Introduction to lattices

Damien Stehlé

ENS de Lyon

EPIT, Autrans, March 2013

Damien Stehlé Introduction to lattices March 2012 1/58



Lattices in computer science

@ Lattices are a fairly old mathematical object.

@ But still quite poorly understood.
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Lattices in computer science

@ Lattices are a fairly old mathematical object.

But still quite poorly understood.

Their computational aspects have been studied for > 30 years.

But many important computational questions remain open.
= Not so many algorithms [Guillaume]
= Even the simplest algorithms are hard to analyze [Brigitte]

@ Used in many areas, including:

o Communications theory [Jean-Claude]

o Cryptography [Mehdi & Vadim]
e Computer arithmetic [Nicolas]

o Convex geometry [Daniel]
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Objectives

Goals of the week:
@ An introduction to the computational aspects of lattices.

@ An overview of active research fields involving lattices.
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Objectives

Goals of the week:
@ An introduction to the computational aspects of lattices.

@ An overview of active research fields involving lattices.

Goals of this first lecture:
@ Give the mathematical background.

@ Describe how to handle the basic computational tasks.
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My favorite sources for the material of this lecture

@ Oded Regev's lecture notes:
http://www.cims.nyu.edu/~regev/teaching/

@ Daniele Micciancio's lecture notes:
http://cseweb.ucsd.edu/~daniele/classes.html/
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http://www.cims.nyu.edu/~regev/teaching/
http://cseweb.ucsd.edu/~daniele/classes.html/

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.
© Lattice Gaussians.

@ Computational problems on lattices.
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Lattices

A first definition

Algebraic definition of a lattice

A lattice L is a discrete additive subgroup of an R".
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A lattice L is a discrete additive subgroup of an R".
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L is stable under integral linear combinations.

Damien Stehlé Introduction to lattices March 2012 7/58



Lattices

A first definition

Algebraic definition of a lattice

A lattice L is a discrete additive subgroup of an R".

@ Additive subgroup:
L is stable under integral linear combinations.

@ Discrete: no accumulation point.
For any b € L, there is a ball around b containing only b.
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Lattices

First examples

Examples of lattices
e Z CR.
o Z4 C R™ with d < n.
@ Any subgroup of Z9.
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Lattices

First examples

Examples of lattices
e Z CR.
o Z4 C R™ with d < n.
@ Any subgroup of Z9.

Counter-example

o S=7++/27Zis not a lattice:
if (px/qk)k are the continued fraction convergents of /2, then

Pk — qkV2 =y O,
pk—aqV2 € S \ 0.
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Lattices

A 2-dimensional lattice
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Lattices

The same lattice
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Lattices

An equivalent definition

Constructive definition of a lattice

A lattice L is the set of all integer linear combinations of some
linearly independent vectors in an R".

L = Z Zb; = {Z X;b,',X,'GZ} = B-Zd,

1<i<d 1<i<d

where the b;'s are linearly independent vectors of R”,
and B € R"9 is the matrix whose columns are the b;'s.
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Lattices

An equivalent definition

Constructive definition of a lattice

A lattice L is the set of all integer linear combinations of some
linearly independent vectors in an R".

L = Z Zb; = {Z X;b,',X,'GZ} = B-Zd,

1<i<d 1<i<d

where the b;'s are linearly independent vectors of R”,
and B € R"9 is the matrix whose columns are the b;'s.

@ by,..., by is a basis of L. It is not unique.
@ Embedding dimension: n (a trivial invariant of L).

o Lattice dimension: d (also an invariant of L).
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Lattices

An equivalent definition

Constructive definition of a lattice

A lattice L is the set of all integer linear combinations of some
linearly independent vectors in an R".

L = Z Zb; = {Z X;b,',X,'GZ} = B-Zd,

1<i<d 1<i<d

where the b;'s are linearly independent vectors of R”,
and B € R"9 is the matrix whose columns are the b;'s.

@ by,..., by is a basis of L. It is not unique.
@ Embedding dimension: n (a trivial invariant of L).

o Lattice dimension: d (also an invariant of L).

If d = n, we say that the lattice is full-rank.
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Lattices

Two bases of a 2-dimensional lattice
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Lattices

Relationships between bases of a given lattice

Unimodular matrices

A matrix U € Z9*9 is said unimodular if it is invertible over Z9*4.
Equivalently: its determinant is det U = +1.
Equivalently: it belongs to GL4(Z).
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Lattices

Relationships between bases of a given lattice

Unimodular matrices

A matrix U € Z9*9 is said unimodular if it is invertible over Z9*4.
Equivalently: its determinant is det U = +1.
Equivalently: it belongs to GL4(Z).

Unimodularity and lattice bases

Two bases (bj)i<4 and (c;)i<q span the same lattice iff there
exists U € GLd(Z) such that (b,‘),‘gd -U = (C,‘),’Sd.
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Lattices

Relationships between bases of a given lattice

Unimodular matrices

A matrix U € Z9*9 is said unimodular if it is invertible over Z9*4.
Equivalently: its determinant is det U = +1.
Equivalently: it belongs to GL4(Z).

Unimodularity and lattice bases

Two bases (bj)i<4 and (c;)i<q span the same lattice iff there
exists U € GLd(Z) such that (b,‘),‘gd -U = (C,‘),’Sd.

Direct consequences:
@ Any lattice of dimension > 2 has infinitely many bases.
@ The set lattices of dim d is isomorphic to GLy(R)/GL4(Z).
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Lattices
Duality

The dual of the d-dimensional lattice L is:

L = {ceSpan(L):Vbe L (cb)cZ}
= {ceSpan(L):c"-LC79.
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Lattices
Duality

The dual of the d-dimensional lattice L is:

~)
|

{ceSpan(L) : Vb e L,(c,b) € Z}
= {ceSpan(L):c"-LC79.

