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Lattices in computer science

Lattices are a fairly old mathematical object.

But still quite poorly understood.

Their computational aspects have been studied for >30 years.

But many important computational questions remain open.
⇒ Not so many algorithms [Guillaume]

⇒ Even the simplest algorithms are hard to analyze [Brigitte]

Used in many areas, including:

Communications theory [Jean-Claude]

Cryptography [Mehdi & Vadim]

Computer arithmetic [Nicolas]

Convex geometry [Daniel]
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Objectives

Goals of the week:

An introduction to the computational aspects of lattices.

An overview of active research fields involving lattices.

Goals of this first lecture:

Give the mathematical background.

Describe how to handle the basic computational tasks.
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My favorite sources for the material of this lecture

Oded Regev’s lecture notes:
http://www.cims.nyu.edu/~regev/teaching/

Daniele Micciancio’s lecture notes:
http://cseweb.ucsd.edu/~daniele/classes.html/
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Outline

1 Lattices and lattice bases.

2 Lattice invariants.

3 Examples of lattices.

4 Gram-Schmidt orthogonalisation.

5 Lattice Gaussians.

6 Computational problems on lattices.
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A first definition

Algebraic definition of a lattice

A lattice L is a discrete additive subgroup of an Rn.

Additive subgroup:
L is stable under integral linear combinations.

Discrete: no accumulation point.
For any b ∈ L, there is a ball around b containing only b.
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First examples

Examples of lattices

Z ⊆ R.

Zd ⊆ Rn with d ≤ n.

Any subgroup of Zd .

Counter-example

S = Z +
√

2Z is not a lattice:
if (pk/qk)k are the continued fraction convergents of

√
2, then

pk − qk
√

2 →k 0,

pk − qk
√

2 ∈ S \ 0.
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A 2-dimensional lattice
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The same lattice
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An equivalent definition

Constructive definition of a lattice

A lattice L is the set of all integer linear combinations of some
linearly independent vectors in an Rn.

L =
∑

1≤i≤d
Zbi = {

∑
1≤i≤d

xibi , xi ∈ Z} = B · Zd ,

where the bi ’s are linearly independent vectors of Rn,
and B ∈ Rn×d is the matrix whose columns are the bi ’s.

b1, . . . ,bd is a basis of L. It is not unique.

Embedding dimension: n (a trivial invariant of L).

Lattice dimension: d (also an invariant of L).

If d = n, we say that the lattice is full-rank.
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Two bases of a 2-dimensional lattice
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Relationships between bases of a given lattice

Unimodular matrices

A matrix U ∈ Zd×d is said unimodular if it is invertible over Zd×d .
Equivalently: its determinant is detU = ±1.
Equivalently: it belongs to GLd(Z).

Unimodularity and lattice bases

Two bases (bi )i≤d and (ci )i≤d span the same lattice iff there
exists U ∈ GLd(Z) such that (bi )i≤d · U = (ci )i≤d .

Direct consequences:

Any lattice of dimension ≥ 2 has infinitely many bases.

The set lattices of dim d is isomorphic to GLd(R)/GLd(Z).
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Duality

The dual of the d-dimensional lattice L is:

L̂ = {c ∈ Span(L) : ∀b ∈ L, 〈c,b〉 ∈ Z}
= {c ∈ Span(L) : cT · L ⊆ Zd}.

Dual basis

B basis matrix of L ⇒ B̂ = B(BTB)−1 basis matrix of L̂.
If L is full-rank, then B̂ = B−T .

Consequences:

dim(L̂) = dim(L).̂̂
L = L.
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Set operations on lattices

Let L1, L2 ⊆ Rn be two lattices.

The union L1 ∪ L2 may not be a lattice: 2Z ∪ 3Z.

The Z-span of L1 ∪ L2, i.e., the sum
L1 + L2 = {b1 + b2 : b1 ∈ L1,b2 ∈ L2}, may not be a lattice:

Z +
√

2Z.

If L1, L2 ⊆ L for some lattice L, then L1 + L2 is a lattice.

The intersection L1 ∩ L2 is always a lattice.

If dim L1 = dim L2 = dim L1 ∩ L2, then:

L1 ∩ L2 = ̂̂L1 + L̂2.
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Computing a basis of the sum of lattices

Let B1,B2 be bases of lattices L1, L2 ⊆ Zn.
How can we compute a basis of L1 + L2?

