Lattice algorithms

Guillaume Hanrot Some slides courtesy of X. Pujol & D. Stehlé

LIP / ENSL, CNRS, INRIA, U Lyon, UCBL

Autrans, March 2013

• Give some important ideas about lattice algorithms;

- Strong focus on lattice basis reduction;
- Some (sketches of) proofs;
- but primarily ideas.
- Please interrupt for any question.

- Give some important ideas about lattice algorithms;
- Strong focus on lattice basis reduction;
- Some (sketches of) proofs;
- but primarily ideas.
- Please interrupt for any question.

- Give some important ideas about lattice algorithms;
- Strong focus on lattice basis reduction;
- Some (sketches of) proofs;
- but primarily ideas.
- Please interrupt for any question.

- Give some important ideas about lattice algorithms;
- Strong focus on lattice basis reduction;
- Some (sketches of) proofs;
- but primarily ideas.
- Please interrupt for any question.

- Give some important ideas about lattice algorithms;
- Strong focus on lattice basis reduction;
- Some (sketches of) proofs;
- but primarily ideas.
- Please interrupt for any question.

Outline

- Introduction
- Lattice basis reduction general issues
- Lattice basis reduction "optimal" algorithms
- Lattice basis reduction "blockwise" algorithms
- \bullet Approximate and exact algorithms for SVP / CVP
- Application : Coppersmith's method

• A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;

• Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,

- SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
- CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
- BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
- ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} \|x\|$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

- A <u>lattice</u> is $L(b_1, \ldots, b_n) : \mathbb{Z}b_1 \oplus \cdots \oplus \mathbb{Z}b_n$;
- Main algorithmic problems: given (b_1, \ldots, b_n) , $L = L(b_1, \ldots, b_n)$,
 - SVP: find $\lambda_1(L) := \min_{x \in L \{0\}} ||x||$ (and x)
 - CVP: given $t \in \mathbb{R}^n$, find d(t, L) and $x \in L$ st. ||x - t|| = d(t, L);
 - BDD: given $t \in \mathbb{R}^n$ and $r \in \mathbb{R}^+$, find $x \in L$ st. $d(x, t) \leq r$.
 - ... plus variants (gap variants, preprocessing...)

Natural problems (linear problems in integers). Eg. Knapsack application:

- $x_1, \ldots, x_n \in \mathbb{N}^n$, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;
- NP-complete ;

L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

If η ∈ Zⁿ⁺¹, Mη = (η₁,..., η_{n-1}, η_n, Σⁿ_{i=1} η_ix_i - η_{n+1}S)^t.
 A short vector in L is Mη for η_i = ε_i, η_{n+1} = 1;

Natural problems (linear problems in integers). Eg. Knapsack application:

•
$$x_1, \ldots, x_n \in \mathbb{N}^n$$
, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;

• NP-complete

L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

If η ∈ Zⁿ⁺¹, Mη = (η₁,..., η_{n-1}, η_n, Σⁿ_{i=1} η_ix_i - η_{n+1}S)^t.
 A short vector in L is Mη for η_i = ε_i, η_{n+1} = 1;

Natural problems (linear problems in integers). Eg. Knapsack application:

- $x_1, \ldots, x_n \in \mathbb{N}^n$, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;
- NP-complete ;

L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

If η ∈ Zⁿ⁺¹, Mη = (η₁,..., η_{n-1}, η_n, Σⁿ_{i=1} η_ix_i - η_{n+1}S)^t.
 A short vector in L is Mη for η_i = ε_i, η_{n+1} = 1;

Natural problems (linear problems in integers). Eg. Knapsack application:

•
$$x_1, \ldots, x_n \in \mathbb{N}^n$$
, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;

- NP-complete ;
- L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

.

If η ∈ Zⁿ⁺¹, Mη = (η₁,..., η_{n-1}, η_n, Σⁿ_{i=1} η_ix_i - η_{n+1}S)^t
 A short vector in L is Mη for η_i = ε_i, η_{n+1} = 1;

Natural problems (linear problems in integers). Eg. Knapsack application:

•
$$x_1, \ldots, x_n \in \mathbb{N}^n$$
, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;

- NP-complete ;
- L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

.

• If
$$\eta \in \mathbb{Z}^{n+1}$$
, $M\eta = (\eta_1, \dots, \eta_{n-1}, \eta_n, \sum_{i=1}^n \eta_i x_i - \eta_{n+1}S)^t$.
• A short vector in *L* is $M\eta$ for $\eta_i = \varepsilon_i$, $\eta_{n+1} = 1$;

Natural problems (linear problems in integers). Eg. Knapsack application:

- $x_1, \ldots, x_n \in \mathbb{N}^n$, $M = \sum_{i=1}^n \varepsilon_i x_i$, find $(\varepsilon_i) \in \{0, 1\}^n$;
- NP-complete ;
- L generated by the columns of

$$M = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & \dots & 1 & 0 \\ x_1 & x_2 & \dots & x_n & -S \end{pmatrix}$$

If η ∈ Zⁿ⁺¹, Mη = (η₁,..., η_{n-1}, η_n, Σⁿ_{i=1} η_ix_i - η_{n+1}S)^t.
A short vector in L is Mη for η_i = ε_i, η_{n+1} = 1;

• ... but lattice problems are hard:

- SVP NP-hard under randomized reductions (even with almost poly approx factor);
- CVP NP-hard (same) ;
- BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

• ... but lattice problems are hard:

- $\bullet~{\sf SVP}$ NP-hard under randomized reductions (even with almost
 - poly approx factor);
- CVP NP-hard (same) ;
- BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.

• Lattice basis reduction.

- ... but lattice problems are hard:
 - SVP NP-hard under randomized reductions (even with almost poly approx factor);
 - CVP NP-hard (same) ;
 - BDD NP-hard for $r = c \cdot \lambda_1(L)$.
- \Rightarrow approximation algorithms, exponential algorithms.
- Lattice basis reduction.

+ +++ $^+$ ++++ ++ ++++ -+ + ++ $^+$ ++++ ++++++ $^+$ + + + ++ ++4 + + ++ ++++++++ + +++++ ++++ + Lattice algorithms + 18/03/2013 $^{+}$ + $^+$ +++G. Hanrot

+ ++ $^+$ +++ ++ ++++ -++ ++ +++ $^+$ +++++++++++ $^+$ + + + ++ ++ + ++ ++++ ++ ++ +++++++ + +++++++++ 18/03/2013 $^{+}$ + + Lattice algorithms + $^+$ +++G. Hanrot

Reseaux euclidiens - bonnes et mauvaises bases

Reseaux euclidiens - bonnes et mauvaises bases

Lattices – good and bad bases

+ $^+$ $^+$ +b ++ + + + 18/03/2013 +++ + Lattice algorithms +++G. Hanrot

Lattices – good and bad bases

+ $^+$ $^+$ *b*^{*}₁+ +bı ++ + + + 18/03/2013 +++ + Lattice algorithms +++G. Hanrot

Lattices – good and bad bases

10/90

From a quantitative point of view:

	+			$^{+}$			+			+			$^+$			$^+$			$^+$			+			+			+		
+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			+			$^+$			+			$^+$
		+			$^+$			$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			$^+$	
	+			$^+$			+			+			+			+			+			+			+			+		
+			+			+			$^+$			+			+			$^+$			+			$^+$			$^+$			+
		+			+			+			+			+			$^+$			+			$^+$			+			+	
	+			+			+			+			+			+			+			+			+			+		
+			+			+			+			+			+			+			+			+			+			+
		+			+			$^+$			+			+			+			+			$^+$			+			+	
	+			+			+			+			+			+			+			+			+			+		
+			+			+			+			+			*			$^+$			+			+			+			+
		+			+			$^+$			+			+			+			+			$^+$			+			+	
	+			+			+			+			+			+			+			+			+			+		
+			$^+$			$^+$			$^+$			$^+$			$^+$			+	/		+			$^+$			+			+
		+			+			+			+			+			+			ħ.		b_2	+			+			+	
	+			+			+			+			+			+			+	ν_1		¥			+			+		
+			+			+			+			+			+			+			+			+			+			+
		+			+			+			+			+			+			+			+			+			+	
	+			+			+			+			+			+			+			+			+			+		
G.	Han	rot				+			+			+	La	ttice	e alle	gorit	hms	<u>+</u>			+			+			1870)3/2	013	+

11/90

From a quantitative point of view:

	+			+			$^+$			+			+			$^+$			$^{+}$			+			$^+$			+		
+			$^+$			$^+$			$^+$			+			$^+$			$^+$			$^+$			+			+			+
		+			$^+$			+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			+	
	+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$		
+			+			$^+$			+			+			+			$^+$			+			+			+			+
		$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$	
	+			+			+			+			+			$^+$			$^+$			+			+			+		
+			$^+$			$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			+			+
		+			+			+			+			+			+			+			$^+$			$^+$			+	
	+			$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$		
+			$^+$			$^+$			$^+$			+			*			$^+$			+			$^+$			+			+
		$^+$			$^+$			+			$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$	
	+			+			$^+$			+			+			$^+$			$^+$			+			+			+		
+			+			+			+			+			+			+	/		+			+			+			+
		$^+$			$^+$			+			$^+$			$^+$			+	L *	_`	¥		b	$^+$			$^+$			$^+$	
	+			+			+			+			+			+	1	\mathcal{I}_1	+	D_1		¥2			+			+		
+			$^+$			$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			+			+
		$^+$			$^+$			+			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$			$^+$	
	+			+			+			+			+			+			+			$^+$			+			+		
G.	Han	irot				+			+			+	La	ttic	e ‡1ø	gorit	hms	;+			+			+			1870)3/2	013	; +

11/90

I. 1. Generalities on lattice basis reduction

Lattice basis reduction - Gram-Schmidt process

- $E_i := \langle b_1, \ldots, b_{i-1} \rangle, \ \pi_{E_i^{\perp}}.$
- Put $b_i^* = b_i \sum_{j < i} \mu_{ij} b_j^* =: \pi_{E_i^{\perp}}(b_i).$
- $\mu_{ij} := (b_i, b_j^*) / \|b_j^*\|^2$.

Lattice basis reduction - Gram-Schmidt process

•
$$E_i := \langle b_1, \ldots, b_{i-1} \rangle, \ \pi_{E_i^{\perp}}.$$

• Put
$$b_i^* = b_i - \sum_{j < i} \mu_{ij} b_j^* =: \pi_{E_i^{\perp}}(b_i).$$

•
$$\mu_{ij} := (b_i, b_j^*) / \|b_j^*\|^2$$
.

Lattice basis reduction - Gram-Schmidt process

•
$$E_i := \langle b_1, \dots, b_{i-1} \rangle, \pi_{E_i^{\perp}}$$
.
• Put $b_i^* = b_i - \sum_{j < i} \mu_{ij} b_j^* =: \pi_{E_i^{\perp}}(b_i)$.
• $\mu_{ij} := (b_i, b_j^*) / ||b_j^*||^2$.

• What is a good basis?

- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := ||b_1||/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := ||b_1||/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$
 - Hermite factor: $HF := ||b_1||/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := \|b_1\|/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := \|b_1\|/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U\in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := \|b_1\|/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- ullet pprox preprocessing of the lattice.

- What is a good basis?
- Geometrically: almost orthogonal;
 - Small orthogonality defect:

$$OD := \frac{\prod_{i=1}^{n} \|b_i\|}{\prod_{i=1}^{n} \|b_i^*\|} = \frac{\prod_{i=1}^{n} \|b_i\|}{\det L} \ge 1.$$

- $||b_i^*||$ decreases slowly with *i*.
- Algorithmically: short vectors;
 - Length defect: $LD_i := \frac{\|b_i\|}{\lambda_i(L)}$.
 - Hermite factor: $HF := \|b_1\|/(\det L)^{1/n}$;
 - SVP approximation factor: $\|b_1\|/\lambda_1(L)$
- Algebraically, $U \in GL_n(\mathbb{Z})$ st. MU is "small".
- \approx preprocessing of the lattice.

Lattice basis reduction – Example

											-
/	1	0	0	0	0	0	0	0	0	7038304916 \	
	0	1	0	0	0	0	0	0	0	6175729875	
	0	0	1	0	0	0	0	0	0	9983710959	
	0	0	0	1	0	0	0	0	0	9161878375	
	0	0	0	0	1	0	0	0	0	9322349340	
	0	0	0	0	0	1	0	0	0	9870475629	
	0	0	0	0	0	0	1	0	0	6280159867	
	0	0	0	0	0	0	0	1	0	2020850175	
	0	0	0	0	0	0	0	0	1	893775148	
	0	0	0	0	0	0	0	0	0	37842496080 /	

Lattice basis reduction – Example

After LLL reduction

Relationship "orthogonal \Leftrightarrow short" through

• Minkowski's second thm :

$$\det L \leq \prod_{i=1}^n \lambda_i(L) \leq \sqrt{n}^n \det L,$$

since $OD / \prod LD_i = \prod_{i=1}^n \lambda_i(L) / \det L$.

• Recall $\lambda_1(L) \geq \min_i \|b_i^*\|$;

• $HF^n = \prod_{i=1}^n \|b_1\| / \|b_i^*\|.$

${\sf Relationship} \ ``orthogonal \Leftrightarrow {\sf short}'' \ {\sf through}$

• Minkowski's second thm :

$$\det L \leq \prod_{i=1}^n \lambda_i(L) \leq \sqrt{n}^n \det L,$$

since $OD / \prod LD_i = \prod_{i=1}^n \lambda_i(L) / \det L$.

• Recall $\lambda_1(L) \geq \min_i \|b_i^*\|;$

• $HF^n = \prod_{i=1}^n \|b_1\| / \|b_i^*\|.$

${\sf Relationship} \ ``orthogonal \Leftrightarrow {\sf short}'' \ {\sf through}$

• Minkowski's second thm :

$$\det L \leq \prod_{i=1}^n \lambda_i(L) \leq \sqrt{n}^n \det L,$$

since
$$OD/\prod LD_i = \prod_{i=1}^n \lambda_i(L)/\det L$$
.

• Recall $\lambda_1(L) \geq \min_i \|b_i^*\|$;

• $HF^n = \prod_{i=1}^n \|b_1\| / \|b_i^*\|.$

Relationship "orthogonal \Leftrightarrow short" through

• Minkowski's second thm :

$$\det L \leq \prod_{i=1}^n \lambda_i(L) \leq \sqrt{n}^n \det L,$$

since $OD/\prod LD_i = \prod_{i=1}^n \lambda_i(L)/\det L$.

• Recall $\lambda_1(L) \geq \min_i \|b_i^*\|$;

• $HF^n = \prod_{i=1}^n \|b_1\| / \|b_i^*\|.$

Relationship "orthogonal \Leftrightarrow short" through

• Minkowski's second thm :

$$\det L \leq \prod_{i=1}^n \lambda_i(L) \leq \sqrt{n}^n \det L,$$

since $OD/\prod LD_i = \prod_{i=1}^n \lambda_i(L)/\det L$.