Dual basis

B basis matrix of L

B= B(BT B)~! basis matrix of L.
If L is full-rank, then T
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Lattices
Duality

The dual of the d-dimensional lattice L is:

~)

= {ceSpan(L):Vbe L, (c,b)cZ}
= {ceSpan(L):c"-LC79.

Dual basis

B basis matrix of L

B= B(BT B)~! basis matrix of L.
If L is full-rank, then T

Consequences:
o dim(L) = dim(L).
o L =L
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Lattices

Set operations on lattices

Let L1,L, C R" be two lattices.

@ The union L3 U Ly may not be a lattice: 2Z U 3Z.
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Lattices

Set operations on lattices

Let L1,L, C R" be two lattices.

@ The union L3 U Ly may not be a lattice: 2Z U 3Z.

@ The Z-span of L1 U Ly, i.e., the sum
L1+ L, ={b; +by:b; € L1,by € L}, may not be a lattice:

7+ \27.

o If L1,L, C L for some lattice L, then L1 4+ L, is a lattice.
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Lattices

Set operations on lattices

Let L1,L, C R" be two lattices.

@ The union L3 U Ly may not be a lattice: 2Z U 3Z.

@ The Z-span of L1 U Ly, i.e., the sum
L1+ L, ={b; +by:b; € L1,by € L}, may not be a lattice:

7+ \27.

o If L1,L, C L for some lattice L, then L1 4+ L, is a lattice.

@ The intersection Ly N L, is always a lattice.
o IfdimL; =dimLy, =dim Ly N Ly, then:

—

Linly =L+ Lo
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Lattices

Computing a basis of the sum of lattices

Let Bi, B, be bases of lattices L1, L, C Z".
How can we compute a basis of L1 + L7
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Lattices

Computing a basis of the sum of lattices

Let Bi, B, be bases of lattices L1, L, C Z".
How can we compute a basis of L1 + L7

Hermite Normal Form (HNF)

For any X € Z™*", there exists U € GL,(Z) such
that X - U = (L|0) with L lower trapezoidal.
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Lattices

Computing a basis of the sum of lattices

Let Bi, B, be bases of lattices L1, L, C Z".
How can we compute a basis of L1 + L7

Hermite Normal Form (HNF)

For any X € Z™*", there exists U € GL,(Z) such
that X - U = (L|0) with L lower trapezoidal.

@ That's akin to Gauss' pivoting for linear systems.
e Can be performed efficiently (see, e.g., [Micciancio-Warinschi'01])

@ In our case, use X = (B1|Bz), and L is a basis matrix
for L1 + L.
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Invariants

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.
© Lattice Gaussians.

@ Computational problems on lattices.
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Invariants

The lattice minimum

For any lattice L # 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum A1 (L):

A1(L) =min(r: B(0,r)NL#{0}).
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For any lattice L # 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum A1 (L):

A1(L) =min(r: B(0,r)NL#{0}).

@ By default, one considers the euclidean norm.
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Invariants

The lattice minimum

For any lattice L # 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum A1 (L):

A1(L) =min(r: B(0,r)NL#{0}).

@ By default, one considers the euclidean norm.

@ The minimum is always reached at least twice.
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Invariants

The lattice minimum

For any lattice L # 0, there exists a vector b in L of shortest
non-zero norm. The norm of that vector is the minimum A1 (L):

A1(L) =min(r: B(0,r)NL#{0}).

@ By default, one considers the euclidean norm.
@ The minimum is always reached at least twice.

@ It may be reached exponentially many times.
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Invariants

Successive minima

The first minimum measures “sparseness’ only wrt one dimension.

Successive minima

For i < d, the ith minimum of a d-dimensional lattice L is:

Ai(L) = min(r : dimspan(B(0,r) N L) > i).
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Invariants

Successive minima

The first minimum measures “sparseness’ only wrt one dimension.

Successive minima

For i < d, the ith minimum of a d-dimensional lattice L is:

Ai(L) = min(r : dimspan(B(0,r) N L) > i).

Banaszczyk's transference theorem

For any d-dimensional lattice L: Aq(L) - )\d(Z) <d.

(obtained using Fourier analysis — see Daniel’s talk)
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Invariants

Correct and incorrect properties on the successive minima

The minima can be reached by lin. indep. vectors

Then there exist s1,...,84 € L linearly independent such that:

Vi< d:|si]| = Mi(L).
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Invariants

Correct and incorrect properties on the successive minima

The minima can be reached by lin. indep. vectors
Then there exist s1,...,84 € L linearly independent such that:

Vi< d:|si]| = Mi(L).

@ There are lattices for which no basis reaches the minima.

@ There are lattices where the shortest bases are ©(v/d) larger
than the minima:

[2 0 0 1]
0 2 0 1
0 0 2 1

00 0 1]
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Invariants
Lattice determinant

The Gram matrix of a basis (b;)i<4 is G = ((b;,b}));; = BT B.

Determinant of a lattice
Let by,...,by be a basis of a lattice L. We define:

det(L) = /det(G(by,...,by)).
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Invariants
Lattice determinant

The Gram matrix of a basis (b;)i<4 is G = ((b;,b}));; = BT B.

Determinant of a lattice

Let by,...,by be a basis of a lattice L. We define:

det(L) = /det(G(by,...,by)).

Simple properties:

@ The determinant is a lattice invariant.

o If Lis full-rank, then det(L) = |det B|.

e Hadamard: det(L) <[], ||b;|| for any basis.
o det(L) = 1/ det(L).
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Invariants
Lattice determinant

The Gram matrix of a basis (b;)i<4 is G = ((b;,b}));; = BT B.

Determinant of a lattice
Let by,...,by be a basis of a lattice L. We define:

det(L) = /det(G(by,...,by)).