Hermite Normal Form (HNF)

For any X ∈ Zm×n, there exists U ∈ GLn(Z) such
that X · U = (L|0) with L lower trapezoidal.

That’s akin to Gauss’ pivoting for linear systems.

Can be performed efficiently (see, e.g., [Micciancio-Warinschi’01])

In our case, use X = (B1|B2), and L is a basis matrix
for L1 + L2.
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Outline

1 Lattices and lattice bases.

2 Lattice invariants.

3 Examples of lattices.

4 Gram-Schmidt orthogonalisation.

5 Lattice Gaussians.

6 Computational problems on lattices.
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The lattice minimum

Lattice minimum

For any lattice L 6= 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum λ1(L):

λ1(L) = min (r : B(0, r) ∩ L 6= {0}) .

By default, one considers the euclidean norm.

The minimum is always reached at least twice.

It may be reached exponentially many times.
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Damien Stehlé Introduction to lattices March 2012 18/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

The lattice minimum

Lattice minimum

For any lattice L 6= 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum λ1(L):

λ1(L) = min (r : B(0, r) ∩ L 6= {0}) .

By default, one considers the euclidean norm.

The minimum is always reached at least twice.

It may be reached exponentially many times.
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Successive minima

The first minimum measures “sparseness” only wrt one dimension.

Successive minima

For i ≤ d , the ith minimum of a d-dimensional lattice L is:

λi (L) = min (r : dim span(B(0, r) ∩ L) ≥ i) .

Banaszczyk’s transference theorem

For any d-dimensional lattice L: λ1(L) · λd(L̂) ≤ d .
(obtained using Fourier analysis – see Daniel’s talk)
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Correct and incorrect properties on the successive minima

The minima can be reached by lin. indep. vectors

Then there exist s1, . . . , sd ∈ L linearly independent such that:

∀i ≤ d : ‖si‖ = λi (L).

There are lattices for which no basis reaches the minima.

There are lattices where the shortest bases are Θ(
√
d) larger

than the minima: 
2 0 . . . 0 1
0 2 . . . 0 1
...

. . .
...

0 0 . . . 2 1
0 0 . . . 0 1


Damien Stehlé Introduction to lattices March 2012 20/58
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Lattice determinant

The Gram matrix of a basis (bi )i≤d is G = (〈bi ,bj〉)i ,j = BTB.

Determinant of a lattice

Let b1, . . . ,bd be a basis of a lattice L. We define:

det(L) =
√

det(G (b1, . . . ,bd)).

Simple properties:

The determinant is a lattice invariant.

If L is full-rank, then det(L) = | detB|.
Hadamard: det(L) ≤

∏
i ‖bi‖ for any basis.

det(L̂) = 1/ det(L).

If L ⊆ L′ are full-rank, then det(L′)| det(L).
L′/L is a finite additive group of cardinality det(L)/ det(L′).
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Geometric interpretation of the determinant

The determinant of a lattice L with basis (bi )i≤d is the volume of
the parallelepiped spanned by the basis vectors.

It also quantifies the d-dimensional sparseness of the lattice.
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Minkowski’s theorems

Provides a relationship between the invariants we have seen so far.

Minkowski’s theorem

Let L ⊆ Rn be a full-rank lattice and S ⊆ Rn convex and sym-
metric with vol(S) > 2n · det(L). Then there is x ∈ (L \ 0) ∩ S .
If S is closed, it suffices that vol(S) ≥ 2n · det(L).

Corollary 1

For any n-dimensional lattice L, we have: λ1(L) ≤
√
n · det(L)1/n.

Corollary 2

For any n-dimensional lattice L, we have:∏
i≤n

λi (L) ≤
√
n
n · det(L).
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Hermite’s constants

Minkowski’s theorem implies the existence of Hermite’s constant:

γn = sup

(
λ1(L)

det(L)1/n
: dim(L) = n

)2

.

For most n’s, only bounds of γn are known. Known values:

n 2 3 4 5 6 7 8 24

γnn 4/3 2 4 8 64/3 64 256 424
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The Gaussian heuristic

The Gaussian heuristic

Given a full-dim lattice L and a ’nice’ set S , the number of points
of L within S is expected to be vol(S)/ det(L).

Can be made rigorous for fixed lattice and growing S .

Can be made rigorous for ’random’ lattices L.