• Recall $\lambda_1(L) \geq \min_i \|b_i^*\|$;

•
$$HF^n = \prod_{i=1}^n \|b_1\| / \|b_i^*\|.$$

Lattice basis reduction - notations

Notations :

- L a *n*-dim. lattice of \mathbb{R}^n , basis (b_1, \ldots, b_n) ;
- $(u,v) := \sum_{1 \le i \le n} u_i v_i;$
- $\operatorname{vol} L := \sqrt{\operatorname{det}((b_i, b_j))} = |\operatorname{det}(b_i)|;$
- $\|\cdot\|$ is the Euclidean norm, $\|x\| = (x, x)^{1/2}$;
- size of the basis $= \beta := \log \max_{1 \le i \le n} \|b_i\|$

Lattice basis reduction - notations

Notations :

• L a *n*-dim. lattice of \mathbb{R}^n , basis (b_1, \ldots, b_n) ;

•
$$(u, v) := \sum_{1 \le i \le n} u_i v_i;$$

- $\operatorname{vol} L := \sqrt{\operatorname{det}((b_i, b_j))} = |\operatorname{det}(b_i)|;$
- $\|\cdot\|$ is the Euclidean norm, $\|x\|=(x,x)^{1/2};$

• size of the basis $= \beta := \log \max_{1 \le i \le n} \|b_i\|$

Lattice basis reduction – notations

Notations :

• L a *n*-dim. lattice of \mathbb{R}^n , basis (b_1, \ldots, b_n) ;

•
$$(u, v) := \sum_{1 \le i \le n} u_i v_i;$$

•
$$\operatorname{vol} L := \sqrt{\operatorname{det}((b_i, b_j))} = |\operatorname{det}(b_i)|;$$

• $\|\cdot\|$ is the Euclidean norm, $\|x\| = (x, x)^{1/2}$;

• size of the basis $= \beta := \log \max_{1 \le i \le n} \|b_i\|$

Lattice basis reduction – notations

Notations :

• L a *n*-dim. lattice of \mathbb{R}^n , basis (b_1, \ldots, b_n) ;

•
$$(u, v) := \sum_{1 \le i \le n} u_i v_i;$$

- $\operatorname{vol} L := \sqrt{\operatorname{det}((b_i, b_j))} = |\operatorname{det}(b_i)|;$
- $\|\cdot\|$ is the Euclidean norm, $\|x\| = (x, x)^{1/2}$;

• size of the basis $= \beta := \log \max_{1 \le i \le n} \|b_i\|$

Lattice basis reduction – notations

Notations :

• L a *n*-dim. lattice of \mathbb{R}^n , basis (b_1, \ldots, b_n) ;

•
$$(u, v) := \sum_{1 \le i \le n} u_i v_i;$$

- $\operatorname{vol} L := \sqrt{\operatorname{det}((b_i, b_j))} = |\operatorname{det}(b_i)|;$
- $\|\cdot\|$ is the Euclidean norm, $\|x\| = (x, x)^{1/2}$;

• size of the basis
$$= \beta := \log \max_{1 \le i \le n} \|b_i\|$$

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L_i^{\perp}}(b_i, \ldots, b_n)$ to improve $\|b_i^*\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L_i^{\perp}}(b_i, \ldots, b_n)$ to improve $\|b_i^*\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L^{\perp}_{i}}(b_{i},\ldots,b_{n})$ to improve $\|b_{i}^{*}\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L_i^{\perp}}(b_i, \ldots, b_n)$ to improve $\|b_i^*\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L_i^{\perp}}(b_i, \ldots, b_n)$ to improve $\|b_i^*\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.
Lattice basis reduction - general strategy

To make b_i small and orthogonal :

- $||b_i||^2 = ||b_i^*||^2 + ||b_i b_i^*||^2;$
- Work on $\pi_{L_i^{\perp}}(b_i, \ldots, b_n)$ to improve $\|b_i^*\|$.
- Make second term small \Rightarrow size reduction :
 - Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $b_i b_i^*$, $b_i \leftarrow b_i x$.
- \approx (approx-)CVP.

General philosophy:

- size-reduction + reduce projected sublattices;
- ... propagate these reductions on the whole lattice.

Common feature to all lattice basis reduction algorithms.

• Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $t := b_i - b_i^*$;

• Want $\pi_{L_{i-1}^{\perp}}(t)$ close to $\mathbb{Z}b_{i-1}^{*}$, $pprox t_{i-1}b_{i-1}^{*}$

• and $t - t_{i-1}b_{i-1}$ close to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-2}$

• Repeat with $t - t_{i-1}b_{i-1}$ until i = 0.

Algorithm:

• For j from i - 1 downto 1 do

•
$$b_i \leftarrow b_i - \lfloor \mu_{ij} \rfloor b_j$$

• For k from 1 to j - 1 do

•
$$\mu_{ik} \leftarrow \mu_{ik} - \chi_j \mu_{jk}$$

Common feature to all lattice basis reduction algorithms.

- Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $t := b_i b_i^*$;
- Want $\pi_{L_{i-1}^{\perp}}(t)$ close to $\mathbb{Z}b_{i-1}^{*}$, $pprox t_{i-1}b_{i-1}^{*}$
- and $t t_{i-1}b_{i-1}$ close to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-2}$

• Repeat with $t - t_{i-1}b_{i-1}$ until i = 0.

Algorithm:

• For j from i - 1 downto 1 do

•
$$b_i \leftarrow b_i - \lfloor \mu_{ij} \rfloor b_j$$

For *k* from 1 to *j* − 1 do

•
$$\mu_{ik} \leftarrow \mu_{ik} - \chi_j \mu_{jk}$$

Common feature to all lattice basis reduction algorithms.

- Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $t := b_i b_i^*$;
- Want $\pi_{L_{i-1}^{\perp}}(t)$ close to $\mathbb{Z}b_{i-1}^{*}$, $pprox t_{i-1}b_{i-1}^{*}$
- and $t t_{i-1}b_{i-1}$ close to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-2}$

• Repeat with $t - t_{i-1}b_{i-1}$ until i = 0.

Algorithm:

• For j from i - 1 downto 1 do

•
$$b_i \leftarrow b_i - \lfloor \mu_{ij} \rceil b_j$$

• For k from 1 to j - 1 do

•
$$\mu_{ik} \leftarrow \mu_{ik} - \chi_j \mu_{jk}$$

Common feature to all lattice basis reduction algorithms.

- Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $t := b_i b_i^*$;
- Want $\pi_{L_{i-1}^{\perp}}(t)$ close to $\mathbb{Z}b_{i-1}^{*}$, $pprox t_{i-1}b_{i-1}^{*}$
- and $t t_{i-1}b_{i-1}$ close to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-2}$

• Repeat with $t - t_{i-1}b_{i-1}$ until i = 0.

Algorithm:

• For j from i - 1 downto 1 do

•
$$b_i \leftarrow b_i - \lfloor \mu_{ij} \rceil b_j$$

• For k from 1 to j - 1 do

•
$$\mu_{ik} \leftarrow \mu_{ik} - x_j \mu_{jk}$$

Common feature to all lattice basis reduction algorithms.

- Find $x \in L_i := \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-1}$ close to $t := b_i b_i^*$;
- Want $\pi_{L_{i-1}^{\perp}}(t)$ close to $\mathbb{Z}b_{i-1}^{*}$, $pprox t_{i-1}b_{i-1}^{*}$
- and $t t_{i-1}b_{i-1}$ close to $\mathbb{Z}b_1 + \cdots + \mathbb{Z}b_{i-2}$

• Repeat with $t - t_{i-1}b_{i-1}$ until i = 0.

Algorithm:

•
$$b_i \leftarrow b_i - \lfloor \mu_{ij} \rceil b_j$$

For k from 1 to j − 1 do

•
$$\mu_{ik} \leftarrow \mu_{ik} - x_j \mu_{jk}$$

Lattice basis reduction - a panorama

Strong notions

- Minkowski: *b_i* shortest possible;
- HKZ (Hermite-Korkine-Zolotarev):
 - b_1 shortest possible = $\lambda_1(L)$
 - size-reduced
 - $\pi_{L_1}(b_2,\ldots,b_n)$ HKZ reduced

(Very) costly notions, $2^{O(n)}$ for HKZ.

Lattice basis reduction – a panorama (2)

Weaker / cheaper : blockwise algorithms :

- Use k-dim. HKZ to reduce projections of sublattices;
- size-reduced;
- $||b_i^*|| \ge \alpha_k^{1-i} ||b_1^*||.$

Main examples:

- LLL: $\alpha_2 \approx 2/\sqrt{3}$;
- slide, BKZ: $\alpha_k \approx k^{1/k}$;
- Hermite factor $HF = \sqrt{\alpha_k}^{n-1}$;
- Approx-SVP = α_k^{n-1} .

Polynomial time up to $k = O(\log n)$.

I. 2. Lattice basis reduction – algorithms

• Case d = 2, Gauss' algorithm.

- HKZ
- Blockwise algorithms

- Case d = 2, Gauss' algorithm.
- HKZ
- Blockwise algorithms

- Case d = 2, Gauss' algorithm.
- HKZ
- Blockwise algorithms

- Case d = 2, Gauss' algorithm.
- HKZ
- Blockwise algorithms

18/03/2013 25/90

Case d = 2, Gauss' algorithm. Size-reduce + swap.

Case d = 2, Gauss' algorithm. Size-reduce + swap.

18/03/2013 25/90

Analysis:

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

 $\|b_2^*\| \ge \sqrt{3}/2\|b_1^*|$

(a) in time $O(\max(||u||, ||v||)^2)$.

Proof (sketch).

•
$$||u \pm v||^2 \ge ||v||^2 \Rightarrow |(u, v)| \le ||u||^2/2.$$

• If $\|\alpha u + \beta v\|^2 < \|u\|^2$, we get

 $(\alpha^2 - |\alpha\beta| - 1)||u||^2 + \beta^2 ||v||^2 < 0$

hence $(lpha - eta)^2 + |lpha eta| - 1 < 0.$

Analysis:

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

2
$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

 $\|b_2^*\| \ge \sqrt{3}/2\|b_1^*|$

• in time $O(\max(||u||, ||v||)^2)$.

Proof (sketch).

•
$$||u \pm v||^2 \ge ||v||^2 \Rightarrow |(u, v)| \le ||u||^2/2.$$

• If $\|\alpha u + \beta v\|^2 < \|u\|^2$, we get

 $(\alpha^2 - |\alpha\beta| - 1) ||u||^2 + \beta^2 ||v||^2 < 0$

hence $(\alpha - \beta)^2 + |\alpha\beta| - 1 < 0.$

Analysis:

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

2
$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

 $||b_2^*|| \ge \sqrt{3}/2||b_1^*||$

• in time $O(\max(||u||, ||v||)^2)$.

Proof (sketch).

•
$$||u \pm v||^2 \ge ||v||^2 \Rightarrow |(u, v)| \le ||u||^2/2.$$

• If $||\alpha u + \beta v||^2 < ||u||^2$, we get

 $(\alpha^2 - |\alpha\beta| - 1)||u||^2 + \beta^2 ||v||^2 < 0$

hence $(\alpha - \beta)^2 + |\alpha\beta| - 1 < 0.$

Analysis:

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

2
$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

$$\|b_2^*\| \ge \sqrt{3}/2\|b_1^*\|$$

$${igsimus}$$
 in time $O(\max(\|u\|,\|v\|)^2).$

Proof (sketch).

•
$$||u \pm v||^2 \ge ||v||^2 \Rightarrow |(u, v)| \le ||u||^2/2.$$

• If $\|\alpha u + \beta v\|^2 < \|u\|^2$, we get

 $(\alpha^2 - |\alpha\beta| - 1)||u||^2 + \beta^2 ||v||^2 < 0$

hence
$$(\alpha - \beta)^2 + |\alpha\beta| - 1 < 0$$
.

Analysis:

1

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

2
$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

$$\|b_2^*\| \ge \sqrt{3}/2\|b_1^*\|$$

$${igsim}$$
 in time $O(\max(\|u\|,\|v\|)^2).$

Proof (sketch).

•
$$||u \pm v||^2 \ge ||v||^2 \Rightarrow |(u, v)| \le ||u||^2/2.$$

• If $||\alpha u + \beta v||^2 < ||u||^2$, we get

$$(\alpha^2 - |\alpha\beta| - 1) ||u||^2 + \beta^2 ||v||^2 < 0$$

hence $(\alpha - \beta)^2 + |\alpha\beta| - 1 < 0$.

Analysis:

Theorem. Starting with (u, v), Gauss algorithm returns (b_1, b_2) st.

2
$$||b_1|| = \lambda_1(L), ||b_2|| = \lambda_2(L)$$

$$\|b_2^*\| \ge \sqrt{3}/2\|b_1^*\|$$

$${igsim}$$
 in time $O(\max(\|u\|,\|v\|)^2).$

Proof (sketch).

•
$$\|u \pm v\|^2 \ge \|v\|^2 \Rightarrow |(u, v)| \le \|u\|^2/2.$$

• If $\|\alpha u + \beta v\|^2 < \|u\|^2$, we get
 $(\alpha^2 - |\alpha\beta| - 1)\|u\|^2 + \beta^2 \|v\|^2 < 0$

hence
$$(\alpha - \beta)^2 + |\alpha\beta| - 1 < 0$$
.

Complexity of Gauss' algorithm (sketch):

- Current step \neq (u', v') \leftarrow ($v \pm u$, u);
- Otherwise, $||u'||^2 \le ||v||^2/3$
- \Rightarrow logarithmic number of steps
- Cost of one step $O(\log ||v_i|| (\log ||u_i|| ||v_i|| \log ||u_i||^2 + 1))$
- Overall cost

$$\sum_{i} O(\log \|v_i\| (\log \|v_i\| - \log \|u_i\| + 1))$$

Complexity of Gauss' algorithm (sketch):

- Current step \neq (u', v') \leftarrow ($v \pm u$, u);
- Otherwise, $\|u'\|^2 \le \|v\|^2/3$
- \Rightarrow logarithmic number of steps
- Cost of one step $O(\log ||v_i|| (\log ||u_i|| ||v_i|| \log ||u_i||^2 + 1))$
- Overall cost

$$\sum_{i} O(\log \|v_i\| (\log \|v_i\| - \log \|u_i\| + 1))$$

Complexity of Gauss' algorithm (sketch):

- Current step \neq (u', v') \leftarrow ($v \pm u$, u);
- Otherwise, $||u'||^2 \le ||v||^2/3$
- ullet \Rightarrow logarithmic number of steps
- Cost of one step $O(\log ||v_i|| (\log ||u_i|| ||v_i|| \log ||u_i||^2 + 1))$

• Overall cost

$$\sum_{i} O(\log \|v_i\| (\log \|v_i\| - \log \|u_i\| + 1))$$

Complexity of Gauss' algorithm (sketch):

- Current step \neq (u', v') \leftarrow ($v \pm u$, u);
- Otherwise, $\|u'\|^2 \le \|v\|^2/3$
- ullet \Rightarrow logarithmic number of steps
- Cost of one step $O(\log ||v_i|| (\log ||u_i|| ||v_i|| \log ||u_i||^2 + 1))$
- Overall cost

$$\sum_i O(\log \|v_i\| (\log \|v_i\| - \log \|u_i\| + 1))$$

Summary of Gauss' algorithm:

- Start with any (u, v) linearly independent;
- **2** Return (b_1, b_2) s.t. $||b_2^*|| \ge \sqrt{3}/2||b_1^*||$
- Complexity quadratic (quasi-linear)

NB. (2) is a worst case profile.