Simple properties:

@ The determinant is a lattice invariant.
o If Lis full-rank, then det(L) = |det B|.
e Hadamard: det(L) <[], ||b;|| for any basis.
det(L) = 1/ det(L).
o If L C L’ are full-rank, then det(L")| det(L).
L'/L is a finite additive group of cardinality det(L)/ det(L’).
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Invariants

Geometric interpretation of the determinant

The determinant of a lattice L with basis (b;)i<g4 is the volume of
the parallelepiped spanned by the basis vectors.

It also quantifies the d-dimensional sparseness of the lattice.

o
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Invariants

Minkowski's theorems

Provides a relationship between the invariants we have seen so far.

Minkowski's theorem

Let L C R" be a full-rank lattice and S C R" convex and sym-
metric with vol(S) > 2" - det(L). Then thereis x € (L\0)N S.
If S is closed, it suffices that vol(S) > 2" - det(L).
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Invariants

Minkowski's theorems

Provides a relationship between the invariants we have seen so far.

Minkowski's theorem

Let L C R" be a full-rank lattice and S C R" convex and sym-
metric with vol(S) > 2" - det(L). Then thereis x € (L\0)N S.
If S is closed, it suffices that vol(S) > 2" - det(L).

| A\

Corollary 1
For any n-dimensional lattice L, we have: Aj(L) < v/n - det(L)'/".
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Invariants

Minkowski's theorems

Provides a relationship between the invariants we have seen so far.

Minkowski's theorem

Let L C R" be a full-rank lattice and S C R" convex and sym-
metric with vol(S) > 2" - det(L). Then thereis x € (L\0)N S.
If S is closed, it suffices that vol(S) > 2" - det(L).

Corollary 1

For any n-dimensional lattice L, we have: Aj(L) < v/n - det(L)'/".

Corollary 2

For any n-dimensional lattice L, we have:

JT2i(L) < v/n" - det(L).

i<n
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Invariants

Hermite's constants

Minkowski's theorem implies the existence of Hermite's constant:

_ A(L) A%
Yn = Sup <det(L)1/" :dim(L) = n> .

For most n's, only bounds of v, are known. Known values:

| n| 2 [3]4]5] 6 | 7] 8 |24]
|vn|4/3]2|4]|8]64/3]64]256 4%

n
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Invariants

The Gaussian heuristic

The Gaussian heuristic

Given a full-dim lattice L and a 'nice’ set S, the number of points
of L within S is expected to be vol(S)/ det(L).
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Invariants

The Gaussian heuristic

The Gaussian heuristic

Given a full-dim lattice L and a 'nice’ set S, the number of points
of L within S is expected to be vol(S)/ det(L).

@ Can be made rigorous for fixed lattice and growing S.
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Invariants

The Gaussian heuristic

The Gaussian heuristic

Given a full-dim lattice L and a 'nice’ set S, the number of points
of L within S is expected to be vol(S)/det(L).

@ Can be made rigorous for fixed lattice and growing S.

@ Can be made rigorous for 'random’ lattices L.
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Invariants

The Gaussian heuristic

The Gaussian heuristic

Given a full-dim lattice L and a 'nice’ set S, the number of points
of L within S is expected to be vol(S)/det(L).

@ Can be made rigorous for fixed lattice and growing S.
@ Can be made rigorous for 'random’ lattices L.

@ Allows one to quickly estimate the number of points in a body.
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Examples of lattices

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.
© Lattice Gaussians.

@ Computational problems on lattices.
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Examples of lattices

From linear codes to lattices

@ A linear code C over Z, = Z/pZ for p prime is a sub-vector
space of a Zj.

@ There exists a generator matrix G € Zng with k = dim C s.t.:

C=G Z§={Gs:seZ}
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Examples of lattices

From linear codes to lattices

@ A linear code C over Z, = Z/pZ for p prime is a sub-vector
space of a Zj.

@ There exists a generator matrix G € Zng with k = dim C s.t.:

C=G Z§={Gs:seZ}

Construction A

Let C C Zg be a k-dimensional linear code.
The construction A lattice associated to C is:

L(C):C—i-pZ":{er”:ElseZ’;, x:G-smodp}.
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Examples of lattices
From linear codes to lattices

L(C)=C+pZ"={xe€Z":Is € ZK, x=G-smod p}.
Simple properties:
e pZ" C L(C) C Z". In particular, dim(L(C)) = n.
@ A basis of L(C) is obtained using the HNF of [G|p - Id,].
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Examples of lattices
From linear codes to lattices

L(C)=C+pZ"={xe€Z":Is € ZK, x=G-smod p}.
Simple properties:
e pZ" C L(C) C Z". In particular, dim(L(C)) = n.
@ A basis of L(C) is obtained using the HNF of [G|p - Id,].
Determinant:
e As L(A) C Z" is full-rank, it suffices to compute |Z"/L(C)].
o As Z"/L(C) = Z3/C, we get: det(L(C)) = p"*.
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Examples of lattices
From linear codes to lattices

L(C)=C+pZ"={xe€Z":Is € ZK, x=G-smod p}.

Simple properties:
e pZ" C L(C) C Z". In particular, dim(L(C)) = n.
@ A basis of L(C) is obtained using the HNF of [G|p - Id,].
Determinant:
o As L(A) C Z" is full-rank, it suffices to compute |Z"/L(C)|.
o As Z"/L(C) = Z3/C, we get: det(L(C)) = p"*.

Minimum: by Minkowski's theorem, A1 (L(C)) < /n- p*=K/".
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Examples of lattices
From linear codes to lattices

L(C)=C+pZ"={xe€Z":Is € ZK, x=G-smod p}.
Simple properties:
e pZ" C L(C) C Z". In particular, dim(L(C)) = n.
@ A basis of L(C) is obtained using the HNF of [G|p - Id,].
Determinant:

e As L(A) C Z" is full-rank, it suffices to compute |Z"/L(C)].
o As Z"/L(C) = Z3/C, we get: det(L(C)) = p"*.
Minimum: by Minkowski's theorem, A1 (L(C)) < /n- p*=K/".