Allows one to quickly estimate the number of points in a body.
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Outline

1 Lattices and lattice bases.

2 Lattice invariants.

3 Examples of lattices.

4 Gram-Schmidt orthogonalisation.

5 Lattice Gaussians.

6 Computational problems on lattices.
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From linear codes to lattices

A linear code C over Zp = Z/pZ for p prime is a sub-vector
space of a Zn

p.

There exists a generator matrix G ∈ Zn×k
p with k = dimC s.t.:

C = G · Zk
p = {Gs : s ∈ Zk

p}.

Construction A

Let C ⊆ Zn
p be a k-dimensional linear code.

The construction A lattice associated to C is:

L(C ) = C + pZn =
{

x ∈ Zn : ∃s ∈ Zk
p , x = G · s mod p

}
.
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From linear codes to lattices

L(C ) = C + pZn = {x ∈ Zn : ∃s ∈ Zk
p , x = G · s mod p}.

Simple properties:
pZn ⊆ L(C ) ⊆ Zn. In particular, dim(L(C )) = n.

A basis of L(C ) is obtained using the HNF of [G |p · Idn].

Determinant:

As L(A) ⊆ Zn is full-rank, it suffices to compute |Zn/L(C )|.
As Zn/L(C ) ∼= Zn

p/C , we get: det(L(C )) = pn−k .

Minimum: by Minkowski’s theorem, λ1(L(C )) ≤
√
n · p1−k/n.

Dual: L̂(C ) = 1
p · L(C⊥), with C⊥ = {x ∈ Zn

p : xT · C = 0}.
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Construction A lattices in cryptography

Sample A ∈ Zm×n
p uniformly with m > n. We define:

The LWE lattice of A as

Λp(A) = {x ∈ Zm : ∃s ∈ Zn
p : x = As mod p}.

⇒ Construction A on the code spanned by the columns of A.

The SIS lattice of A as

Λ⊥p (A) = {x ∈ Zm : xTA = 0 mod p}.

⇒ Construction A on the orthogonal of the latter code.

With overwhelming probability:

det(Λp(A)) = pm−n and det(Λ⊥p (A)) = pn.
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Lattices from integer matrices

Sample A ∈ Zm×n randomly, with m > n.

{x ∈ Zn : xT · A = 0} = kerZ(A) = Zm ∩ ker(A) is a lattice.

Its dimension is m − rk(A).

Its determinant is harder to compute : −).

Used in cryptanalysis (against knapsack-based cryptosystems).

Recently used in cryptographic design (see [AgrGenHalSah13]).
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Ideal lattices

A lattice L ⊆ Zn is ideal if ∀(b0b1 . . . bn−1) ∈ Zn:

( b0 b1 b2 . . . bn−1 ) ∈ L
⇒ ( −bn−1 b0 b1 . . . bn−2 ) ∈ L
⇒ ( −bn−2 −bn−1 b0 . . . bn−3 ) ∈ L

By identifying Zn with Z[x ]/(xn + 1), we obtain that:

L is ideal iff it corresponds to an ideal of Z[x ]/(xn + 1).

If n is a power of 2, then det(L)1/n ≤ λ1(L) ≤
√
n · det(L)1/n.

Consider the shifts bi of a vector reaching λ1(L).

As xn + 1 is irreducible, L′ =
∑

Zbi ⊆ L is full-rank.

We have det(L) ≤ det(L′) ≤
∏

i ‖bi‖ = λ1(L)n.
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Ideal lattices and algebraic number theory

Let ζ be an algebraic integer, with minimal polynomial P(x).

The number field K = Q(ζ) is isomorphic to Q[x ]/P(x).

The ring of integers OK is the set of algebraic integers of K .

Let (ζi )i≤r be the real roots of P, and (ζr+i )i≤2s be its complex
roots with ζr+s+i = ζr+i .

The embeddings σi of K are induced by x 7→ ζi .

For α ∈ K , set σ(α) = (σ1(α), . . . , σr+s(α)) ∈ Rr ×Cs ∼= Rn.

Lattices from OK :

For any ideal I of OK , σ(I ) is a lattice of Rn.

The lattices of the previous slide are isometric to the σ(I )’s,
for ζ = exp(iπ/n) (with n a power of 2).

In that case, P = xn + 1 and OK
∼= Z[x ]/(xn + 1).
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Gram-Schmidt Orthogonalisation

Gram-Schmidt orthogonalisation

Let b1, . . . ,bd ∈ Rn be linearly independent. Their Gram-Schmidt
orthogonalisation (GSO) is defined by:

b∗i = bi −
∑
j<i

µi ,jb
∗
j , with µij =

〈bi ,b
∗
j 〉

‖b∗j ‖2
for all i > j .