Summary of Gauss' algorithm:

- Start with any (u, v) linearly independent;
- **2** Return (b_1, b_2) s.t. $||b_2^*|| \ge \sqrt{3}/2||b_1^*||$
- Complexity quadratic (quasi-linear)

NB. (2) is a worst case profile.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

- $\|b_1\| = \lambda_1(L);$
- size-reduced;
- $\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$ again size-reduced.

- Need SVP oracle;
- Recursive definition ⇒ Recursive algorithm;
- d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

- $||b_1|| = \lambda_1(L);$
- size-reduced;
- $\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$ again size-reduced.

- Need SVP oracle;
- Recursive definition ⇒ Recursive algorithm;
- d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

•
$$\|b_1\| = \lambda_1(L);$$

- size-reduced;
- $\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$ again size-reduced.

- Need SVP oracle;
- Recursive definition ⇒ Recursive algorithm;
- d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

•
$$\|b_1\| = \lambda_1(L);$$

- size-reduced;
- $\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$ again size-reduced.

- Need SVP oracle;
- Recursive definition ⇒ Recursive algorithm;
- d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

•
$$\|b_1\| = \lambda_1(L);$$

•
$$\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$$
 again size-reduced.

Remarks:

- Need SVP oracle;
- Recursive definition \Rightarrow Recursive algorithm;

• d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

•
$$||b_1|| = \lambda_1(L);$$

•
$$\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$$
 again size-reduced.

- Need SVP oracle;
- Recursive definition \Rightarrow Recursive algorithm;
- d = 1 is trivial.

•
$$(b_1, \ldots, b_n)$$
 HKZ reduced :

•
$$||b_1|| = \lambda_1(L);$$

•
$$\pi_{L_1^{\perp}}(b_2,\ldots,b_n)$$
 again size-reduced.

- Need SVP oracle;
- Recursive definition \Rightarrow Recursive algorithm;
- d = 1 is trivial.

• Let
$$e_1 = SVP(L)$$
.

- $(e_1, e_2, \ldots, e_n) \leftarrow Basis(e_1, b_1, \ldots, b_n);$
- get T with $\left(\pi_{L_1^{\perp}}(e_2), \ldots, \pi_{L_1^{\perp}}(e_n)\right) \cdot T$ HKZ-reduced;
- Size-reduce $e_1, (e_2, \ldots, e_n)T$.
- Return product of transformation matrices of step 2, 3, 4.
- Let $e_1 = SVP(L)$.
- $(e_1, e_2, \ldots, e_n) \leftarrow Basis(e_1, b_1, \ldots, b_n);$
- get T with $\left(\pi_{L_1^{\perp}}(e_2), \ldots, \pi_{L_1^{\perp}}(e_n)\right) \cdot T$ HKZ-reduced;
- Size-reduce $e_1, (e_2, \ldots, e_n)T$.
- Return product of transformation matrices of step 2, 3, 4.

- Let $e_1 = SVP(L)$.
- $(e_1, e_2, \ldots, e_n) \leftarrow Basis(e_1, b_1, \ldots, b_n);$
- get T with $\left(\pi_{L_1^{\perp}}(e_2), \ldots, \pi_{L_1^{\perp}}(e_n)\right) \cdot T$ HKZ-reduced;
- Size-reduce *e*₁, (*e*₂,..., *e_n*)*T*.
- Return product of transformation matrices of step 2, 3, 4.

- Let $e_1 = SVP(L)$.
- $(e_1, e_2, \ldots, e_n) \leftarrow Basis(e_1, b_1, \ldots, b_n);$
- get T with $\left(\pi_{L_1^{\perp}}(e_2), \ldots, \pi_{L_1^{\perp}}(e_n)\right) \cdot T$ HKZ-reduced;
- Size-reduce $e_1, (e_2, ..., e_n) T$.

• Return product of transformation matrices of step 2, 3, 4.

- Let $e_1 = SVP(L)$.
- $(e_1, e_2, \ldots, e_n) \leftarrow \textit{Basis}(e_1, b_1, \ldots, b_n);$
- get T with $\left(\pi_{L_1^{\perp}}(e_2), \ldots, \pi_{L_1^{\perp}}(e_n)\right) \cdot T$ HKZ-reduced;
- Size-reduce $e_1, (e_2, \ldots, e_n)T$.
- Return product of transformation matrices of step 2, 3, 4.

Analysis:

Theorem. Starting with (e_1, \ldots, e_n) , HKZ algorithm returns (b_1, \ldots, b_n) st.

$$\|b_1\| = \lambda_1(L)$$

$$\|b_1\|/\|b_n^*\| = O(n^{(\log n)/4 + 1/2})$$

• in time
$$2^{O(n)}$$
.

More generally, (3) implies:

$$||b_i^*|| \approx \exp(\log^2(n-i+1)/4)||b_n^*||.$$

Analysis:

Theorem. Starting with (e_1, \ldots, e_n) , HKZ algorithm returns (b_1, \ldots, b_n) st.

- $\|b_1\| = \lambda_1(L)$
- $\|b_1\|/\|b_n^*\| = O(n^{(\log n)/4 + 1/2})$
- (a) in time $2^{O(n)}$.

More generally, (3) implies:

$$||b_i^*|| \approx \exp(\log^2(n-i+1)/4)||b_n^*||.$$

Analysis:

Theorem. Starting with (e_1, \ldots, e_n) , HKZ algorithm returns (b_1, \ldots, b_n) st.

$$||b_1|| = \lambda_1(L)$$

$$\|b_1\|/\|b_n^*\| = O(n^{(\log n)/4 + 1/2})$$

More generally, (3) implies:

$$||b_i^*|| \approx \exp(\log^2(n-i+1)/4)||b_n^*||.$$

Analysis:

Theorem. Starting with (e_1, \ldots, e_n) , HKZ algorithm returns (b_1, \ldots, b_n) st.

$$\|b_1\| = \lambda_1(L)$$

3
$$||b_1||/||b_n^*|| = O(n^{(\log n)/4 + 1/2})$$

More generally, (3) implies:

$$||b_i^*|| \approx \exp(\log^2(n-i+1)/4)||b_n^*||.$$

Lattice basis reduction - blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim *k*-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_i^{\perp}}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $||b_i^*||$.

Lattice basis reduction – blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim *k*-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_i^{\perp}}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $||b_i^*||$.

Lattice basis reduction – blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim k-oracle over $\pi_{L_j^{\perp}}(b_{j+1},\ldots,b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_i^{\perp}}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $||b_i^*||$.

Lattice basis reduction - blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim k-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_i^{\perp}}(b_{j+1}, \ldots, b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $\|b_i^*\|$.

Lattice basis reduction - blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim k-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing j: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L^{\perp}_{i}}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $\|b_i^*\|$.

Lattice basis reduction – blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim k-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_j^\perp}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $||b_i^*||$.

Lattice basis reduction - blockwise algorithms overview

- Use a "dim k"-oracle : Gauss (k = 2), or HKZ (bounded k, or k ≈ log n);
- Use dim k-oracle over $\pi_{L_j^{\perp}}(b_{j+1}, \ldots, b_{j+k})$, for some values of j;
- Choosing *j*: adaptive versions / non-adaptive ones
- Halting criterion = no room for foreseeable improvement.
- ... hence $\pi_{L_i^{\perp}}(b_{j+1},\ldots,b_{j+k})$ almost HKZ-reduced for all j
- ... hence bounds on $||b_i^*||$.

- LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful position);
- Schnorr semi-2ℓ (1987) : k = 2ℓ, HKZ, adaptive (j = smallest useful multiple of ℓ) ;
- Schnorr-Euchner's BKZ (1994) : k = ℓ, HKZ, non adaptive (j = step mod n).
- Slide-reduction (Gama-Nguyen, 2008) : HKZ, adaptive, more involved.

- LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful position);
- Schnorr semi-2 ℓ (1987) : $k = 2\ell$, HKZ, adaptive (j = smallest useful multiple of ℓ) ;
- Schnorr-Euchner's BKZ (1994) : $k = \ell$, HKZ, non adaptive (j = step mod n).
- Slide-reduction (Gama-Nguyen, 2008) : HKZ, adaptive, more involved.

- LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful position);
- Schnorr semi-2ℓ (1987) : k = 2ℓ, HKZ, adaptive (j = smallest useful multiple of ℓ);
- Schnorr-Euchner's BKZ (1994) : $k = \ell$, HKZ, non adaptive (j = step mod n).
- Slide-reduction (Gama-Nguyen, 2008) : HKZ, adaptive, more involved.

- LLL (1982) : k = 2, Gauss, adaptive (j = smallest useful position);
- Schnorr semi-2ℓ (1987) : k = 2ℓ, HKZ, adaptive (j = smallest useful multiple of ℓ);
- Schnorr-Euchner's BKZ (1994) : k = ℓ, HKZ, non adaptive (j = step mod n).
- Slide-reduction (Gama-Nguyen, 2008) : HKZ, adaptive, more involved.

[LLL82] A basis (b_1, \ldots, b_n) is δ -LLL reduced ($\delta < 1$) iff. (b_1, \ldots, b_n) is size-reduced ($\pi_{L_i^{\perp}}(b_i, b_{i+1})$) is almost Gauss-reduced. (2) (with (1)) \Leftrightarrow Lovasz' condition

$$\begin{aligned} \|b_i^*\|^2 &\leq \|\pi_{L_{i-1}^{\perp}}(b_{i+1})\|^2 \\ &= \|b_{i+1}^* + \mu_{(i+1)i}b_i^*\|^2 \\ &= \|b_{i+1}^*\|^2 + \mu_{(i+1)i}^2\|b_i^*\|^2 \end{aligned}$$

Weaker Siegel condition

$(\delta - 1/4) \|b_i^*\|^2 \le \|b_{i+1}^*\|^2.$

Geometric decrease, $\alpha = \sqrt{\delta - 1/4} < \sqrt{3}/2$

Lattice basis reduction - LLL reduction

[LLL82] A basis (b_1, \ldots, b_n) is δ -LLL reduced $(\delta < 1)$ iff.

- (b_1, \ldots, b_n) is size-reduced
- 2 $\pi_{L_i^{\perp}}(b_i, b_{i+1})$ is almost Gauss-reduced.
- (2) (with (1)) \Leftrightarrow Lovasz' condition

$$\begin{split} \delta \|b_{i}^{*}\|^{2} &\leq \|\pi_{L_{i-1}^{\perp}}(b_{i+1})\|^{2} \\ &= \|b_{i+1}^{*} + \mu_{(i+1)i}b_{i}^{*}\|^{2} \\ &= \|b_{i+1}^{*}\|^{2} + \mu_{(i+1)i}^{2}\|b_{i}^{*}\|^{2} \end{split}$$

Weaker Siegel condition

$$(\delta - 1/4) \|b_i^*\|^2 \leq \|b_{i+1}^*\|^2.$$

Geometric decrease,
$$\alpha = \sqrt{\delta - 1/4} < \sqrt{3}/2$$

G. Hanrot

Lattice algorithms

Lattice basis reduction - LLL reduction

[LLL82] A basis
$$(b_1, \ldots, b_n)$$
 is δ -LLL reduced ($\delta < 1$) iff.

(
$$b_1, \ldots, b_n$$
) is size-reduced

 $\pi_{L^{\perp}_{i}}(b_{i}, b_{i+1})$ is almost Gauss-reduced.

(2) (with (1)) \Leftrightarrow Lovasz' condition

$$egin{aligned} \|b_i^*\|^2 &\leq & \|\pi_{L_{i-1}^{\perp}}(b_{i+1})\|^2 \ &= & \|b_{i+1}^*+\mu_{(i+1)i}b_i^*\|^2 \ &= & \|b_{i+1}^*\|^2+\mu_{(i+1)i}^2\|b_i^*\|^2, \end{aligned}$$

Weaker Siegel condition

$$(\delta - 1/4) \|b_i^*\|^2 \le \|b_{i+1}^*\|^2.$$

Geometric decrease,
$$\alpha = \sqrt{\delta - 1/4} < \sqrt{3}/2$$

G. Hanrot

Lattice algorithms

Lattice basis reduction - LLL reduction

[LLL82] A basis
$$(b_1, \ldots, b_n)$$
 is δ -LLL reduced ($\delta < 1$) iff.
(b_1, \ldots, b_n) is size-reduced

2 $\pi_{L_i^{\perp}}(b_i, b_{i+1})$ is almost Gauss-reduced.

(2) (with (1)) \Leftrightarrow Lovasz' condition

$$egin{aligned} \|b_i^*\|^2 &\leq & \|\pi_{L_{i-1}^{\perp}}(b_{i+1})\|^2 \ &= & \|b_{i+1}^*+\mu_{(i+1)i}b_i^*\|^2 \ &= & \|b_{i+1}^*\|^2+\mu_{(i+1)i}^2\|b_i^*\|^2, \end{aligned}$$

Weaker Siegel condition

$$(\delta - 1/4) \|b_i^*\|^2 \leq \|b_{i+1}^*\|^2.$$

Geometric decrease, $\alpha=\sqrt{\delta-1/4}<\sqrt{3}/2.$

G. Hanrot

Lattice algorithms

Adaptive, oracle = Gauss.

② While $j \le n-1$ do

If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$

• else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do.

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- ③ If $\pi_{L_{i-1}^{\perp}}(b_j), \pi_{L_{i-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do.

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$

• else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do.

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do.

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$
- End do.
- Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$
- End do.
- Size-reduce the basis.

Actual LLL :

• Reduce \rightarrow one Gauss step, i.e. size-reduce + swap

 Full size-reduction of b_j wrt b₁,..., b_{j-1} after each Gauss step.

Adaptive, oracle = Gauss.

$$\bigcirc j \leftarrow 1$$

- **2** While $j \leq n-1$ do
- If $\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})$ (almost) reduced, then $j \leftarrow j+1$
- else Reduce $(\pi_{L_{j-1}^{\perp}}(b_j), \pi_{L_{j-1}^{\perp}}(b_{j+1})), j \leftarrow j-1.$

End do.

Size-reduce the basis.

- Reduce \rightarrow one Gauss step, i.e. size-reduce + swap
- Full size-reduction of b_j wrt b_1, \ldots, b_{j-1} after each Gauss step.

Lattice basis reduction – LLL theorem

Theorem. On input $E = (e_1, \ldots, e_n)$ of size β , the δ -LLL algorithm computes a $\delta - LLL$ reduced basis (b_1, \ldots, b_n) in time $O(n^2\beta)$ steps of cost $O(n^4(\beta + \log n)^2)$ such that

•
$$\|b_i^*\| \ge \sqrt{\delta - 1/4} \|b_{i-1}^*\|$$
,

- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$,
- (Hermite factor) $\mathit{HF} \leq (\delta 1/4)^{(n-1)/4}$

 \Rightarrow Can solve gap-SVP with gap $2^{O(n)}$.

Lattice basis reduction – LLL theorem

Theorem. On input $E = (e_1, \ldots, e_n)$ of size β , the δ -LLL algorithm computes a $\delta - LLL$ reduced basis (b_1, \ldots, b_n) in time $O(n^2\beta)$ steps of cost $O(n^4(\beta + \log n)^2)$ such that

- $\|b_i^*\| \ge \sqrt{\delta 1/4} \|b_{i-1}^*\|$,
- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$,
- (Hermite factor) $HF \leq (\delta 1/4)^{(n-1)/4}$

 \Rightarrow Can solve gap-SVP with gap $2^{O(n)}$.