—

Dual: L(C) = % L(C), with C+ = {x ¢ Zp:x"-C=0}.
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Examples of lattices

Construction A lattices in cryptography

Sample A € Z7" uniformly with m > n. We define:
@ The LWE lattice of A as

Np(A) ={x€Z™:3s € Z, : x = As mod p}.

= Construction A on the code spanned by the columns of A.
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Examples of lattices

Construction A lattices in cryptography

Sample A € Z7" uniformly with m > n. We define:
@ The LWE lattice of A as

Np(A) ={x€Z™:3s € Z, : x = As mod p}.

= Construction A on the code spanned by the columns of A.
@ The SIS lattice of A as

€ m. Tao_
Ay (A) ={x€Z™:x"A=0mod p}.

= Construction A on the orthogonal of the latter code.
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Examples of lattices
Construction A lattices in cryptography

Sample A € Z7" uniformly with m > n. We define:
@ The LWE lattice of A as

Np(A) ={x€Z™:3s € Z, : x = As mod p}.

= Construction A on the code spanned by the columns of A.
@ The SIS lattice of A as

€ _ m. T aA_
Ay (A) ={x€Z™:x"A=0mod p}.
= Construction A on the orthogonal of the latter code.
With overwhelming probability:

det(Ap(A)) = p™ " and det(A;(A)) = p".
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Examples of lattices

Lattices from integer matrices

Sample A € Z™*" randomly, with m > n.

o {xe€Z":x" - A=0} = kerz(A) = Z™ Nker(A) is a lattice.

o Its dimension is m — rk(A).
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Examples of lattices

Lattices from integer matrices

Sample A € Z™*" randomly, with m > n.

{x€Z":xT-A=0} = kerz(A) = Z™ Nker(A) is a lattice.

Its dimension is m — rk(A).

@ Its determinant is harder to compute : —).

Used in cryptanalysis (against knapsack-based cryptosystems).

Recently used in cryptographic design (see [AgrGenHalSah13]).
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Examples of lattices

Ideal lattices

A lattice L C Z" is ideal if ¥(bgby ... bp—1) € Z":

( bo by b A bn—1 ) eL
= ( —bp_1 bg b1 ... by ) elL
= ( —bp—> —bp_1 bo bn_3 ) eL
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Examples of lattices
|deal lattices

A lattice L C Z" is ideal if ¥(bgby ... bp—1) € Z":

( bo by b A bn—1 ) eL
= ( —bp_1 bg b1 ... by ) elL
= ( —bp—> —bp_1 bo .. bn_3 ) eL

By identifying Z" with Z[x]/(x" + 1), we obtain that:

L is ideal iff it corresponds to an ideal of Z[x]/(x" + 1). )
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Examples of lattices
|deal lattices

A lattice L C Z" is ideal if ¥(bgby ... bp—1) € Z":

( bo by b A bn—1 ) eL
= ( —bp_1 bg b1 ... by ) elL
= ( —bp—> —bp_1 bo .. bn_3 ) eL

By identifying Z" with Z[x]/(x" + 1), we obtain that:

L is ideal iff it corresponds to an ideal of Z[x]/(x" + 1). )

If nis a power of 2, then det(L)'/" < A\ (L) < /n-det(L)¥/".
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Examples of lattices
|deal lattices

A lattice L C Z" is ideal if ¥(bgby ... bp—1) € Z":

( bo by b A bn—1 ) eL
= ( —bp_1 bg b1 ... by ) elL
= ( —bp—> —bp_1 bo .. bn_3 ) eL

By identifying Z" with Z[x]/(x" + 1), we obtain that:

L is ideal iff it corresponds to an ideal of Z[x]/(x" + 1). )

If nis a power of 2, then det(L)'/" < A\ (L) < /n-det(L)¥/".
o Consider the shifts b; of a vector reaching A1(L).
@ As x" + 1 is irreducible, L' = 3" Zb; C L is full-rank.
o We have det(L) <det(L) <[, |bill = A (L)
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Examples of lattices

|deal lattices and algebraic number theory

Let ¢ be an algebraic integer, with minimal polynomial P(x).
@ The number field K = Q(() is isomorphic to Q[x]/P(x).
@ The ring of integers Ok is the set of algebraic integers of K.
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Examples of lattices

|deal lattices and algebraic number theory

Let ¢ be an algebraic integer, with minimal polynomial P(x).
@ The number field K = Q(() is isomorphic to Q[x]/P(x).
@ The ring of integers Ok is the set of algebraic integers of K.
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Examples of lattices
|deal lattices and algebraic number theory

Let ¢ be an algebraic integer, with minimal polynomial P(x).
@ The number field K = Q(() is isomorphic to Q[x]/P(x).
@ The ring of integers Ok is the set of algebraic integers of K.

Let (¢j)i<r be the real roots of P, and ((r4i)i<2s be its complex
roots with Cristi = Cryi-

@ The embeddings o; of K are induced by x — ;.

e For a € K, set o(a) = (01(a),...,0rs()) € R" x C° = R".

Lattices from O:
e For any ideal I of Ok, o(/) is a lattice of R".

@ The lattices of the previous slide are isometric to the o(/)’s,
for ¢ = exp(im/n) (with n a power of 2).
@ In that case, P = x" + 1 and Ok = Z[x]|/(x" + 1).
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Gram-Schmidt

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.
© Lattice Gaussians.