For all i , b∗i is the projection of bi orthogonally to
∑

j<i Rbj .
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Properties of the GSO

The µij ’s are unlikely to be integral, and so are unsuited for
lattice basis transformations.

For all i , we have
∑

j<i Rb∗j =
∑

j<i Rbj .

The b∗i ’s are orthogonal:

‖bi‖2 = ‖b∗i ‖2 +
∑
j<i

µ2
ij‖b∗j ‖2.

In particular, ‖b∗i ‖ ≤ ‖bi‖.
We may attempt to make it sharper by lowering the µij ’s.
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GSO and QR factorisation

QR factorisation

For any full-rank B ∈ Rn×n, there exists a unique pair of
matrices Q,R ∈ Rn×n such that:

B = Q · R;

Q is orthogonal, i.e., QT · Q = Q · QT = Id ;

R is up-triangular with rii > 0 for all i .

QR and Gram-Schmidt encode the same information:

rii = ‖b∗i ‖
rij = µji · ‖b∗i ‖
qi = b∗i /‖b∗i ‖.
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GSO and lattices

Minimum and GSO

Let L be a lattice, and b1, . . . ,bd be a basis of L. Then:

λ1(L) ≥ minj ‖b∗j ‖.

Determinant and GSO

Let L be a lattice, and b1, . . . ,bd be a basis of L. Then:

det(L) =
∏

j ‖b∗j ‖.

Dual and GSO

Let B ∈ Rn×n be non-singular, with factorisation B = QR. Then

(BJ)−T = (QJ) · (JR−T J),

with J the mirror permutation matrix.
⇒ For any basis B, maxi ‖b∗i ‖ = 1/mini ‖c∗i ‖, where C = B̂J.
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Size-reduction

Size-reduction aims at almost zeroing the µij ’s using integer ops.

Recall the GSO of a basis (bi )i≤d :

b∗i = bi −
∑
j<i

µi ,jb
∗
j , with µi ,j =

〈bi ,b
∗
j 〉

‖b∗j ‖2
for all i > j .

Size-reducedness

A basis (bi )i≤d is said size-reduced if |µi ,j | ≤ 1/2 for all i > j .

Main property of size-reduced bases

If (bi )i is size-reduced, then

‖bi‖2 ≤ ‖b∗i ‖2 +
1

4

∑
j<i

‖b∗j ‖2.
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The size-reduction algorithm

Input: Basis (bi )i≤n of a lattice L.

Output: Size-reduced output (ci )i≤n of L.

1. Compute the GSO coefficients µij .

2. For all i , do:

3. For j from i − 1 to 1, do:

4. xij = bµije.
5. bi = bi − xijbj .

6. For k from 1 to j do µik = µik − xij · µjk .

Also known as: Size-reduction, Babai’s nearest plane algorithm,
successive interference cancellation.
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Correctness and complexity

Correctness of the size-reduction algorithm

Let (bi )i be given as input to the size-reduction algorithm.
Then the output is a size-reduced basis (ci )i of the same lattice.
Furthermore:

1 For all i : b∗i = c∗i
2 For all i : ‖ci‖ ≤

√
n ·maxj≤i ‖b∗i ‖ ≤

√
n ·maxj≤i ‖bi‖

3 The corresponding unimodular transform is up-triangular with
1’s on its diagonal.

If the bi ’s are rational, then the bit-cost of the size-reduction
algorithm is polynomial in the input size.

Damien Stehlé Introduction to lattices March 2012 40/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

Correctness and complexity

Correctness of the size-reduction algorithm

Let (bi )i be given as input to the size-reduction algorithm.
Then the output is a size-reduced basis (ci )i of the same lattice.
Furthermore:

1 For all i : b∗i = c∗i
2 For all i : ‖ci‖ ≤

√
n ·maxj≤i ‖b∗i ‖ ≤

√
n ·maxj≤i ‖bi‖

3 The corresponding unimodular transform is up-triangular with
1’s on its diagonal.

If the bi ’s are rational, then the bit-cost of the size-reduction
algorithm is polynomial in the input size.
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From short vectors to a short basis

Let (bi )i be an arbitrary basis of a lattice L.

Let (si )i in L be linearly independent with small ‖si‖’s.