Lattice basis reduction - LLL theorem

Theorem. On input $E = (e_1, \ldots, e_n)$ of size β , the δ -LLL algorithm computes a $\delta - LLL$ reduced basis (b_1, \ldots, b_n) in time $O(n^2\beta)$ steps of cost $O(n^4(\beta + \log n)^2)$ such that

•
$$\|b_i^*\| \ge \sqrt{\delta - 1/4} \|b_{i-1}^*\|$$
,

- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$,
- (Hermite factor) $HF \leq (\delta 1/4)^{(n-1)/4}$.
- \Rightarrow Can solve gap-SVP with gap $2^{O(n)}$.

Lattice basis reduction - LLL theorem

Proof. Want to prove:

- **1** $||b_i^*|| \ge \sqrt{\delta 1/4} ||b_{i-1}^*||$
- (approx-SVP) $||b_1|| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$
- $\textcircled{O} (\text{Hermite factor}) \|b_1\| \leq (\delta 1/4)^{(n-1)/4} \det L$

• First one follows by algorithm;

- 2. : $\lambda_1(L) \ge \min_{1 \le i \le n} \|b_i^*\|;$
- Third one : $\|b_1^*\| \leq \sqrt{\delta 1/4}^{i-1} \|b_i^*\|$

Lattice basis reduction – LLL theorem

Proof. Want to prove:

- **1** $\|b_i^*\| \ge \sqrt{\delta 1/4} \|b_{i-1}^*\|$
- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$
- **③** (Hermite factor) $\|b_1\| \leq (\delta 1/4)^{(n-1)/4} \det L$
 - First one follows by algorithm;
 - 2. : $\lambda_1(L) \ge \min_{1 \le i \le n} \|b_i^*\|;$
 - Third one : $\|b_1^*\| \leq \sqrt{\delta 1/4}^{i-1} \|b_i^*\|$

Lattice basis reduction - LLL theorem

Proof. Want to prove:

- **1** $||b_i^*|| \ge \sqrt{\delta 1/4} ||b_{i-1}^*||$
- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$
- **③** (Hermite factor) $\|b_1\| \leq (\delta 1/4)^{(n-1)/4} \det L$
 - First one follows by algorithm;
 - 2. : $\lambda_1(L) \ge \min_{1 \le i \le n} \|b_i^*\|;$
 - Third one : $\|b_1^*\| \leq \sqrt{\delta 1/4}^{i-1} \|b_i^*\|$

Lattice basis reduction - LLL theorem

Proof. Want to prove:

- **1** $||b_i^*|| \ge \sqrt{\delta 1/4} ||b_{i-1}^*||$
- (approx-SVP) $\|b_1\| \le (\delta 1/4)^{(n-1)/2} \lambda_1(L)$
- **③** (Hermite factor) $\|b_1\| \leq (\delta 1/4)^{(n-1)/4} \det L$

• First one follows by algorithm;

• 2. :
$$\lambda_1(L) \geq \min_{1 \leq i \leq n} \|b_i^*\|;$$

• Third one :
$$\|b_1^*\| \leq \sqrt{\delta - 1/4}^{i-1} \|b_i^*\|$$

• When swap

$$(b'_i, b'_{i+1}) \to (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L_{i-1}^{\perp}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

• Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.

• Put $V = \prod_{i=1}^n \det(b_1, \dots, b_i)^2$

One has

$$V' = V rac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

 $V'/V = ||b_i'^*||^2/||b_i^*||^2 \le \delta$

• When swap

$$(b'_{i}, b'_{i+1}) \rightarrow (b_{i+1}, b_{i}) \Rightarrow b'^{*}_{i} = \pi_{L^{\perp}_{i-1}}(b_{i}) = b^{*}_{i+1} + \mu_{i+1,i}b^{*}_{i}$$

- Hence $\|b_i'^*\|^2 \le \delta \|b_i^*\|^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \dots, b_i)^2$
- One has

$$V' = V \frac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

 $V'/V = ||b_i'^*||^2/||b_i^*||^2 \le \delta$

• When swap

$$(b'_i, b'_{i+1}) \rightarrow (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L^{\perp}_{i-1}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

- Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$

One has

$$V' = V \frac{\det(b_1, \ldots, b_{i-1}, b_i')^2}{\det(b_1, \ldots, b_{i-1}, b_i)^2}$$

hence

$$V'/V = ||b_i'^*||^2/||b_i^*||^2 \le \delta$$

• When swap

$$(b'_i, b'_{i+1}) \rightarrow (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L^{\perp}_{i-1}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

- Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V' = V rac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

 $V'/V = ||b_i'^*||^2/||b_i^*||^2 \le \delta$

• When swap

$$(b'_i, b'_{i+1}) \rightarrow (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L^{\perp}_{i-1}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

- Hence $\|b_i'^*\|^2 \le \delta \|b_i^*\|^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V' = V rac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

$$V'/V = \|b_i'^*\|^2/\|b_i^*\|^2 \le \delta$$

• $V \in \mathbb{Z} \Rightarrow \log V_0 / \log \delta$ steps; • But $V_0 \le \prod_{i=1}^n \|b_i\|^{2(n-i+1)}$ (Hadamard bound) • Thus $O(n^2 \log \max \|b_i\|)$ steps.

• When swap

$$(b'_i, b'_{i+1}) \rightarrow (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L^{\perp}_{i-1}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

- Hence $\|b_i'^*\|^2 \le \delta \|b_i^*\|^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V' = V rac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

$$V'/V = \|b_i'^*\|^2/\|b_i^*\|^2 \le \delta$$

• $V \in \mathbb{Z} \Rightarrow \log V_0 / \log \delta$ steps; • But $V_0 \le \prod_{i=1}^n \|b_i\|^{2(n-i+1)}$ (Hadamard bound) • Thus $O(n^2 \log \max \|b_i\|)$ steps.

• When swap

$$(b'_i, b'_{i+1}) \rightarrow (b_{i+1}, b_i) \Rightarrow b'^*_i = \pi_{L^{\perp}_{i-1}}(b_i) = b^*_{i+1} + \mu_{i+1,i}b^*_i$$

- Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V' = V rac{\det(b_1, \dots, b_{i-1}, b'_i)^2}{\det(b_1, \dots, b_{i-1}, b_i)^2}$$

hence

$$V'/V = \|b_i'^*\|^2/\|b_i^*\|^2 \le \delta$$

•
$$V \in \mathbb{Z} \Rightarrow \log V_0 / \log \delta$$
 steps;
• But $V_0 \le \prod_{i=1}^n \|b_i\|^{2(n-i+1)}$ (Hadamard bound)
• Thus $O(n^2 \log \max \|b_i\|)$ steps.

• When swap

$$(b'_{i}, b'_{i+1}) \rightarrow (b_{i+1}, b_{i}) \Rightarrow b'^{*}_{i} = \pi_{L^{\perp}_{i-1}}(b_{i}) = b^{*}_{i+1} + \mu_{i+1,i}b^{*}_{i}$$

- Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V'=Vrac{\det(b_1,\ldots,b_{i-1},b_i')^2}{\det(b_1,\ldots,b_{i-1},b_i)^2}$$

hence

$$V'/V = \|b_i'^*\|^2/\|b_i^*\|^2 \le \delta$$

•
$$V \in \mathbb{Z} \Rightarrow \log V_0 / \log \delta$$
 steps;
• But $V_0 \leq \prod_{i=1}^n \|b_i\|^{2(n-i+1)}$ (Hadamard bound)
• Thus $O(n^2 \log \max \|b_i\|)$ steps.

G. Hanrot

Lattice algorithms

• When swap

$$(b'_{i}, b'_{i+1}) \rightarrow (b_{i+1}, b_{i}) \Rightarrow b'^{*}_{i} = \pi_{L^{\perp}_{i-1}}(b_{i}) = b^{*}_{i+1} + \mu_{i+1,i}b^{*}_{i}$$

- Hence $||b_i'^*||^2 \le \delta ||b_i^*||^2$.
- Put $V = \prod_{i=1}^n \det(b_1, \ldots, b_i)^2$
- One has

$$V'=Vrac{\det(b_1,\ldots,b_{i-1},b_i')^2}{\det(b_1,\ldots,b_{i-1},b_i)^2}$$

hence

$$V'/V = \|b_i'^*\|^2/\|b_i^*\|^2 \le \delta$$

•
$$V \in \mathbb{Z} \Rightarrow \log V_0 / \log \delta$$
 steps;
• But $V_0 \leq \prod_{i=1}^n \|b_i\|^{2(n-i+1)}$ (Hadamard bound)
• Thus $O(n^2 \log \max \|b_i\|)$ steps.

G. Hanrot

Lattice algorithms

- Cost : $O(n^3)$ steps; cost of one step close to GSO cost?
 - Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

- $(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$
- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest $\|b_i\|$ throughout the algorithm;
- can prove $\beta' = O(\log n + \beta)$
- Overall O(n² · n²(log n + β)²) = O(n⁴β²) in the typical case β > log n.

- Cost : $O(n^3)$ steps; cost of one step close to GSO cost?
 - Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

- $(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$
- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest $\|b_i\|$ throughout the algorithm;
- can prove $\beta' = O(\log n + \beta)$
- Overall O(n² · n²(log n + β)²) = O(n⁴β²) in the typical case β > log n.

• Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

- $(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$
- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest $\|b_i\|$ throughout the algorithm;
- can prove $\beta' = O(\log n + \beta)$
- Overall O(n² · n²(log n + β)²) = O(n⁴β²) in the typical case β > log n.

• Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

•
$$(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$$

- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest ||b_i|| throughout the algorithm;
- can prove $eta' = O(\log n + eta)$
- Overall O(n² · n²(log n + β)²) = O(n⁴β²) in the typical case β > log n.

• Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

•
$$(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$$

- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest $\|b_i\|$ throughout the algorithm;

• can prove
$$eta' = O(\log n + eta)$$

• Overall $O(n^2 \cdot n^2(\log n + \beta)^2) = O(n^4\beta^2)$ in the typical case $\beta > \log n$.

• Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

•
$$(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$$

- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta'^{2n})$ (works for μ_{ij} too).
- where β' is the largest $||b_i||$ throughout the algorithm;
- ullet can prove $eta'=O(\log n+eta)$
- Overall $O(n^2 \cdot n^2(\log n + \beta)^2) = O(n^4\beta^2)$ in the typical case $\beta > \log n$.

• Rational arithmetic \Rightarrow control denominators;

•
$$b_i^* = b_i + \sum_{j < i} y_j b_j$$
.

•
$$(b_i, b_j) + \sum_{k < i} y_k(b_k, b_j) = 0 \ (= (b_i^*, b_j))$$

- ... hence $\mathbf{y} = -B_{i-1}^t b_i / \det B_{i-1}^t B_{i-1}$
- Denominators = $O(\beta^{\prime 2n})$ (works for μ_{ij} too).
- where β' is the largest $||b_i||$ throughout the algorithm;

• can prove
$$eta' = O(\log n + eta)$$

• Overall $O(n^2 \cdot n^2(\log n + \beta)^2) = O(n^4\beta^2)$ in the typical case $\beta > \log n$.

Lattice basis reduction - LLL, recent progresses

- Floating-point GSO;
- Quasi-linear LLL.

Lattice basis reduction – LLL, recent results

${\sf Floating-point}\ {\sf GSO}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d + \beta))$.

Lattice basis reduction – LLL, recent results

${\sf Floating}{\text{-}{\sf point GSO}}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d + \beta))$.

Lattice basis reduction – LLL, recent results

 ${\sf Floating}{\text{-}{\sf point GSO}}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d + \beta))$.
${\sf Floating}{\text{-}{\sf point GSO}}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d+\beta))$.

 ${\sf Floating-point}\ {\sf GSO}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d+\beta))$.

 ${\sf Floating}{\text{-}point GSO}:$

- GSO expensive (big rational / integer computations);
- Need little information $(\lfloor \mu_{ij} \rceil)$;
- Use approximation / floating-point computations;
- ... but numerically unstable.
- Recompute GSO when instability is detected;
- Use a precise fpa model.

Theorem (Nguyen-Stehlé). LLL can be done with fpa in precision O(d), giving a cost $O(d^4\beta(d+\beta))$.

Quasi-linear LLL :

- Novocin-Stehlé-Villard, inspired of fast gcd might be practical;
- H.-Pujol-Stehlé, using BKZ analysis and fast Gauss' algorithm;
- Schnorr, choosing best index *j* for LLL at each step + fast Gauss.

Theorem (Novocin-Stehlé-Villard). almost-LLL can be done in time $\tilde{O}(n^5\beta + n^{\omega+1}\beta)$.

Lattice basis reduction – LLL in practice

- (old) Folklore: LLL performs better than analysis;
- Often finds first minimum.

Thorough experimental studies by Nguyen and Stehlé (2007).

- In small dimensions \leq 20, it works more or less;
- Otherwise, SVP approx factor $\approx (1.04)^n$.
- Analysis is sharp.

Lattice basis reduction – BKZ

 (b_1, \ldots, b_n) is k-BKZ reduced if:

- (b_1, \ldots, b_n) size-reduced;
- For all *i*, $\pi_{L_i^{\perp}}(b_i, \ldots, b_{\min(n,i+k-1)})$ is HKZ-reduced.

Use a *k*-HKZ oracle.

Theorem(Schnorr, 1994) If (b_1, \ldots, b_n) is k-BKZ reduced, then

•
$$\|b_i\| \leq k^{\frac{n-1}{k-1}} \frac{i+3}{4} \lambda_i(L).$$

•
$$\|b_i^*\| \leq k^{\frac{n-1}{k-1}}\lambda_i(L).$$

•
$$HF \leq \sqrt{k^{\frac{n}{k-1}}}$$
.

Proof. Combine Minkowski inequalities over projected sublattices.

Strategies :

• LLL-like: HKZ-reduce at the smallest possible *i*;

• Schnorr-Euchner: reduce at 1, 2, 3, ..., n - k + 1, 1, 2, 3, Cost :

- LLL-type arguments do not seem to work;
- hard to control a potential when reduction occurs;
- Does the LLL strategy even terminate?
- Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

- LLL-like: HKZ-reduce at the smallest possible *i*;
- Schnorr-Euchner: reduce at 1, 2, 3, ..., *n*−*k*+1, 1, 2, 3,
- LLL-type arguments do not seem to work;
- hard to control a potential when reduction occurs;
- Does the LLL strategy even terminate?
- Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

- LLL-like: HKZ-reduce at the smallest possible *i*;
- Schnorr-Euchner: reduce at 1, 2, 3, ..., n k + 1, 1, 2, 3, Cost :
 - LLL-type arguments do not seem to work;
 - hard to control a potential when reduction occurs;
 - Does the LLL strategy even terminate?
 - Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

- LLL-like: HKZ-reduce at the smallest possible *i*;
- Schnorr-Euchner: reduce at 1, 2, 3, ..., n k + 1, 1, 2, 3, Cost :
 - LLL-type arguments do not seem to work;
 - hard to control a potential when reduction occurs;
 - Does the LLL strategy even terminate?
 - Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

- LLL-like: HKZ-reduce at the smallest possible *i*;
- Schnorr-Euchner: reduce at 1, 2, 3, ..., n k + 1, 1, 2, 3, Cost :
 - LLL-type arguments do not seem to work;
 - hard to control a potential when reduction occurs;
 - Does the LLL strategy even terminate?
 - Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

- LLL-like: HKZ-reduce at the smallest possible *i*;
- Schnorr-Euchner: reduce at 1, 2, 3, ..., n k + 1, 1, 2, 3, Cost :
 - LLL-type arguments do not seem to work;
 - hard to control a potential when reduction occurs;
 - Does the LLL strategy even terminate?
 - Schnorr-Euchner behaves well in practice, can prove 2^{O(n)} bound.