@ Computational problems on lattices.
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Gram-Schmidt

Gram-Schmidt Orthogonalisation

Gram-Schmidt orthogonalisation

Let by,...,by € R" be linearly independent. Their Gram-Schmidt
orthogonalisation (GSO) is defined by:

b., b*
bf =b; — Zﬂi,jbfv with p; = <H|I)*HJ2> for all i > j.
J

J<i
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Gram-Schmidt

Gram-Schmidt Orthogonalisation

Gram-Schmidt orthogonalisation

Let by,...,by € R" be linearly independent. Their Gram-Schmidt
orthogonalisation (GSO) is defined by:

b., b*
bf =b; — Zﬂi,jbfv with p; = <H|I)*HJ2> for all i > j.
J

J<i

For all i, b} is the projection of b; orthogonally to _;_; Rb;.
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Gram-Schmidt

Properties of the GSO

@ The p;'s are unlikely to be integral, and so are unsuited for
lattice basis transformations.

o Forall i, we have > . ;Rb? =3 Rb;.

@ The bj’s are orthogonal:
bil|* = (10717 + > sl [1%.
Jj<i

In particular, ||b¥|| < ||b;||.
We may attempt to make it sharper by lowering the p;'s.
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Gram-Schmidt

GSO and QR factorisation

QR factorisation

For any full-rank B € R™*", there exists a unique pair of
matrices Q, R € R"*" such that:

e B=Q:R;
o Q is orthogonal, ie, QT - Q=Q-QT = Id;

@ R is up-triangular with r; > 0 for all /.
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Gram-Schmidt

GSO and QR factorisation

QR factorisation

For any full-rank B € R™*", there exists a unique pair of
matrices Q, R € R"*" such that:

e B=Q:R;
o Q is orthogonal, ie, QT - Q=Q-QT = Id;

@ R is up-triangular with r; > 0 for all /.

QR and Gram-Schmidt encode the same information:
o rij = ||bf]l
o rj = pji - |[b|
° q; = bj/|[b7]|.
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Gram-Schmidt

GSO and lattices

Minimum and GSO
Let L be a lattice, and by, ...,by be a basis of L. Then:

Xa(L) = miny 7|
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Gram-Schmidt
GSO and lattices

Minimum and GSO

Let L be a lattice, and by, ...,by be a basis of L. Then:

Xa(L) = miny 7|

Determinant and GSO

Let L be a lattice, and by, ...,by be a basis of L. Then:
det(L) = I1; lIbj||-

Dual and GSO

Let B € R™" be non-singular, with factorisation B = QR. Then

(BT =(QJ)- (JR™TJ),

with J the mirror permutation matrix. .
= For any basis B, max; ||b¥|| = 1/ min;||c}||, where C = BJ.
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Gram-Schmidt

Size-reduction

Size-reduction aims at almost zeroing the y;'s using integer ops.

Recall the GSO of a basis (b;)i<g:
b;, b’
b =b; — > i b}, with p;; = <||b||J2> for all i > j.
j<i J
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Gram-Schmidt

Size-reduction

Size-reduction aims at almost zeroing the y;'s using integer ops.

Recall the GSO of a basis (b;)i<g:

; . (b, b) .
b =b; — > i b}, with p;; = W for all i > j.
j<i J

Size-reducedness
A basis (b;)i<q is said size-reduced if |p; ;| < 1/2 forall i > j.
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Gram-Schmidt

Size-reduction

Size-reduction aims at almost zeroing the y;'s using integer ops.
Recall the GSO of a basis (b;)i<g:

(b;, b7)

bf =b; — ZMijf’ with pj; = THE for all i > j.
j<i J

Size-reducedness
A basis (b;)i<q is said size-reduced if |p; ;| < 1/2 forall i > j.

Main property of size-reduced bases
If (bj); is size-reduced, then

* 1 *k
Ibil1* < 117 (1 + 5 > 151>
Jj<i
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Gram-Schmidt

The size-reduction algorithm

e Input: Basis (b;)j<, of a lattice L.
@ Output: Size-reduced output (c;)i<p, of L.

1. Compute the GSO coefficients p;;.

2. For all i, do:

3. For j from i — 1 to 1, do:

4 xg = Lyl

5. b; = b; — x;;b;.

6. For k from 1 to j do pix = pik — Xjj - fbjk-
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Gram-Schmidt

The size-reduction algorithm

e Input: Basis (b;)j<, of a lattice L.
@ Output: Size-reduced output (c;)i<p, of L.

1. Compute the GSO coefficients p;;.

2. For all i, do:

3. For j from i — 1 to 1, do:

4 xg = Lyl

5. b; = b; — x;;b;.

6. For k from 1 to j do pix = pik — Xjj - fbjk-

Also known as: Size-reduction, Babai's nearest plane algorithm,
successive interference cancellation.
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Gram-Schmidt

Correctness and complexity

Correctness of the size-reduction algorithm

Let (b;); be given as input to the size-reduction algorithm.
Then the output is a size-reduced basis (c;); of the same lattice.
Furthermore:
Q Forall i: by =c7
@ Forall i: [cil| < v/n- max;<; [[bf[| < v/n - max;<; |[bj]
© The corresponding unimodular transform is up-triangular with
1's on its diagonal.
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Gram-Schmidt

Correctness and complexity

Correctness of the size-reduction algorithm

Let (b;); be given as input to the size-reduction algorithm.
Then the output is a size-reduced basis (c;); of the same lattice.
Furthermore:
Q Forall i: by =c7
@ Forall i: [cil| < v/n- max;<; [[bf[| < v/n - max;<; |[bj]
© The corresponding unimodular transform is up-triangular with
1's on its diagonal.

If the b;'s are rational, then the bit-cost of the size-reduction
algorithm is polynomial in the input size.
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Gram-Schmidt

From short vectors to a short basis

@ Let (b;); be an arbitrary basis of a lattice L.
@ Let (s;); in L be linearly independent with small ||s;||'s.