Can we compute a small basis of L?

1 Write (si )i = (bi )i · T , with T ∈ Zn×n.

2 Compute the transpose-HNF of T , i.e.,
T = U · H with U ∈ GLn(Z) and H ∈ Zn×n up-triangular.

3 Let (ci )i = (bi )i · U. It’s a basis of L and (si )i = (ci )i · H.
max ‖c∗i ‖ ≤ max ‖s∗i ‖ ≤ max ‖si‖.

4 With a size-reduction, we get a basis (di )i with

max ‖di‖ ≤
√
n ·max ‖c∗i ‖ ≤

√
n ·max ‖si‖.
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Outline

1 Lattices and lattice bases.

2 Lattice invariants.

3 Examples of lattices.

4 Gram-Schmidt orthogonalisation.

5 Lattice Gaussians.

6 Computational problems on lattices.
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Lattice Gaussian distribution

Damien Stehlé Introduction to lattices March 2012 43/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

Lattice Gaussian distribution

For b ∈ Rn and c ∈ Rn:

ρσ,c(b) := exp

(
−π‖b− c‖2

σ2

)
.

σ is the standard deviation parameter.
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Lattice Gaussian distribution

For b ∈ Rn and c ∈ Rn:

ρσ,c(b) := exp

(
−π‖b− c‖2

σ2

)
.

σ is the standard deviation parameter.

For L ⊆ Rn and c ∈ Rn: ρσ,c(L) =
∑

b∈L ρσ,c(b) is finite.

Gaussian distribution of support L and parameters c and σ

∀b ∈ L : DL,σ,c(b) =
ρσ,c(b)

ρσ,c(L)
∼ ρσ,c(b).
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Fourier transform

DL,σ,0 ∼ ρσ · 1L, with 1L the indicator function of L.

The Fourier transform of ρσ is ρσ−1 .

The Fourier transform of 1L is 1
L̂
.

x 7→ DL,σ,0(x) x 7→
∑

b̂∈L̂ ρ
σ−1,b̂(x) = ρσ−1,x(L̂)

Poisson Summation Formula

ρσ,c(L) =
∑
b∈L

ρσ,c(b) =
σn

det L
·
∑

b̂ ∈ L̂

ρσ−1(b̂) · e−2iπ〈b̂,c〉.
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The smoothing parameter

It quantifies when σ is sufficiently large for:

the distribution DL,c,σ to look smooth.
the function x 7→ ρσ,x(L) to look constant.

Smoothing parameter

For ε ∈ (0, 1) and L a full-rank lattice, we define:

ηε(L) = min
(
σ : ρσ−1,0(L̂ \ 0) ≤ ε

)
.

Flatness of x 7→ ρσ,x(L) for σ ≥ ηε(L):

Consequence of the PSF:
ρσ,x(L) = σn

det L ·
∑

b̂∈L̂ ρσ−1,0(b̂) · e−2iπ〈b̂,c〉.∣∣∣∣ρσ,x(L)− σn

det L

∣∣∣∣ ≤ σn

det L
·
∑

b̂∈L̂\0

ρσ−1,0(b̂) ≤ σn

det L
· ε.

Damien Stehlé Introduction to lattices March 2012 45/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

The smoothing parameter

It quantifies when σ is sufficiently large for:

the distribution DL,c,σ to look smooth.
the function x 7→ ρσ,x(L) to look constant.

Smoothing parameter

For ε ∈ (0, 1) and L a full-rank lattice, we define:

ηε(L) = min
(
σ : ρσ−1,0(L̂ \ 0) ≤ ε

)
.

Flatness of x 7→ ρσ,x(L) for σ ≥ ηε(L):

Consequence of the PSF:
ρσ,x(L) = σn

det L ·
∑

b̂∈L̂ ρσ−1,0(b̂) · e−2iπ〈b̂,c〉.∣∣∣∣ρσ,x(L)− σn

det L

∣∣∣∣ ≤ σn

det L
·
∑

b̂∈L̂\0

ρσ−1,0(b̂) ≤ σn

det L
· ε.
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Bounding the smoothing parameter

η2−n(L) ≤
√
n / λ1(L̂).

Proof sketch: Take σ = λ1(L̂)/
√
n in

ρσ(L̂ \ 0) =
∑

b̂∈L̂\0
exp

(
−nπ ‖b̂‖2

λ1(L̂)2

)
.