A dual strategy :

• Stop after a polynomial number of steps;

• ... but what is the quality of the basis? **Theorem.** After $\mathcal{O}\left(\frac{n^3}{k^2}(\log n + \log \log \beta)\right)$ calls to HKZ_k , BKZ_k returns a basis (b_1, \ldots, b_n) of L such that:

$$\|b_1\| \le 2k^{\frac{n-1}{2(k-1)}+\frac{3}{2}} (\det L)^{1/n}$$

A dual strategy :

- Stop after a polynomial number of steps;
- ... but what is the quality of the basis?

Theorem. After $\mathcal{O}\left(\frac{n^3}{k^2}(\log n + \log \log \beta)\right)$ calls to HKZ_k , BKZ_k returns a basis (b_1, \ldots, b_n) of *L* such that:

$$\|b_1\| \le 2k^{\frac{n-1}{2(k-1)}+\frac{3}{2}} (\det L)^{1/n}$$

A dual strategy :

- Stop after a polynomial number of steps;
- ... but what is the quality of the basis?

Theorem. After $\mathcal{O}\left(\frac{n^3}{k^2}(\log n + \log \log \beta)\right)$ calls to HKZ_k , BKZ_k returns a basis (b_1, \ldots, b_n) of L such that:

$$\|b_1\| \le 2k^{\frac{n-1}{2(k-1)}+\frac{3}{2}} (\det L)^{1/n}$$

Lattice basis reduction – BKZ, a picture

Progress made during the execution of BKZ

48/90

Lattice basis reduction – BKZ, a picture

Progress made during the execution of BKZ

48/90

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

18/03/2013

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

G. Hanrot

- Idea: sandpile model;
- Let $x_i := \log \|b_i^*\|$.

- Idea: sandpile model;
- Let $x_i := \log ||b_i^*||$.

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

$$X_j = A_j X_j + \Gamma_j$$

with $j = n - k + 1$

A full tour: $X' \leftarrow AX + \Gamma$

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

$$X_j = A_j X_j + \Gamma_j$$

with $j = n - k + 1$

A full tour: $X' \leftarrow AX + \Gamma$

$$X = (x_1, \dots, x_n)^T$$

$$X_{0.5} \leftarrow A_1 X$$

$$X_1 \leftarrow A_1 X + \Gamma_1$$

$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$

$$X_j = A_j X_j + \Gamma_j$$

with $j = n - k + 1$

A full tour: $X' \leftarrow AX + \Gamma$

$$X = (x_1, \dots, x_n)^T$$
$$X_{0.5} \leftarrow A_1 X$$
$$X_1 \leftarrow A_1 X + \Gamma_1$$
$$X_2 \leftarrow A_2 X_1 + \Gamma_2$$
$$\dots$$
$$X_j = A_j X_j + \Gamma_j$$
with $j = n - k + 1$
A full tour:

 $X' \leftarrow AX + 1$

 $X \leftarrow AX + \Gamma$

Reducedness of the output ⇒ fixed points.

• Speed of convergence \Rightarrow eigenvalues of $A^T A$.

 $X \leftarrow AX + \Gamma$

• Reducedness of the output \Rightarrow fixed points.

• Speed of convergence \Rightarrow eigenvalues of $A^T A$.

 $X \leftarrow AX + \Gamma$

 $X \leftarrow AX + \Gamma$

• Speed of convergence \Rightarrow eigenvalues of $A^T A$.

Geometric convergence: $||X - X^{\infty}||$ decreases by a constant factor every $\frac{n^2}{k^2}$ tours, *i.e.* $\frac{n^3}{k^2}$ calls to HKZ_k.

 $X \leftarrow AX + \Gamma$

Lattice basis reduction - Polynomial LLL

$$b_1,\ldots,b_n\in\mathbb{K}[X]^n$$
, $L=K[X]b_1\oplus\cdots\oplus K[X]b_n$.

- Orthogonality defect = $\sum_{i=1}^{n} \deg b_i \deg \det(b_1, \dots, b_n);$
- OD = 0 ⇔ up to row permutation max degrees are on the diagonal.
- also known as Popov normal form.

Theorem. There is a polynomial-time algorithm which returns a basis for which OD = 0, and (up to permutation) b_i is the *i*-th minimum of the lattice.

Lattice basis reduction – Polynomial LLL

Algorithm (see whiteboard).

II. Algorithms for SVP / CVP

II. 1. Approximate algorithms for SVP / CVP

$$L = L(b_1, \dots, b_n)$$
, (b_1, \dots, b_n) reduced;
Approx-SVP (b_1, \dots, b_n) :

• Return b_1 ;

- Approx factor : LLL = $2^{O(n)}$, k-BKZ $\approx k^{n/k}$;
- Approx-CVP (t, b_1, \ldots, b_n) :
 - Babai algorithms;
 - Kannan's embedding technique

$L = L(b_1, ..., b_n), (b_1, ..., b_n)$ reduced; Approx-SVP $(b_1, ..., b_n)$:

- Return b_1 ;
- Approx factor : LLL = $2^{O(n)}$, k-BKZ $\approx k^{n/k}$;
- Approx-CVP (t, b_1, \ldots, b_n) :
 - Babai algorithms;
 - Kannan's embedding technique

$$L = L(b_1, \dots, b_n)$$
, (b_1, \dots, b_n) reduced;
Approx-SVP (b_1, \dots, b_n) :

- Return b_1 ;
- Approx factor : $LLL = 2^{O(n)}$, k-BKZ $\approx k^{n/k}$;
- Approx-CVP (t, b_1, \ldots, b_n) :
 - Babai algorithms;
 - Kannan's embedding technique

$$L = L(b_1, ..., b_n), (b_1, ..., b_n)$$
 reduced;
Approx-SVP $(b_1, ..., b_n)$:

- Return *b*₁;
- Approx factor : $LLL = 2^{O(n)}$, k-BKZ $\approx k^{n/k}$;

Approx- $CVP(t, b_1, \ldots, b_n)$:

- Babai algorithms;
- Kannan's embedding technique

$$L = L(b_1, ..., b_n), (b_1, ..., b_n)$$
 reduced;
Approx-SVP $(b_1, ..., b_n)$:

- Return *b*₁;
- Approx factor : $LLL = 2^{O(n)}$, k-BKZ $\approx k^{n/k}$;
- Approx-CVP (t, b_1, \ldots, b_n) :
 - Babai algorithms;
 - Kannan's embedding technique

$$L = L(b_1, ..., b_n), (b_1, ..., b_n)$$
 reduced;
Approx-SVP $(b_1, ..., b_n)$:

- Return *b*₁;
- Approx factor : $LLL = 2^{O(n)}$, k-BKZ $\approx k^{n/k}$;
- Approx-CVP (t, b_1, \ldots, b_n) :
 - Babai algorithms;
 - Kannan's embedding technique

$L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai roundoff algorithm :

- Compute t_i such that $t = \sum_{i=1}^n t_i b_i$ (, ie. $B^{-1}t$)
- Return $\tilde{t} := \sum_{i=1}^{n} \lfloor t_i \rfloor b_i$.

Theorem. If (b_1, \ldots, b_n) is LLL-reduced, then $\|\tilde{t} - t\| = 2^{O(d)} d(t, L)$.

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai roundoff algorithm :

- Compute t_i such that $t = \sum_{i=1}^{n} t_i b_i$ (, ie. $B^{-1}t$)
- Return $\tilde{t} := \sum_{i=1}^{n} \lfloor t_i \rceil b_i$.

Theorem. If (b_1, \ldots, b_n) is LLL-reduced, then $\|\tilde{t} - t\| = 2^{O(d)} d(t, L)$.

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai roundoff algorithm :

• Compute t_i such that $t = \sum_{i=1}^{n} t_i b_i$ (, ie. $B^{-1}t$)

• Return $\tilde{t} := \sum_{i=1}^{n} \lfloor t_i \rceil b_i$.

Theorem. If (b_1, \ldots, b_n) is LLL-reduced, then $\|\tilde{t} - t\| = 2^{O(d)} d(t, L)$.

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai roundoff algorithm :

• Compute t_i such that $t = \sum_{i=1}^{n} t_i b_i$ (, ie. $B^{-1}t$)

• Return
$$\tilde{t} := \sum_{i=1}^{n} \lfloor t_i \rceil b_i$$
.

Theorem. If (b_1, \ldots, b_n) is LLL-reduced, then $\|\tilde{t} - t\| = 2^{O(d)}d(t, L)$.

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \Vert b_n^* \Vert^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \dots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

- $\|\tilde{t} t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced);
- $\|\tilde{t} t\|^2 = 2^{O(n)} d(t, L).$

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \Vert b_n^* \Vert^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \ldots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced);

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \| b_n^* \|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \ldots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced);

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \|b_n^*\|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \dots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced);

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \| b_n^* \|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \dots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

- $\|\tilde{t} t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced);
- $\|\tilde{t} t\|^2 = 2^{O(n)} d(t, L).$

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \|b_n^*\|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \ldots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced); • $\|\tilde{t} - t\|^2 = 2^{O(n)} d(t, L).$

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \|b_n^*\|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \ldots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2 / 4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced); • $\|\tilde{t} - t\|^2 = 2^{O(n)} d(t, L).$

 $L = L(b_1, \ldots, b_n)$, (b_1, \ldots, b_n) reduced, $t \in \mathbb{R}^n$. Babai nearest-plane algorithm :

- Size-reduce t wrt (b_1, \ldots, b_n) ;
- $t_n \leftarrow \lfloor (t, b_n^*) / \|b_n^*\|^2 \rceil;$
- Continue with $(t t_n b_n, b_1, \dots, b_{n-1})$.
- Return $\tilde{t} := \sum t_i b_i$.

Theorem. We have

• $\|\tilde{t} - t\|^2 \le \sum_{i=1}^n \|b_i^*\|^2/4 = 2^{O(n)} \|b_n^*\|$ (LLL-reduced); • $\|\tilde{t} - t\|^2 = 2^{O(n)} d(t, L).$

 $L = L(b_1, \ldots, b_n)$, $B = (b_1, \ldots, b_n)$ reduced, $t \in \mathbb{R}^n$. "Reduce" CVP to SVP by using

$$L' := \left(egin{array}{cc} B & -t \\ 0 & C \end{array}
ight),$$

for a large constant C.

- LLL-reduce L', read \tilde{t} on first vector;
- Short vectors in $L' = (u x_{n+1}t, x_{n+1}C), u \in L;$
- if C ≥ 2^{O(n)}d(L, t), need to have x_{n+1} = 1 ⇒ actual close vector.
- Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.

G. Hanrot

 $L = L(b_1, \ldots, b_n)$, $B = (b_1, \ldots, b_n)$ reduced, $t \in \mathbb{R}^n$. "Reduce" CVP to SVP by using

$$L':=\left(egin{array}{cc} B & -t \ 0 & C \end{array}
ight),$$

for a large constant C.

- LLL-reduce L', read \tilde{t} on first vector;
- Short vectors in $L' = (u x_{n+1}t, x_{n+1}C), u \in L;$
- if C ≥ 2^{O(n)}d(L, t), need to have x_{n+1} = 1 ⇒ actual close vector.
- Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.

G. Hanrot

 $L = L(b_1, \ldots, b_n)$, $B = (b_1, \ldots, b_n)$ reduced, $t \in \mathbb{R}^n$. "Reduce" CVP to SVP by using

$$L':=\left(egin{array}{cc} B & -t \ 0 & C \end{array}
ight),$$

for a large constant C.

- LLL-reduce L', read \tilde{t} on first vector;
- Short vectors in $L' = (u x_{n+1}t, x_{n+1}C), u \in L;$
- if C ≥ 2^{O(n)}d(L, t), need to have x_{n+1} = 1 ⇒ actual close vector.
- Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.

G. Hanrot

 $L = L(b_1, \ldots, b_n)$, $B = (b_1, \ldots, b_n)$ reduced, $t \in \mathbb{R}^n$. "Reduce" CVP to SVP by using

$$L':=\left(egin{array}{cc} B & -t \ 0 & C \end{array}
ight),$$

for a large constant C.

- LLL-reduce L', read \tilde{t} on first vector;
- Short vectors in $L' = (u x_{n+1}t, x_{n+1}C)$, $u \in L$;
- if C ≥ 2^{O(n)}d(L, t), need to have x_{n+1} = 1 ⇒ actual close vector.
- Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.

G. Hanrot

 $L = L(b_1, \ldots, b_n)$, $B = (b_1, \ldots, b_n)$ reduced, $t \in \mathbb{R}^n$. "Reduce" CVP to SVP by using

$$L':=\left(egin{array}{cc} B & -t \ 0 & C \end{array}
ight),$$

for a large constant C.

- LLL-reduce L', read \tilde{t} on first vector;
- Short vectors in $L' = (u x_{n+1}t, x_{n+1}C), u \in L;$
- if C ≥ 2^{O(n)}d(L, t), need to have x_{n+1} = 1 ⇒ actual close vector.
- Algorithmic interpretation: further than Babai.

Can be better, somewhat less convenient.

G. Hanrot

II. 2. Exact algorithms for SVP / CVP

SVP and CVP algorithms - outline

• The KFP enumeration-based algorithm

- R. Kannan: Improved algorithms for integer programming and related lattice problems, STOC'83
- U. Fincke & M. Pohst: A procedure for determining algebraic integers of given norm, EUROCAL'83
- Saturating the space: The AKS solver and its descendants
- Using the Voronoi cell: the Micciancio-Voulgaris algorithm

Given $(\mathbf{b}_i)_{i \leq n}$ and $\mathbf{t} \in \mathbb{R}^n$, we look for all $(x_i)_i \in \mathbb{Z}^n$ s.t.:

$$\left\|\sum_{i} x_{i} \mathbf{b}_{i} - \mathbf{t}\right\|^{2} = \sum_{i} \left(x_{i} - t_{i} + \sum_{j > i} \mu_{j,i} x_{j}\right)^{2} \|\mathbf{b}_{i}^{*}\|^{2} \leq A$$

where $\mathbf{t} = \sum_{i} t_{i} \mathbf{b}_{i}^{*}$ and A is arbitrary.

By successive projections:

$$(x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$(x_{n-1} - t_{n-1} + \mu_{n,n-1}x_n)^2 \|\mathbf{b}_{n-1}^*\|^2 + (x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$\sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq A$$

Given $(\mathbf{b}_i)_{i \leq n}$ and $\mathbf{t} \in \mathbb{R}^n$, we look for all $(x_i)_i \in \mathbb{Z}^n$ s.t.:

$$\left\|\sum_{i} x_{i} \mathbf{b}_{i} - \mathbf{t}\right\|^{2} = \sum_{i} \left(x_{i} - t_{i} + \sum_{j > i} \mu_{j,i} x_{j}\right)^{2} \|\mathbf{b}_{i}^{*}\|^{2} \leq A$$

where $\mathbf{t} = \sum_{i} t_{i} \mathbf{b}_{i}^{*}$ and A is arbitrary.

