(TTZa (X — xi))<
o classical decoding k=1, u=0: ¢ = (n+ k)/2.
o k=1, u arbitrary: § = v/2kn (Sudan)
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Lattice algorithms — Coppersmith’'s method and RS codes

(List) Decoding : Find all P € K[X], deg P < k, st.
deg ged(P(X) — R(X), [T/L1(X — xi)) > 6 (correct n — § errors).

@ Can use a polynomial version of Coppersmith’s ideas: look for
small degree linear combination of
YUY = ROO)(TTZa (X — xi))<

o classical decoding k=1, u=0: ¢ = (n+ k)/2.

o k=1, u arbitrary: § = v/2kn (Sudan)

o Full Coppersmith’'s method: & = vkn (Guruswami-Sudan)

Lattice algorithms 18/03/2013 90/90
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