@ Can we compute a small basis of L?
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Gram-Schmidt

From short vectors to a short basis

@ Let (b;); be an arbitrary basis of a lattice L.
@ Let (s;); in L be linearly independent with small ||s;||'s.
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Q@ Write (S,‘),’ = (b,‘),’ - T, with T € Z"*",
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Gram-Schmidt

From short vectors to a short basis

@ Let (b;); be an arbitrary basis of a lattice L.

@ Let (s;); in L be linearly independent with small ||s;||'s.
@ Can we compute a small basis of L?

Q@ Write (S,‘),’ = (b,‘),’ - T, with T € Z"*",

@ Compute the transpose-HNF of T, i.e.,
T=U-H with U € GL,(Z) and H € Z"*" up-triangular.
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Gram-Schmidt

From short vectors to a short basis

@ Let (b;); be an arbitrary basis of a lattice L.

@ Let (s;); in L be linearly independent with small ||s;||'s.
@ Can we compute a small basis of L?

Q@ Write (S,‘),’ = (b,‘),’ - T, with T € Z"*",

@ Compute the transpose-HNF of T, i.e.,
T=U-H with U € GL,(Z) and H € Z"*" up-triangular.

@ Let (c;); = (b;);i - U. It's a basis of L and (s;); = (c;); - H.

max|ic; | < max|s;| < max [si].
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Gram-Schmidt

From short vectors to a short basis

@ Let (b;); be an arbitrary basis of a lattice L.
@ Let (s;); in L be linearly independent with small ||s;||'s.

@ Can we compute a small basis of L?

Q@ Write (S,‘),’ = (b,‘),’ - T, with T € Z"*",

@ Compute the transpose-HNF of T, i.e.,
T=U-H with U € GL,(Z) and H € Z"*" up-triangular.

@ Let (c;); = (b;);i - U. It's a basis of L and (s;); = (c;); - H.
max [lc7| < max|s]| < max |si
Q@ With a size-reduction, we get a basis (d;); with

max||d;|| < /A~ max [} < v/A- max [si].
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Gaussians

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.
© Lattice Gaussians.

@ Computational problems on lattices.
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Lattice Gaussian distribution
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Gaussians

Lattice Gaussian distribution

For b R" and c € R":
b — cl|?
poc(b) := exp (WHQH) :

g

o is the standard deviation parameter.
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Gaussians

Lattice Gaussian distribution

For b R" and c € R":
b — cl|?
poc(b) := exp (WHQH) :

g

o is the standard deviation parameter.

For LCR"and c € R™: pyc(L) =D pes Poc(b) is finite.

Gaussian distribution of support L and parameters ¢ and o
Poc(b)

VbeLl: Djpye(b) =

0 c(L) ~ pmc(b).
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Gaussians

Fourier transform

Di 50 ~ po - 11, with 1 the indicator function of L.
@ The Fourier transform of p, is p,-1.
@ The Fourier transform of 1; is 1[-

x = Dis0(x) X 35t Po-15(X) = Po-1x(L)
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Gaussians

Fourier transform

Di 50 ~ po - 11, with 1 the indicator function of L.
@ The Fourier transform of p, is p,-1.
@ The Fourier transform of 1; is 1[-

"5 = pp1x(D)

= _ (). o—2im(bie)
Poc(L) Zpa,c(b) det L Z po-1(b) - e :

bel bel
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Gaussians

The smoothing parameter

It quantifies when ¢ is sufficiently large for:
@ the distribution D; ¢ , to look smooth.
e the function x — p,x(L) to look constant.
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Gaussians

The smoothing parameter

It quantifies when ¢ is sufficiently large for:
@ the distribution D; ¢ , to look smooth.
e the function x — p,x(L) to look constant.

Smoothing parameter

For e € (0,1) and L a full-rank lattice, we define:

Ne(L) = min <J : p(,fl,o(z \0) < 5) .
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Gaussians

The smoothing parameter

It quantifies when ¢ is sufficiently large for:
@ the distribution D; ¢ , to look smooth.
e the function x — p,x(L) to look constant.

Smoothing parameter

For e € (0,1) and L a full-rank lattice, we define:

Ne(L) = min <J : p(,,l,o(i \0) < 5) .

Flatness of x — pyx(L) for o > n-(L):
Consequence of the PSF: o
pox(L) = g51 - Spei Po-10(b) - €20,

O_n

pox(L) = det L

o -~ o
< : L a(b) < G
= detl AZ Zalo IR e
belL\0
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Gaussians

Bounding the smoothing parameter

(L) < v/ (D). )

Proof sketch: Take o = A1(L)/v/7n in

R b
Pa(LN0) =3 i\ &P (7”” A‘L(‘Il)z )

The summand is 2=9() for ||S|| ~ Al(z), and drops fast with |/b]|.
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Gaussians

Bounding the smoothing parameter

(L) < v/ (D). )

Proof sketch: Take o = A1(L)/v/7n in

R b
Pa(LN0) =3 i\ &P (7”” A‘L(‘Il)z )

The summand is 2=9() for ||S|| S Al(z), and drops fast with |/b]|.

(L) < Vi - A(L). |

Proof: Transference.

1np-n(L) < max ||b¥|| for any basis b; of L. ]

Proof: Let C = (BJ)~T be the dual basis of BJ. Then

A1(L) > min|cf]| = 1/ max [|b¥||.
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Gaussians

Sampling from Dy

@ Algorithm of [Klein’00], analyzed in [GenPeiVai'08].

@ Randomized version of size-reduction.

Damien Stehlé Introduction to lattices March 2012 47/58



Gaussians

Sampling from Dy
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@ Randomized version of size-reduction.

Input: A basis (b;); of L, o.
Output: b € L, hopefully distributed from D; ;.
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Gaussians

Sampling from Dy

@ Algorithm of [Klein’00], analyzed in [GenPeiVai'08].
@ Randomized version of size-reduction.