By successive projections:

$$(x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$(x_{n-1} - t_{n-1} + \mu_{n,n-1}x_n)^2 \|\mathbf{b}_{n-1}^*\|^2 + (x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$\sum_{j\geq i}(x_j-t_j+\sum_{k>j}\mu_{k,j}x_k)^2\|\mathbf{b}_j^*\|^2 \leq A$$

. . .

$$(x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$x_{n-1} - t_{n-1} + \mu_{n,n-1} x_n)^2 \|\mathbf{b}_{n-1}^*\|^2 + (x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$\dots$$

$$\sum_{j \geq i} (x_j - t_j + \sum_{k > j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq A$$

- For each value of (x_k, \ldots, x_n) , x_{k-1} belongs to a finite set.
- KFP is a tree traversal, where one is interested in the leaves.
- Cost analysis reduces to counting lattice points in balls.

Gaussian heuristic

For any "nice" K, we have $|L \cap K| \approx \frac{\text{vol } K}{\det L}$.

. . .

$$(x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$x_{n-1} - t_{n-1} + \mu_{n,n-1} x_n)^2 \|\mathbf{b}_{n-1}^*\|^2 + (x_n - t_n)^2 \|\mathbf{b}_n^*\|^2 \leq A$$

$$\dots$$

$$\sum_{j \geq i} (x_j - t_j + \sum_{k > j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq A$$

- For each value of (x_k, \ldots, x_n) , x_{k-1} belongs to a finite set.
- KFP is a **tree traversal**, where one is interested in the leaves.
- Cost analysis reduces to counting lattice points in balls.

Gaussian heuristic For any "nice" K, we have $|L \cap K| \approx \frac{\text{vol } K}{\det L}$.

. . .

CVP, SVP - the KFP enumeration algorithm

64/90

CVP, SVP - the KFP enumeration algorithm

64/90

CVP, SVP - the KFP enumeration algorithm

64/90

Kannan's improvement

- The shorter the basis vectors, the faster the enumeration.
- Kannan pre-processes the basis by performing enumerations in lower dimensions ;
- quasi-HKZ reduced basis as input to SVP;
- \Rightarrow Recursive process, using SVP solver in dim n-1.
 - Complexity n^{n/(2e)+o(n)} [HaSt07] (upper and lower worst-case bound).

- Basis is pre-processed before enumeration [Kannan83]
- Computations rely on floating-point arithmetic [PuSt08]
- The tree search can be parallelized [DHPS10]
- The choice of bound A can be optimized
- The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:

$$\forall i, \quad \sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq p_i \cdot A,$$

where $1 \ge p_1 \ge \ldots \ge p_n > 0$.

- For a guaranteed answer: $n \approx 70$.
- If heuristic answer suffices: $n\approx 1100$

- Basis is pre-processed before enumeration [Kannan83]
- Computations rely on floating-point arithmetic [PuSt08]
- The tree search can be parallelized [DHPS10]
- The choice of bound A can be optimized
- The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:

$$\forall i, \quad \sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq p_i \cdot A,$$

where $1 \ge p_1 \ge \ldots \ge p_n > 0$.

Practical limits (a few days on a modern processor):

• For a guaranteed answer: $n \approx 70$.

• If heuristic answer suffices: $n \approx 110$.

- Basis is pre-processed before enumeration [Kannan83]
- Computations rely on floating-point arithmetic [PuSt08]
- The tree search can be parallelized [DHPS10]
- The choice of bound A can be optimized
- The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:

$$\forall i, \quad \sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq \mathbf{p}_i \cdot A,$$

where $1 \ge p_1 \ge \ldots \ge p_n > 0$.

- For a guaranteed answer: $n \approx 70$.
- If heuristic answer suffices: $n \approx 110$.

- Basis is pre-processed before enumeration [Kannan83]
- Computations rely on floating-point arithmetic [PuSt08]
- The tree search can be parallelized [DHPS10]
- The choice of bound A can be optimized
- The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:

$$\forall i, \quad \sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq \mathbf{p}_i \cdot A,$$

where $1 \ge p_1 \ge \ldots \ge p_n > 0$.

- For a guaranteed answer: $n \approx 70$.
- If heuristic answer suffices: $n \approx 110$.

- Basis is pre-processed before enumeration [Kannan83]
- Computations rely on floating-point arithmetic [PuSt08]
- The tree search can be parallelized [DHPS10]
- The choice of bound A can be optimized
- The tree search can be pruned (heuristic) [ScEu91,GaNgRe10]:

$$\forall i, \quad \sum_{j\geq i} (x_j - t_j + \sum_{k>j} \mu_{k,j} x_k)^2 \|\mathbf{b}_j^*\|^2 \leq \mathbf{p}_i \cdot A,$$

where $1 \ge p_1 \ge \ldots \ge p_n > 0$.

- For a guaranteed answer: $n \approx 70$.
- If heuristic answer suffices: $n \approx 110$.

The saturation principle

Kabatyansky & Levenshtein

Let $E \subseteq \mathbb{R}^n \setminus \mathbf{0}$. Assume that for any $\mathbf{u} \neq \mathbf{v}$ in E, the angle between \mathbf{u} and \mathbf{v} is $\geq \phi_0$. Then $|E| \leq 2^{cn+o(n)}$ for some $c(\phi_0)$.

For $\phi_0 = 60^{\circ}$, we obtain $|E| \le 2^{0.401 \cdot n}$.

Consequence: If points belong to a ball and their pairwise distances are bounded from below, then their number is $2^{O(n)}$.

The saturation principle

Kabatyansky & Levenshtein

Let $E \subseteq \mathbb{R}^n \setminus \mathbf{0}$. Assume that for any $\mathbf{u} \neq \mathbf{v}$ in E, the angle between \mathbf{u} and \mathbf{v} is $\geq \phi_0$. Then $|E| \leq 2^{cn+o(n)}$ for some $c(\phi_0)$.

For $\phi_0 = 60^{\circ}$, we obtain $|E| \le 2^{0.401 \cdot n}$.

Consequence: If points belong to a ball and their pairwise distances are bounded from below, then their number is $2^{O(n)}$.

- $I Sample t_1, \ldots, t_N \in L.$
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- $I Sample t_1, \ldots, t_N \in L.$
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- $I Sample t_1, \ldots, t_N \in L.$
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- $I Sample t_1, \ldots, t_N \in L.$
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- Sample $\mathbf{t}_1, \ldots, \mathbf{t}_N \in L$.
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- Sample $\mathbf{t}_1, \ldots, \mathbf{t}_N \in L$.
- Por all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

- $I Sample t_1, \ldots, t_N \in L.$
- **②** For all *i* ≤ *N*, if there is *j* < *i* with $\|\mathbf{t}_i \mathbf{t}_j\| < (1 \frac{1}{n})\|\mathbf{t}_i\|$, replace \mathbf{t}_i by $\mathbf{t}_i \mathbf{t}_j$.
- Return a shortest non-zero vector found.

t4

• Saturation principle \Rightarrow at most $2^{c'n+o(n)}$ points at any time.

 t_1

Correctness of ListSieve

How to ensure we get a shortest $\mathbf{s} \in L \setminus \mathbf{0}$?

- Principle: Hide the lattice to ListSieve by adding noise to the initial vectors: $\mathbf{t}_i \rightarrow \mathbf{t}_i + \mathbf{e}_i$.
- Once the vector has been dealt with: $\mathbf{t}_i^{end} \rightarrow \mathbf{t}_i^{end} \mathbf{e}_i$.

• If noise $\approx \|\mathbf{s}\|$, then, with probability $\geq 2^{-\Omega(n)}$

$$\mathbf{t}_i + \mathbf{e}_i$$
 could be $\mathbf{t}'_i + \mathbf{e}'_i := (\mathbf{t}_i + \mathbf{s}) + (\mathbf{e}_i - \mathbf{s}).$

N is set large enough s.t. we get the same t^{end} ∈ L twice.
 ⇒ we get t^{end} and t^{end} + s with high probability.

• We compute all pairwise differences and return the smallest.

Correctness of ListSieve

How to ensure we get a shortest $\mathbf{s} \in L \setminus \mathbf{0}$?

- Principle: Hide the lattice to ListSieve by adding noise to the initial vectors: $\mathbf{t}_i \rightarrow \mathbf{t}_i + \mathbf{e}_i$.
- Once the vector has been dealt with: $\mathbf{t}_i^{end} \rightarrow \mathbf{t}_i^{end} \mathbf{e}_i$.
- If noise $\approx \|\mathbf{s}\|$, then, with probability $\geq 2^{-\Omega(n)}$:

$$\mathbf{t}_i + \mathbf{e}_i \ \text{ could be } \ \mathbf{t}_i' + \mathbf{e}_i' \coloneqq (\mathbf{t}_i + \mathbf{s}) + (\mathbf{e}_i - \mathbf{s}).$$

- N is set large enough s.t. we get the same t^{end} ∈ L twice.
 ⇒ we get t^{end} and t^{end} + s with high probability.
- We compute all pairwise differences and return the smallest.

Correctness of ListSieve

How to ensure we get a shortest $\mathbf{s} \in L \setminus \mathbf{0}$?

- Principle: Hide the lattice to ListSieve by adding noise to the initial vectors: $\mathbf{t}_i \rightarrow \mathbf{t}_i + \mathbf{e}_i$.
- Once the vector has been dealt with: $\mathbf{t}_i^{end} \rightarrow \mathbf{t}_i^{end} \mathbf{e}_i$.
- If noise $\approx \|\mathbf{s}\|$, then, with probability $\geq 2^{-\Omega(n)}$:

$$\mathbf{t}_i + \mathbf{e}_i \ \text{ could be } \ \mathbf{t}_i' + \mathbf{e}_i' \coloneqq (\mathbf{t}_i + \mathbf{s}) + (\mathbf{e}_i - \mathbf{s}).$$

- N is set large enough s.t. we get the same t^{end} ∈ L twice.
 ⇒ we get t^{end} and t^{end} + s with high probability.
 - We compute all pairwise differences and return the smallest.

Plan of the talk

- Reminders and context
- The KFP enumeration-based algorithm
- Saturating the space: The AKS solver and its descendants
- Using the Voronoi cell: the Micciancio-Voulgaris algorithm.
 - D. Micciancio & P. Voulgaris: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations, STOC'10

The Voronoi cell of a lattice

•

$$\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall \mathbf{b} \in L \setminus \mathbf{0}, \|\mathbf{x} - \mathbf{b}\| > \|\mathbf{x}\|\}.$$

The relevant vectors

Let $(\mathbf{v}_i)_i$ be s.t. $\pm \mathbf{v}_i$ are the unique minima of a non-zero coset of L/2L. Then $\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall i, \|\mathbf{v}_i - \mathbf{x}\| > \|\mathbf{x}\|\}$. Furthermore, these \mathbf{v}_i are the smallest such set.

A coset of L/2L is of the form (∑_i ε_ib_i) + 2L with ε_i ∈ {0,1}. *V*(L) can be described in space ≤ 2ⁿ.

Lattice algorithms

The Voronoi cell of a lattice

$$\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall \mathbf{b} \in L \setminus \mathbf{0}, \|\mathbf{x} - \mathbf{b}\| > \|\mathbf{x}\|\}.$$

The relevant vectors

Let $(\mathbf{v}_i)_i$ be s.t. $\pm \mathbf{v}_i$ are the unique minima of a non-zero coset of L/2L. Then $\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall i, \|\mathbf{v}_i - \mathbf{x}\| > \|\mathbf{x}\|\}$. Furthermore, these \mathbf{v}_i are the smallest such set.

• A coset of L/2L is of the form $(\sum_i \varepsilon_i \mathbf{b}_i) + 2L$ with $\varepsilon_i \in \{0, 1\}$. $\Rightarrow \mathcal{V}(L)$ can be described in space $\leq 2^n$.

The Voronoi cell of a lattice

$$\mathcal{V}(L) = \{ \mathbf{x} \in \mathbb{R}^n : \forall \mathbf{b} \in L \setminus \mathbf{0}, \|\mathbf{x} - \mathbf{b}\| > \|\mathbf{x}\| \}.$$

$$\mathbf{v}_2 \qquad \mathbf{v}_1$$

$$\mathbf{v}_3 \qquad \mathbf{v}_6$$

$$\mathbf{v}_4 \qquad \mathbf{v}_5$$

The relevant vectors

Let $(\mathbf{v}_i)_i$ be s.t. $\pm \mathbf{v}_i$ are the unique minima of a non-zero coset of L/2L. Then $\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall i, \|\mathbf{v}_i - \mathbf{x}\| > \|\mathbf{x}\|\}$. Furthermore, these \mathbf{v}_i are the smallest such set.

• A coset of L/2L is of the form $(\sum_i \varepsilon_i \mathbf{b}_i) + 2L$ with $\varepsilon_i \in \{0, 1\}$. $\Rightarrow \mathcal{V}(L)$ can be described in space $\leq 2^n$.

The Voronoi cell of a lattice

$$\mathcal{V}(L) = \left\{ \mathbf{x} \in \mathbb{R}^n : \forall \mathbf{b} \in L \setminus \mathbf{0}, \|\mathbf{x} - \mathbf{b}\| > \|\mathbf{x}\| \right\}.$$

$$\mathbf{v}_2 \qquad \mathbf{v}_1$$

$$\mathbf{v}_3. \qquad \mathbf{v}_6$$

$$\mathbf{v}_4 \qquad \mathbf{v}_5$$

The relevant vectors

Let $(\mathbf{v}_i)_i$ be s.t. $\pm \mathbf{v}_i$ are the unique minima of a non-zero coset of L/2L. Then $\mathcal{V}(L) = \{\mathbf{x} \in \mathbb{R}^n : \forall i, \|\mathbf{v}_i - \mathbf{x}\| > \|\mathbf{x}\|\}$. Furthermore, these \mathbf{v}_i are the smallest such set.

• A coset of L/2L is of the form $(\sum_i \varepsilon_i \mathbf{b}_i) + 2L$ with $\varepsilon_i \in \{0, 1\}$. $\Rightarrow \mathcal{V}(L)$ can be described in space $\leq 2^n$.

- SVP: A shortest non-zero vector is a relevant vector.
- CVP: translate **t** by a $\mathbf{b} \in L$ to map it to $\overline{\mathcal{V}}(L)$.
- It suffices to be able to do it when $\mathbf{t} \in 2\overline{\mathcal{V}}(L)$.

$\mathsf{CVP}_{2\overline{\mathcal{V}}\to\overline{\mathcal{V}}}:$

- $C(\mathbf{v}_i)$: cone of apex **0** and base the corresponding facet of $\overline{\mathcal{V}}$.
- While $\mathbf{t} \notin \overline{\mathcal{V}}$: Find *i* s.t. $\mathbf{t} \in \mathcal{C}(\mathbf{v}_i)$; Subtract \mathbf{v}_i from \mathbf{t} .

- SVP: A shortest non-zero vector is a relevant vector.
- CVP: translate **t** by a $\mathbf{b} \in L$ to map it to $\overline{\mathcal{V}}(L)$.
- It suffices to be able to do it when $\mathbf{t} \in 2\overline{\mathcal{V}}(L)$.