The summand is 2−Θ(n) for ‖b̂‖ ≈ λ1(L̂), and drops fast with ‖b̂‖.

η2−n(L) ≤
√
n · λn(L).

Proof: Transference.

η2−n(L) ≤ max ‖b∗i ‖ for any basis bi of L.

Proof: Let C = (BJ)−T be the dual basis of BJ. Then

λ1(L̂) ≥ min ‖c∗i ‖ = 1/max ‖b∗i ‖.
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Damien Stehlé Introduction to lattices March 2012 46/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

Sampling from DL,σ,c

Algorithm of [Klein’00], analyzed in [GenPeiVai’08].

Randomized version of size-reduction.

Input: A basis (bi )i of L, σ.
Output: b ∈ L, hopefully distributed from DL,σ,0.

1 b := 0. For i from n to 1, do

2 σi := σ/‖b∗i ‖, ci := −〈b,b∗i 〉/‖b∗i ‖2;

3 Sample zi from DZ,σi ,ci ;

4 b := b + zibi .

5 Return b.

It can be easily modified to sample according to DL,σ,c.
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Sampling from DL,σ,c

1 b := 0. For i = n..1, do:

2 σi := σ
‖b∗i ‖

, ci := − 〈b,b
∗
i 〉

‖b∗i ‖2 ;

3 Sample zi from DZ,σi ,ci ;

4 b := b + zibi .

5 Return b.

The probability of returning b =
∑

xibi is:

Pr[zn = xn]·Pr[zn−1 = xn−1|zn = xn]·. . .·Pr[z1 = x1|zi = xi , ∀i > 1].

Using the GSO, this is:

∏
DZ,σi ,ci (xi ) =

exp(−
∑

i (xi − ci )
2/σ2

i )∏
ρσi ,ci (Z)

=
exp(−‖b‖2/σ2)∏

ρσi ,ci (Z)
.
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Sampling from DL,σ,c

1 b := 0. For i = n..1, do:

2 σi := σ
‖b∗i ‖

, ci := − 〈b,b
∗
i 〉

‖b∗i ‖2 ;

3 Sample zi from DZ,σi ,ci ;

4 b := b + zibi .

5 Return b.

The probability of returning b is exp(−‖b‖2/σ2) /
∏
ρσi ,ci (Z).

We’d like each ρσi ,ci (Z) to be independent of b.

ρσi ,ci (Z) is essentially independent of ci when σi ≥ ηε(Z).

For ε = 2−n, it suffices that ∀i : σ/‖b∗i ‖ ≥
√
n.

Damien Stehlé Introduction to lattices March 2012 49/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

Sampling from DL,σ,c

1 b := 0. For i = n..1, do:

2 σi := σ
‖b∗i ‖

, ci := − 〈b,b
∗
i 〉

‖b∗i ‖2 ;

3 Sample zi from DZ,σi ,ci ;

4 b := b + zibi .

5 Return b.

The probability of returning b is exp(−‖b‖2/σ2) /
∏
ρσi ,ci (Z).

We’d like each ρσi ,ci (Z) to be independent of b.

ρσi ,ci (Z) is essentially independent of ci when σi ≥ ηε(Z).

For ε = 2−n, it suffices that ∀i : σ/‖b∗i ‖ ≥
√
n.
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Sampling from DL,σ,c

1 b := 0. For i = n..1, do:
2 σi := σ

‖b∗i ‖
, ci := − 〈b,b

∗
i 〉

‖b∗i ‖2 ;

3 Sample zi from DZ,σi ,ci ;
4 b := b + zibi .
5 Return b.

Sampling from a lattice Gaussian [GenPeiVai’08]

For σ ≥
√
n ·max ‖b∗i ‖, Klein’s algorithm samples from a

distribution within statistical distance ∆ = 2−Ω(n) to DL,σ,c.

Stat. distance = total variation distance = L1 distance.

Algorithm A succeeds with prob. ε given a sample from D
⇒ A succeeds with prob. ≥ ε−∆ given a sample from D ′.

We can get the exact distribution for σ ≥ 10
√

log n ·max ‖b∗i ‖,
using rejection sampling [BraLanPeiRegSte’13].
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n ·max ‖b∗i ‖, Klein’s algorithm samples from a

distribution within statistical distance ∆ = 2−Ω(n) to DL,σ,c.

Stat. distance = total variation distance = L1 distance.