Input: A basis (b;); of L, o.
Output: b € L, hopefully distributed from D; ;.

@ b:=0. Forifromntol, do

@ o;:=a/[bjl, ¢ :=—(b,b})/||b}|*
o Sample z; from Dy, ¢

Q b := b + zb;.

@ Return b.
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Gaussians

Sampling from Dy

@ Algorithm of [Klein’00], analyzed in [GenPeiVai'08].
@ Randomized version of size-reduction.

Input: A basis (b;); of L, o.
Output: b € L, hopefully distributed from D; ;.

@ b:=0. Forifromntol, do

@ o;:=a/[bjl, ¢ :=—(b,b})/||b}|*
o Sample z; from Dy, ¢

Q b := b + zb;.

@ Return b.

It can be easily modified to sample according to D; ;.

Damien Stehlé Introduction to lattices March 2012 47/58



Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, do:
Q@ 0i= e G = e

@ Sample z; from Dz g, ¢;
Qo b:=b + zb;.
@ Return b.
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Gaussians
Sampling from Dy

@ b:=0. Fori=n..1, do:
@ 0i= e G e

@ Sample z; from Dz g, ¢;
Q b:=b+ zb,;.
© Return b.
The probability of returning b = > x;b; is:
Pr(z, = xp|-Pr[zn—1 = xn—1|2n = Xp|-. . .-Pr[z1 = x1|z; = x;, Vi > 1].

Using the GSO, this is:

| eB(= Syl c/o?) _ expl—[bl?/c?)
HPeoebd=""10 0@ = Homat@
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, do:
@ 0i= e G e

@ Sample z; from Dy, c;
Q b:=b+ zb,;.
© Return b.

The probability of returning b is exp(—||b||>/c?) / 11 po.c;(Z).
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, do:
@ 0i= e G e

@ Sample z; from Dy, c;
Q@ b:=b+zb;.
© Return b.
The probability of returning b is exp(—||b||>/c?) / 11 po.c;(Z).

e We'd like each py,; ¢;(Z) to be independent of b.
® Py, (Z) is essentially independent of ¢; when o; > n.(Z).
@ For e = 27" it suffices that Vi: o/||b}|| > +/n.
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, (zo
o . _{bbf
@ 0= 6= e

©@ Sample z; from Dz g, ¢;
Q b:= b+ zb,;.
© Return b.
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, (30: )
@ 0= 6= e

©@ Sample z; from Dz g, ¢;
Q@ b:=b+zb,.
@ Return b.

Sampling from a lattice Gaussian [GenPeiVai'08]

For 0 > \/n- max ||b%||, Klein's algorithm samples from a
distribution within statistical distance A = 2~ to Di oy
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, (zo
o . _{bbf
@ 0= 6= e

©@ Sample z; from Dz g, ¢;
Q b:= b+ zb,;.
© Return b.

Sampling from a lattice Gaussian [GenPeiVai'08]

For 0 > \/n- max ||b%||, Klein's algorithm samples from a
distribution within statistical distance A = 2~ to Di oy

@ Stat. distance = total variation distance = L; distance.
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, (30: )
@ 0= 6= e

©@ Sample z; from Dz g, ¢;
Q@ b:=b+zb,.
@ Return b.

Sampling from a lattice Gaussian [GenPeiVai'08]

For 0 > \/n- max ||b%||, Klein's algorithm samples from a
distribution within statistical distance A = 2~ to Di oy

@ Stat. distance = total variation distance = L; distance.
@ Algorithm A succeeds with prob. ¢ given a sample from D
= A succeeds with prob. > & — A given a sample from D’.
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Gaussians

Sampling from Dy

@ b:=0. Fori=n..1, (30: )
@ 0= 6= e

©@ Sample z; from Dz g, ¢;
Q@ b:=b+zb,.
@ Return b.

Sampling from a lattice Gaussian [GenPeiVai'08]

For 0 > \/n- max ||b%||, Klein's algorithm samples from a
distribution within statistical distance A = 2~ to Di oy

@ Stat. distance = total variation distance = L; distance.

@ Algorithm A succeeds with prob. ¢ given a sample from D
= A succeeds with prob. > & — A given a sample from D’.

@ We can get the exact distribution for o > 104/log n- max ||b?|,
using rejection sampling [BraLanPeiRegSte'13].
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Computational problems

Outline

© Lattices and lattice bases.

@ Lattice invariants.

© Examples of lattices.

@ Gram-Schmidt orthogonalisation.

© Lattice Gaussians.

© Computational problems on lattices.
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Computational problems

Easy algorithmic problems on lattices

Given a basis of L C Z", we can, in polynomial-time:
@ Test whether a given b belongs to L
@ Compute the determinant of L

@ Compute a basis of L
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Computational problems

Easy algorithmic problems on lattices

Given a basis of L C Z", we can, in polynomial-time:
@ Test whether a given b belongs to L
@ Compute the determinant of L

@ Compute a basis of L

Given a basis of L; € Z" and a basis of L, C Z", we can,
in polynomial-time:

@ Test whether [ C L.

@ Test whether L1 = L>.

@ Compute bases for Ly + Ly and L1 N L.
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Computational problems

The Shortest Vector Problem

It comes in many flavours, and can be generalized in many ways.

Computational SVP
Given a basis of L, find b € L with ||b|| = A\1(L).

Decisional SVP

Given a basis of L and a rational d, reply YES is A1(L) < d and
NO otherwise.
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Computational problems

The Shortest Vector Problem

It comes in many flavours, and can be generalized in many ways.

Computational SVP
Given a basis of L, find b € L with ||b|| = A\1(L).

Decisional SVP

Given a basis of L and a rational d, reply YES is A1(L) < d and
NO otherwise.