$\mathsf{CVP}_{2\overline{\mathcal{V}}\to\overline{\mathcal{V}}}:$

- $C(\mathbf{v}_i)$: cone of apex **0** and base the corresponding facet of $\overline{\mathcal{V}}$.
- While $\mathbf{t} \notin \overline{\mathcal{V}}$: Find *i* s.t. $\mathbf{t} \in \mathcal{C}(\mathbf{v}_i)$; Subtract \mathbf{v}_i from \mathbf{t} .

$\text{CVP}_{2\overline{\mathcal{V}} \to \overline{\mathcal{V}}}$:

- $C(\mathbf{v}_i)$: cone of apex **0** and base the corresponding facet of $\overline{\mathcal{V}}$.
- While $\mathbf{t} \notin \overline{\mathcal{V}}$: Find *i* s.t. $\mathbf{t} \in \mathcal{C}(\mathbf{v}_i)$; Subtract \mathbf{v}_i from \mathbf{t} .

• Decreasing walk in $(\mathbf{t}_1 + L) \mod 2L$.

$\mathsf{CVP}_{2\overline{\mathcal{V}}\to\overline{\mathcal{V}}}:$

- $C(\mathbf{v}_i)$: cone of apex **0** and base the corresponding facet of $\overline{\mathcal{V}}$.
- While $\mathbf{t} \notin \overline{\mathcal{V}}$: Find *i* s.t. $\mathbf{t} \in \mathcal{C}(\mathbf{v}_i)$; Subtract \mathbf{v}_i from \mathbf{t} .

• Decreasing walk in $(\mathbf{t}_1 + L) \mod 2L$.

- A relevant vector $\mathbf{v} \in L$ is a shortest vector in a coset of L/2L.
- It suffices to solve $2^n 1$ instances of CVP:

Lattice: 2*L*; Target $\mathbf{t} = \sum_{i} \varepsilon_i \mathbf{b}_i$.

But to solve CVP, we use the Voronoi cell...

Trick: CVP in dim *n* can be solved with $2^{o(n)}$ CVP's in dim n - 1.

$$\mathsf{CVP}(\mathbf{t}, 2L) = \min_{\|\cdot\|} \left\{ \mathsf{CVP}(\mathbf{t} + x_n(2\mathbf{b}_n), L^-) : x_n \in \mathbb{Z} \right\},\$$

- $L^- = 2L \cap \operatorname{Span}(\mathbf{b}_1, \dots, \mathbf{b}_{n-1}).$
- x_n may be restricted to a small set.

Overall: Intertwined Voronoi/CVP in increasing dimensions.

G. Hanrot

Lattice algorithms

- A relevant vector $\mathbf{v} \in L$ is a shortest vector in a coset of L/2L.
- It suffices to solve $2^n 1$ instances of CVP:

Lattice: 2*L*; Target $\mathbf{t} = \sum_{i} \varepsilon_i \mathbf{b}_i$.

But to solve CVP, we use the Voronoi cell...

Trick: CVP in dim *n* can be solved with $2^{o(n)}$ CVP's in dim n - 1.

$$\mathsf{CVP}(\mathbf{t}, 2L) = \min_{\|\cdot\|} \left\{ \mathsf{CVP}(\mathbf{t} + x_n(2\mathbf{b}_n), L^-) : x_n \in \mathbb{Z} \right\},\$$

- $L^- = 2L \cap \operatorname{Span}(\mathbf{b}_1, \dots, \mathbf{b}_{n-1}).$
- x_n may be restricted to a small set.

Overall: Intertwined Voronoi/CVP in increasing dimensions.

G. Hanrot

Lattice algorithms

- A relevant vector $\mathbf{v} \in L$ is a shortest vector in a coset of L/2L.
- It suffices to solve $2^n 1$ instances of CVP:

Lattice: 2*L*; Target $\mathbf{t} = \sum_i \varepsilon_i \mathbf{b}_i$.

• But to solve CVP, we use the Voronoi cell...

Trick: CVP in dim n can be solved with $2^{o(n)}$ CVP's in dim n-1.

$$\mathsf{CVP}(\mathbf{t}, 2L) = \min_{\|\cdot\|} \left\{ \mathsf{CVP}(\mathbf{t} + x_n(2\mathbf{b}_n), L^-) : x_n \in \mathbb{Z} \right\},\$$

•
$$L^- = 2L \cap \operatorname{Span}(\mathbf{b}_1, \dots, \mathbf{b}_{n-1}).$$

• x_n may be restricted to a small set.

Overall: Intertwined Voronoi/CVP in increasing dimensions.

G. Hanrot

Lattice algorithms

- A relevant vector $\mathbf{v} \in L$ is a shortest vector in a coset of L/2L.
- It suffices to solve $2^n 1$ instances of CVP:

Lattice: 2*L*; Target $\mathbf{t} = \sum_{i} \varepsilon_{i} \mathbf{b}_{i}$.

• But to solve CVP, we use the Voronoi cell...

Trick: CVP in dim n can be solved with $2^{o(n)}$ CVP's in dim n-1.

$$\mathsf{CVP}(\mathbf{t}, 2L) = \min_{\|\cdot\|} \left\{ \mathsf{CVP}(\mathbf{t} + x_n(2\mathbf{b}_n), L^-) : x_n \in \mathbb{Z} \right\},\$$

- $L^- = 2L \cap \text{Span}(\mathbf{b}_1, \dots, \mathbf{b}_{n-1}).$
- x_n may be restricted to a small set.

Overall: Intertwined Voronoi/CVP in increasing dimensions.

G. Hanrot

III. Application : Coppersmith's method

• $P \in \mathbb{Z}[X]$ of degree d, **monic**;

- N an integer;
- want to solve $P(x) = 0 \mod N$;

easy

- if *N* prime (factoring mod *p*);
- or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;

easy

- if *N* prime (factoring mod *p*);
- or factors of N known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for small solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for <u>small</u> solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

- $P \in \mathbb{Z}[X]$ of degree d, **monic**;
- N an integer;
- want to solve $P(x) = 0 \mod N$;
- easy
 - if *N* prime (factoring mod *p*);
 - or factors of *N* known (CRT + Hensel lifting);
- hard in general: deg $P = 2 \Leftrightarrow$ factoring N.
- Iook for <u>small</u> solutions x.
- Why small? Allow to lift the problem to \mathbb{Z} (easy again).

Simple example :

- RSA: N = pq, d, e integers such that $d \cdot e = (p-1)(q-1)$;
- N, e public;
- Encryption is $x \mapsto x^e$, decryption is $x \mapsto x^d$.
- If $|x| < N^{1/e}$, can decrypt from $c := x^e \mod N$:
 - $|x|^e < N \Rightarrow x^e = c$ in \mathbb{Z} ;
 - Extract *e*-th root in \mathbb{Z} (eg. Newton's method).

Key argument: if

- $|x| \leq X$ (X small),
- and |P|(X) < N (P small),

Simple example :

- RSA: N = pq, d, e integers such that $d \cdot e = (p-1)(q-1)$;
- N, e public;
- Encryption is $x \mapsto x^e$, decryption is $x \mapsto x^d$.
- If $|x| < N^{1/e}$, can decrypt from $c := x^e \mod N$:
 - $|x|^e < N \Rightarrow x^e = c$ in \mathbb{Z} ;
 - Extract *e*-th root in \mathbb{Z} (eg. Newton's method).

Key argument: if

- $|x| \leq X$ (X small),
- and |P|(X) < N (P small),

Simple example :

- RSA: N = pq, d, e integers such that $d \cdot e = (p-1)(q-1)$;
- N, e public;
- Encryption is $x \mapsto x^e$, decryption is $x \mapsto x^d$.
- If $|x| < N^{1/e}$, can decrypt from $c := x^e \mod N$:

•
$$|x|^e < N \Rightarrow x^e = c$$
 in \mathbb{Z} ;

• Extract *e*-th root in \mathbb{Z} (eg. Newton's method).

Key argument: if

• $|x| \leq X$ (X small),

• and |P|(X) < N (P small),

Simple example :

- RSA: N = pq, d, e integers such that $d \cdot e = (p-1)(q-1)$;
- N, e public;
- Encryption is $x \mapsto x^e$, decryption is $x \mapsto x^d$.
- If $|x| < N^{1/e}$, can decrypt from $c := x^e \mod N$:
 - $|x|^e < N \Rightarrow x^e = c$ in \mathbb{Z} ;
 - Extract *e*-th root in \mathbb{Z} (eg. Newton's method).

Key argument: if

- $|x| \leq X$ (X small),
- and |P|(X) < N (P small),

Simple example :

- RSA: N = pq, d, e integers such that $d \cdot e = (p-1)(q-1)$;
- N, e public;
- Encryption is $x \mapsto x^e$, decryption is $x \mapsto x^d$.
- If $|x| < N^{1/e}$, can decrypt from $c := x^e \mod N$:
 - $|x|^e < N \Rightarrow x^e = c$ in \mathbb{Z} ;
 - Extract *e*-th root in \mathbb{Z} (eg. Newton's method).

Key argument: if

- $|x| \leq X$ (X small),
- and |P|(X) < N (P small),

First attempt: Girault, Toffin, Vallée / Hastad.

- Try to find small Q = P + SN;
- $x, Q \text{ small} \Rightarrow Q(x) < N$
- $P(x) = 0 \mod N \Rightarrow Q(x) = 0 \mod N \Rightarrow Q(x) = 0$

solve equations over the integers, easy.

First attempt: Girault, Toffin, Vallée / Hastad.

- Try to find small Q = P + SN;
- $x, Q \text{ small} \Rightarrow Q(x) < N$
- $P(x) = 0 \mod N \Rightarrow Q(x) = 0 \mod N \Rightarrow Q(x) = 0$
- solve equations over the integers, easy.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \leq X \Rightarrow |Q(x)| \leq \sum_{i=0}^{d} q_i X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- \Rightarrow add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \leq X \Rightarrow |Q(x)| \leq \sum_{i=0}^{d} q_i X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- ⇒ add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

• v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;

- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \le X \Rightarrow |Q(x)| \le \sum_{i=0}^{d} q_i X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- ⇒ add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \le X \Rightarrow |Q(x)| \le \sum_{i=0}^{d} q_i X^{j}$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- \Rightarrow add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \le X \Rightarrow |Q(x)| \le \sum_{j=0}^{d} q_j X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients

⇒ add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \le X \Rightarrow |Q(x)| \le \sum_{j=0}^{d} q_j X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- \Rightarrow add weights to the lattice.

L lattice generated by coefficient vectors of N, Nx, ..., Nx^{d-1} , P.

$$L = \begin{pmatrix} N & & & p_0 \\ NX & & & p_1X \\ & NX^2 & & p_2X^2 \\ & & \ddots & & \vdots \\ & & & NX^{d-1} & p_{d-1}X^{d-1} \\ & & & & 1X^d \end{pmatrix}$$

- v short vector in $L \leftrightarrow Q = P + SN$ with small coefficients;
- Want very small high order coefficients, low order coefficient are less important.
- More precisely, $|x| \le X \Rightarrow |Q(x)| \le \sum_{j=0}^{d} q_j X^j$.
- \Rightarrow want Q(xX) = P(xX) + S(xX)N with small coefficients
- \Rightarrow add weights to the lattice.

Analysis.

- $\operatorname{vol}(L) = \prod_{i=0}^{d-1} (NX^i) = N^d X^{d(d+1)/2};$
- LLL returns a vector v with $||v||_2 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- Hence $||v||_1 \le 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- ok if $2^{O(d)} N^{d/(d+1)} X^{d/2} < N$
- ... $X = O(N^{2/(d(d+1))})$

 $\mathsf{Time} = \mathsf{poly}(d, \log N).$

Analysis.

- $\operatorname{vol}(L) = \prod_{i=0}^{d-1} (NX^i) = N^d X^{d(d+1)/2};$
- LLL returns a vector v with $\|v\|_2 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- Hence $||v||_1 \le 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- ok if $2^{O(d)} N^{d/(d+1)} X^{d/2} < N$
- ... $X = O(N^{2/(d(d+1))})$

 $\mathsf{Time} = \mathsf{poly}(d, \log N).$

Analysis.

- $\operatorname{vol}(L) = \prod_{i=0}^{d-1} (NX^i) = N^d X^{d(d+1)/2};$
- LLL returns a vector v with $\|v\|_2 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- Hence $\|v\|_1 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- ok if $2^{O(d)} N^{d/(d+1)} X^{d/2} < N$

• ...
$$X = O(N^{2/(d(d+1))})$$

 $\mathsf{Time} = \mathsf{poly}(d, \log N).$

Analysis.

- $\operatorname{vol}(L) = \prod_{i=0}^{d-1} (NX^i) = N^d X^{d(d+1)/2};$
- LLL returns a vector v with $||v||_2 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- Hence $||v||_1 \le 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- ok if $2^{O(d)} N^{d/(d+1)} X^{d/2} < N$

• ... $X = O(N^{2/(d(d+1))})$

 $\mathsf{Time} = \mathsf{poly}(d, \log N).$

Analysis.

- $\operatorname{vol}(L) = \prod_{i=0}^{d-1} (NX^i) = N^d X^{d(d+1)/2};$
- LLL returns a vector v with $\|v\|_2 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- Hence $\|v\|_1 \leq 2^{O(d)} N^{d/(d+1)} X^{d/2}$
- ok if $2^{O(d)} N^{d/(d+1)} X^{d/2} < N$

• ...
$$X = O(N^{2/(d(d+1))})$$
.

 $\mathsf{Time} = \mathsf{poly}(d, \log N).$

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all *i*;
- Look for Q = ∑_{i=0}^k PⁱN^{k-i}R_i(X), deg R_i < d, deg R_k ≤ t;
 s.t.|Q|(X) < N^k

- generated by coefficient vectors of S_{ij} = (xX)^j Pⁱ(xX)N^{k-i};
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j$;
- hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for Q = ∑_{i=0}^k PⁱN^{k-i}R_i(X), deg R_i < d, deg R_k ≤ t;
 s.t.|Q|(X) < N^k

- generated by coefficient vectors of S_{ij} = (xX)^j Pⁱ(xX)N^{k-i};
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j$;
- hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for $Q = \sum_{i=0}^{k} P^i N^{k-i} R_i(X)$, deg $R_i < d$, deg $R_k \le t$;
- s.t. $|Q|(X) < N^k$

- generated by coefficient vectors of S_{ij} = (xX)^j Pⁱ(xX)N^{k-i};
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j;$
- hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for $Q = \sum_{i=0}^{k} P^{i} N^{k-i} R_{i}(X)$, deg $R_{i} < d$, deg $R_{k} \leq t$;

• s.t.
$$|Q|(X) < N^k$$

- generated by coefficient vectors of $S_{ij} = (xX)^j P^i(xX) N^{k-i}$;
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j;$
- hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for Q = ∑_{i=0}^k PⁱN^{k-i}R_i(X), deg R_i < d, deg R_k ≤ t;
 s.t.|Q|(X) < N^k

- generated by coefficient vectors of $S_{ij} = (xX)^j P^i(xX) N^{k-i}$;
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j$;
- hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for Q = ∑_{i=0}^k PⁱN^{k-i}R_i(X), deg R_i < d, deg R_k ≤ t;
 s.t.|Q|(X) < N^k

Lattice L

- generated by coefficient vectors of $S_{ij} = (xX)^j P^i(xX) N^{k-i}$;
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j$;

hence upper triangular matrix;

Coppersmith's method.