Algorithm A succeeds with prob. ε given a sample from D
⇒ A succeeds with prob. ≥ ε−∆ given a sample from D ′.

We can get the exact distribution for σ ≥ 10
√

log n ·max ‖b∗i ‖,
using rejection sampling [BraLanPeiRegSte’13].

Damien Stehlé Introduction to lattices March 2012 50/58



Lattices Invariants Examples of lattices Gram-Schmidt Gaussians Computational problems

Outline

1 Lattices and lattice bases.

2 Lattice invariants.

3 Examples of lattices.

4 Gram-Schmidt orthogonalisation.

5 Lattice Gaussians.

6 Computational problems on lattices.
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Easy algorithmic problems on lattices

Given a basis of L ⊆ Zn, we can, in polynomial-time:

Test whether a given b belongs to L

Compute the determinant of L

Compute a basis of L̂

Given a basis of L1 ⊆ Zn and a basis of L2 ⊆ Zn, we can,
in polynomial-time:

Test whether L1 ⊆ L2.

Test whether L1 = L2.

Compute bases for L1 + L2 and L1 ∩ L2.
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The Shortest Vector Problem

It comes in many flavours, and can be generalized in many ways.

Computational SVP

Given a basis of L, find b ∈ L with ‖b‖ = λ1(L).

Decisional SVP

Given a basis of L and a rational d , reply YES is λ1(L) ≤ d and
NO otherwise.

We are mostly interested in SVP when the lattice dimension
grows to infinity.

[Van Emde Boas’81]: DecSVP is NP-hard for the infinity norm.

[Ajtai’98]: DecSVP is NP-hard under randomized reductions.
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Variants of SVP

SVPγ for approximation factor γ ≥ 1

Given a basis of L, find b ∈ L s.t. 0 < ‖b‖ ≤ γ · λ1(L).

GapSVPγ for approximation factor γ ≥ 1

Given a basis of L and a rational d , reply YES if λ1(L) ≤ d and
NO if λ1(L) ≥ γ · d .

[HavReg’07]: GapSVPγ is NP-hard for any γ ≤ 2(log n)1−ε
, under

randomized reductions.

[AhaReg’04]: GapSVPγ is in NP ∩ coNP when γ ≥
√
n.

⇒ GapSVPγ is unlikely to be NP-hard for such γ.

Best polynomial-time algorithm achieves γ = 2O( n log log n
log n

).
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The Closest Vector Problem

CVPγ for γ ≥ 1

Given a basis of L and a vector t, find b ∈ L
s.t. 0 < ‖b− t‖ ≤ γ · dist(t, L).

GapCVPγ for γ ≥ 1

Given a basis of L, a vector t and a rational d , reply YES
if dist(t, L) ≤ d and NO if dist(t, L) ≥ γ · d .
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Plenty of variants (1/2)

uSVPγ (Unique SVP)

Given a basis of L s.t. λ2(L) ≥ γ · λ1(L), find b ∈ L such
that ‖b‖ = λ1(L).

HSVPγ (Hermite SVP)

Given a basis of L, find b ∈ L such that ‖b‖ ≤ γ · (det L)1/n.

BDDγ (Bounded Distance Decoding)

Given a basis of L and a vector t such that dist(t, L) ≤ 1
γλ1(L),

find b ∈ L that is closest to t.
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Plenty of variants (2/2)

SIVPγ (Shortest Independent Vectors Problem)

Given a basis of L of dimension n, find b1, . . . ,bn ∈ L linearly
independent such that maxi ‖bi‖ ≤ γ · λn(L).

SBPγ (Shortest Basis Problem)

Given a basis of L, find a basis (bi )i of L such
that max ‖bi‖ ≤ γ ·min(ci )i basis max ‖ci‖.

Much more on this topic in “Complexity of lattice problems” by
Micciancio and Goldwasser (2002).
See also [Mic’08,LyuMic’09].
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General rules to be remembered about all these problems

Easier when γ increases.

Often somewhat NP-hard for very small γ.

Typically not NP hard for polynomial γ
(the kind of γ used in cryptography).

Solvable in polynomial-time for γ almost exponential in n

The lattice algorithms rule of thumb

Given a basis of an n-dimensional lattice, the best known
algorithms achieve

γ ≈ kO(k/n) in time ≈ nO(1) · 2O(k).

⇒ Best γ in polynomial-time: γ = 2O( n log log n
log n

).

⇒ Complexity 2O(n) for polynomial γ.
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