@ We are mostly interested in SVP when the lattice dimension
grows to infinity.
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Computational problems

The Shortest Vector Problem

It comes in many flavours, and can be generalized in many ways.

Computational SVP
Given a basis of L, find b € L with ||b|| = A\1(L).

Decisional SVP

Given a basis of L and a rational d, reply YES is A1(L) < d and
NO otherwise.

@ We are mostly interested in SVP when the lattice dimension
grows to infinity.

@ [Van Emde Boas'81]: DecSVP is NP-hard for the infinity norm.

@ [Ajtai'98]: DecSVP is NP-hard under randomized reductions.
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Computational problems
Variants of SVP

SVP,, for approximation factor v > 1

Given a basis of L, find b € Ls.t. 0 < [|b|| < - A1(L).

GapSVP,, for approximation factor v > 1

Given a basis of L and a rational d, reply YES if A\1(L) < d and
NO if A1(L) >~ -d.
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Computational problems
Variants of SVP

SVP,, for approximation factor v > 1

Given a basis of L, find b € Ls.t. 0 < [|b|| < - A1(L).

GapSVP,, for approximation factor v > 1

Given a basis of L and a rational d, reply YES if A\1(L) < d and
NO if A1(L) >~ -d.

@ [HavReg'07]: GapSVP,, is NP-hard for any v < 2(log )™= " inder
randomized reductions.
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Computational problems
Variants of SVP

SVP,, for approximation factor v > 1

Given a basis of L, find b € Ls.t. 0 < [|b|| < - A1(L).

GapSVP,, for approximation factor v > 1

Given a basis of L and a rational d, reply YES if A\1(L) < d and
NO if A1(L) >~ -d.

@ [HavReg'07]: GapSVP,, is NP-hard for any v < 2(log )™= " inder
randomized reductions.

@ [AhaReg'04]: GapSVP,, is in NP N coNP when v > /n.
= GapSVP,, is unlikely to be NP-hard for such .
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Computational problems
Variants of SVP

SVP,, for approximation factor v > 1

Given a basis of L, find b € Ls.t. 0 < [|b|| < - A1(L).

GapSVP,, for approximation factor v > 1

Given a basis of L and a rational d, reply YES if A\1(L) < d and
NO if A1(L) >~ -d.

@ [HavReg'07]: GapSVP,, is NP-hard for any v < 2(log )™= " inder
randomized reductions.

@ [AhaReg'04]: GapSVP,, is in NP N coNP when v > /n.
= GapSVP,, is unlikely to be NP-hard for such .

nlog log n
@ Best polynomial-time algorithm achieves v = 2005
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Computational problems
The Closest Vector Problem

Given a basis of L and a vector t, find b € L
sit. 0 < [[b—t| <~ -dist(t, L).

GapCVP, for v > 1

Given a basis of L, a vector t and a rational d, reply YES
if dist(t, L) < d and NO if dist(t,L) > v - d.

CVP(1)
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Computational problems

Plenty of variants (1/2)

uSVP,, (Unique SVP)

Given a basis of L s.t. A\p(L) > - A1(L), find b € L such
that ||b|| = A1(L).

HSVP., (Hermite SVP)
Given a basis of L, find b € L such that ||b|| <~ - (det L)*/".
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Computational problems

Plenty of variants (1/2)

uSVP,, (Unique SVP)

Given a basis of L s.t. A\p(L) > - A1(L), find b € L such
that ||b|| = A1(L).

A

HSVP, (Hermite SVP)
Given a basis of L, find b € L such that ||b|| <~ - (det L)*/".

A

BDD., (Bounded Distance Decoding)

Given a basis of L and a vector t such that dist(t, L) < %Al(L),
find b € L that is closest to t.

A\
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Computational problems

Plenty of variants (2/2)

SIVP,, (Shortest Independent Vectors Problem)

Given a basis of L of dimension n, find by,...,b, € L linearly
independent such that max; ||b;|| <~ - An(L).

\

SBP, (Shortest Basis Problem)

Given a basis of L, find a basis (b;); of L such
that max |[b;]| < - min(c,); pasis max [|ci]l.
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Computational problems

Plenty of variants (2/2)

SIVP,, (Shortest Independent Vectors Problem)

Given a basis of L of dimension n, find by,...,b, € L linearly
independent such that max; ||b;|| <~ - An(L).

\

SBP, (Shortest Basis Problem)

Given a basis of L, find a basis (b;); of L such
that max |[b;]| < - min(c,); pasis max [|ci]l.

Much more on this topic in “Complexity of lattice problems” by
Micciancio and Goldwasser (2002).
See also [Mic'08,LyuMic’09].
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Computational problems

General rules to be remembered about all these problems

Easier when ~y increases.

Often somewhat NP-hard for very small ~.

Typically not NP hard for polynomial ~
(the kind of « used in cryptography).

@ Solvable in polynomial-time for v almost exponential in n
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(the kind of « used in cryptography).
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The lattice algorithms rule of thumb

Given a basis of an n-dimensional lattice, the best known
algorithms achieve

v~ kOK/M) in time ~ n9M) . 20(K),
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Computational problems

General rules to be remembered about all these problems

@ Easier when « increases.
o Often somewhat NP-hard for very small ~.

@ Typically not NP hard for polynomial ~
(the kind of « used in cryptography).

@ Solvable in polynomial-time for v almost exponential in n

The lattice algorithms rule of thumb

Given a basis of an n-dimensional lattice, the best known
algorithms achieve

v~ kOK/M) in time ~ n9M) . 20(K),

. . . O(nloglogn)
= Best v in polynomial-time: v =2 Toen /.
= Complexity 2°(") for polynomial ~.

Damien Stehlé Introduction to lattices March 2012 58/58



	Lattices
	Invariants
	Examples of lattices
	Gram-Schmidt
	Gaussians
	Computational problems