Key idea: use multiplicities (powers of P)!

- $P(x) = 0 \mod N \Rightarrow P^{i}(x)N^{k-i} = 0 \mod N^{k}$ for all i;
- Look for $Q = \sum_{i=0}^{k} P^{i} N^{k-i} R_{i}(X)$, deg $R_{i} < d$, deg $R_{k} \leq t$; • s.t. $|Q|(X) < N^{k}$

- generated by coefficient vectors of $S_{ij} = (xX)^j P^i(xX) N^{k-i}$;
- dimension $\delta = dk + t + 1$;
- deg $S_{ij} = id + j$;
- hence upper triangular matrix;

Coppersmith's method (1996).

diagonal(L) =
$$(N^{k}, N^{k}X, ..., N^{k}X^{d-1}, N^{k-1}X^{d}, N^{k-1}X^{d+1}, ..., N^{k-1}X^{2d-1}, ..., N^{kd+1}X^{2d-1}, ..., X^{kd}, X^{kd+1}, ..., X^{kd+t})$$

 $\operatorname{vol} L = X^{\sum_{i=0}^{\delta-1} i} N^{d \sum_{i=0}^{k} (k-i)}$

Coppersmith's method (1996).

diagonal(L) =
$$(N^{k}, N^{k}X, ..., N^{k}X^{d-1}, N^{k-1}X^{d}, N^{k-1}X^{d+1}, ..., N^{k-1}X^{2d-1}, ..., N^{kd}, X^{kd}, X^{kd+1}, ..., X^{kd+t})$$

$$\mathrm{vol} L = X^{\sum_{i=0}^{\delta-1} i} N^{d \sum_{i=0}^{k} (k-i)}$$

$$\operatorname{vol} L = X^{\delta(\delta-1)/2} N^{dk(k+1)/2}.$$

Want

$$2^{O(\delta)}X^{(\delta-1)/2}N^{dk(k+1)/2\delta} \leq N^k,$$

ie.

$$X = O(N^{k(2\delta - d(k+1))/\delta(\delta - 1)}).$$

•
$$\delta \approx dk, \ k \to \infty,$$

 $2k(2\delta - d(k+1))/\delta(\delta - 1) = 1/d - O(1/k).$
Take $k = O(\log N),$
• get $X = O(N^{1/d});$
• with polynomial lattice dimension.

$$\operatorname{vol} L = X^{\delta(\delta-1)/2} N^{dk(k+1)/2}.$$

Want

$$2^{O(\delta)}X^{(\delta-1)/2}N^{dk(k+1)/2\delta} \leq N^k,$$

ie.

$$X = O(N^{k(2\delta - d(k+1))/\delta(\delta - 1)}).$$

•
$$\delta \approx dk, \ k \to \infty,$$

 $2k(2\delta - d(k+1))/\delta(\delta - 1) = 1/d - O(1/k).$
Take $k = O(\log N),$
• get $X = O(N^{1/d});$
• with polynomial lattice dimension

$$\operatorname{vol} L = X^{\delta(\delta-1)/2} N^{dk(k+1)/2}.$$

Want

$$2^{O(\delta)}X^{(\delta-1)/2}N^{dk(k+1)/2\delta} \leq N^k,$$

ie.

$$X = O(N^{k(2\delta - d(k+1))/\delta(\delta - 1)}).$$

•
$$\delta \approx dk, \ k \to \infty,$$

 $2k(2\delta - d(k+1))/\delta(\delta - 1) = 1/d - O(1/k).$
Take $k = O(\log N),$
• get $X = O(N^{1/d});$

• with polynomial lattice dimension.

G. Hanrot

Lattice algorithms

Lattice algorithms - Coppersmith's method, gcd extension

Solve $|x| \leq X$, $gcd(P(x), N) > N^{\beta}$.

- Same strategy;
- If $|x| \leq X, \gcd(Q(x), N^k) > N^{k\beta}$ and $|Q|(X) < N^{k\beta}$
- ... then Q(x) = 0.

Lattice algorithms - Coppersmith's method, gcd extension

Solve $|x| \leq X$, $gcd(P(x), N) > N^{\beta}$.

- Same strategy;
- If $|x| \leq X, \gcd(Q(x), N^k) > N^{k eta}$ and $|Q|(X) < N^{k eta}$
- ... then Q(x) = 0.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{1/d}, N^{1/d}]$ such that $P(x) = 0 \mod N$.

- take $P(x) = x^d$, $N = p^d$.
- Solutions to $P(x) = 0 \mod N$ are $kp, k \in [0, p^{d-1}[.$
- Number = $X/N^{1/d}$.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{1/d}, N^{1/d}]$ such that $P(x) = 0 \mod N$.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{\beta^2/d}, N^{\beta^2/d}]$ such that $gcd(P(x), N) > N^{\beta}$.

Optimality:

• take
$$P(x) = x^d$$
, $N = p^d$.

- Solutions to $P(x) = 0 \mod N$ are kp, $k \in [0, p^{d-1}[$.
- Number = $X/N^{1/d}$.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{1/d}, N^{1/d}]$ such that $P(x) = 0 \mod N$.

• take
$$P(x) = x^d$$
, $N = p^d$.

- Solutions to $P(x) = 0 \mod N$ are kp, $k \in [0, p^{d-1}[$.
- Number = $X/N^{1/d}$.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{1/d}, N^{1/d}]$ such that $P(x) = 0 \mod N$.

- take $P(x) = x^d$, $N = p^d$.
- Solutions to $P(x) = 0 \mod N$ are kp, $k \in [0, p^{d-1}[$.
- Number = $X/N^{1/d}$.

Theorem. (Coppersmith). There is a polynomial-time algorithm which on input *P*, *N*, returns all $x \in [-N^{1/d}, N^{1/d}]$ such that $P(x) = 0 \mod N$.

- take $P(x) = x^d$, $N = p^d$.
- Solutions to $P(x) = 0 \mod N$ are kp, $k \in [0, p^{d-1}[$.
- Number = $X/N^{1/d}$.

Lattice algorithms - Coppersmith's method, application 1

- Assume N = pq RSA modulus, p = p_h + p_l, where p_h is known and p_l is "small";
- Put $R(X) = X + p_h$;
- Have $gcd(R(p_I), N) \approx N^{1/2}$;
- Coppersmith's method \Rightarrow can find p_l as soon as $|p_l| \le N^{1/4}$.
- Can factor *N* in polynomial time from half the high order bits of a factor of *N*.

Lattice algorithms - Coppersmith's method, application 1

- Assume N = pq RSA modulus, $p = p_h + p_l$, where p_h is known and p_l is "small";
- Put $R(X) = X + p_h$;
- Have $gcd(R(p_I), N) \approx N^{1/2}$;
- Coppersmith's method \Rightarrow can find p_l as soon as $|p_l| \le N^{1/4}$.
- Can factor *N* in polynomial time from half the high order bits of a factor of *N*.

Lattice algorithms – Coppersmith's method, application 1

- Assume N = pq RSA modulus, $p = p_h + p_l$, where p_h is known and p_l is "small";
- Put $R(X) = X + p_h$;

- Coppersmith's method \Rightarrow can find p_l as soon as $|p_l| \le N^{1/4}$.
- Can factor *N* in polynomial time from half the high order bits of a factor of *N*.

Lattice algorithms – Coppersmith's method, application 1

- Assume N = pq RSA modulus, p = p_h + p_l, where p_h is known and p_l is "small";
- Put $R(X) = X + p_h$;
- Have $gcd(R(p_l), N) \approx N^{1/2}$;
- Coppersmith's method \Rightarrow can find p_l as soon as $|p_l| \le N^{1/4}$.
- Can factor *N* in polynomial time from half the high order bits of a factor of *N*.

Lattice algorithms - Coppersmith's method, application 1

- Assume N = pq RSA modulus, $p = p_h + p_l$, where p_h is known and p_l is "small";
- Put $R(X) = X + p_h$;
- Have $gcd(R(p_l), N) \approx N^{1/2}$;
- Coppersmith's method \Rightarrow can find p_l as soon as $|p_l| \le N^{1/4}$.
- Can factor *N* in polynomial time from half the high order bits of a factor of *N*.

- same game with $Q(x, y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX,yY)^iN^{k-i}$;

ullet Find **two** small vectors in this lattice o

 $P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x, y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX,yY)^iN^{k-i}$;

• Find **two** small vectors in this lattice ightarrow

 $P_1(x,y) = 0 \mod N, P_2(x,y) = 0 \mod N.$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x,y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX,yY)^iN^{k-i}$;
- Find two small vectors in this lattice ightarrow

 $P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x,y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX,yY)^iN^{k-i}$;
- Find two small vectors in this lattice ightarrow

$$P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x,y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX, yY)^iN^{k-i}$;
- Find two small vectors in this lattice ightarrow

$$P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x,y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^{m}Q(xX, yY)^{i}N^{k-i}$;
- Find two small vectors in this lattice ightarrow

$$P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

- same game with $Q(x,y) = 0 \mod N$, $|x| \le X$, $|y| \le Y$;
- Build a lattice from $(xX)^{\ell}(yY)^mQ(xX,yY)^iN^{k-i}$;
- Find two small vectors in this lattice ightarrow

$$P_1(x, y) = 0 \mod N, P_2(x, y) = 0 \mod N.$$

- If P_1, P_2 small enough, $P_1(x, y) = P_2(x, y) = 0$;
- May fail if P₁ and P₂ are algebraically dependent...
- Otherwise, use your favorite method to solve (resultant, Hensel lifting, etc.).
- Details are tricky: auxiliary polynomials depend finely on shape of *P* and *X*, *Y*.

Lattice algorithms - Coppersmith's method, application 2

RSA modulus N = ed, d small, e public.

- Wiener's attack with continued fractions \Rightarrow can find d from e, N as soon as $d < N^{1/4}$;
- Boneh-Durfee : *ed* + *k*(*N* + 1 − *p* − *q*) = 1, hence k(*A* + *s*) = 1 mod *e*, *k*, *s* unknown.
- $d \text{ small} \Rightarrow e \approx N \Rightarrow |k| \leq e^{\delta}, |s| \leq e^{0.5}.$

•
$$f(x, y) := x(A + y) - 1$$
, use

$$g_{i,l} = x^i f(x, y)^l e^{k-l}, h_{i,j} = y^j f(x, y)^l e^{k-l},$$

- Triangular matrix... find \tilde{g} small enough as soon as $\delta \leq 0.284$.
- Using a better (non full-rank) lattice gives $\delta \leq 0.292$.

Lattice algorithms - Coppersmith's method and RS codes

Let \mathbb{K} be a finite field, n, k given.

- $(x_i)_{1 \le i \le n}$ pairwise distinct points in \mathbb{K} ;
- Reed-Solomon code: message is P, deg P < k, send $(P(x_1), \ldots, P(x_n))$, receive (y_1, \ldots, y_n) ;
- Define R(x) of degree $\langle k |$ st. $R(x_i) = y_i$ for all i;
- Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

This is (list-)decoding of Reed-Solomon codes.

Lattice algorithms - Coppersmith's method and RS codes

Let \mathbb{K} be a finite field, n, k given.

- $(x_i)_{1 \le i \le n}$ pairwise distinct points in \mathbb{K} ;
- Reed-Solomon code: message is P, deg P < k, send (P(x₁),..., P(x_n)), receive (y₁,..., y_n);
- Define R(x) of degree $\langle k$ st. $R(x_i) = y_i$ for all i;
- Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

This is (list-)decoding of Reed-Solomon codes.
Let \mathbb{K} be a finite field, n, k given.

- $(x_i)_{1 \le i \le n}$ pairwise distinct points in \mathbb{K} ;
- Reed-Solomon code: message is P, deg P < k, send (P(x₁),..., P(x_n)), receive (y₁,..., y_n);
- Define R(x) of degree $\langle k$ st. $R(x_i) = y_i$ for all i;
- Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

This is (list-)decoding of Reed-Solomon codes.

Let \mathbb{K} be a finite field, n, k given.

- $(x_i)_{1 \le i \le n}$ pairwise distinct points in \mathbb{K} ;
- Reed-Solomon code: message is P, deg P < k, send (P(x₁),..., P(x_n)), receive (y₁,..., y_n);
- Define R(x) of degree $\langle k$ st. $R(x_i) = y_i$ for all i;
- Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

This is (list-)decoding of Reed-Solomon codes.

Let \mathbb{K} be a finite field, n, k given.

- $(x_i)_{1 \le i \le n}$ pairwise distinct points in \mathbb{K} ;
- Reed-Solomon code: message is P, deg P < k, send (P(x₁),..., P(x_n)), receive (y₁,..., y_n);
- Define R(x) of degree $\langle k$ st. $R(x_i) = y_i$ for all i;
- Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

This is (list-)decoding of Reed-Solomon codes.

(List) Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

 Can use a polynomial version of Coppersmith's ideas: look for small degree linear combination of Y^u(Y − R(X))^ℓ(∏ⁿ_{i=1}(X − x_i))^{k−ℓ}

• classical decoding k = 1, u = 0 : $\delta = (n + k)/2$.

• k = 1, *u* arbitrary: $\delta = \sqrt{2kn}$ (Sudan)

• Full Coppersmith's method: $\delta = \sqrt{kn}$ (Guruswami-Sudan)

(List) Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

 Can use a polynomial version of Coppersmith's ideas: look for small degree linear combination of Y^u(Y − R(X))^ℓ(∏ⁿ_{i=1}(X − x_i))^{k−ℓ}

• classical decoding k = 1, u = 0 : $\delta = (n + k)/2$.

• k = 1, *u* arbitrary: $\delta = \sqrt{2kn}$ (Sudan)

• Full Coppersmith's method: $\delta=\sqrt{kn}$ (Guruswami-Sudan)

(List) Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

- Can use a polynomial version of Coppersmith's ideas: look for small degree linear combination of Y^u(Y − R(X))^ℓ(∏ⁿ_{i=1}(X − x_i))^{k−ℓ}
- classical decoding k = 1, u = 0: $\delta = (n + k)/2$.
- k = 1, *u* arbitrary: $\delta = \sqrt{2kn}$ (Sudan)
- Full Coppersmith's method: $\delta = \sqrt{kn}$ (Guruswami-Sudan)

(List) Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

- Can use a polynomial version of Coppersmith's ideas: look for small degree linear combination of Y^u(Y − R(X))^ℓ(∏ⁿ_{i=1}(X − x_i))^{k−ℓ}
- classical decoding k = 1, u = 0: $\delta = (n + k)/2$.
- k = 1, u arbitrary: $\delta = \sqrt{2kn}$ (Sudan)
- Full Coppersmith's method: $\delta = \sqrt{kn}$ (Guruswami-Sudan)

(List) Decoding : Find all $P \in \mathbb{K}[X]$, deg $P \leq k$, st. deg gcd $(P(X) - R(X), \prod_{i=1}^{n} (X - x_i)) > \delta$ (correct $n - \delta$ errors).

- Can use a polynomial version of Coppersmith's ideas: look for small degree linear combination of Y^u(Y − R(X))^ℓ(∏ⁿ_{i=1}(X − x_i))^{k−ℓ}
- classical decoding k = 1, u = 0: $\delta = (n + k)/2$.
- k = 1, u arbitrary: $\delta = \sqrt{2kn}$ (Sudan)
- Full Coppersmith's method: $\delta = \sqrt{kn}$ (Guruswami-Sudan)