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The LLL algorithm

Input : A lattice L given by a basis B = (b1, b2, . . . , bn)

The algorithm deals with the Gram–Schmidt orthogonalized system

B? = (b?1, b
?
2, . . . , b

?
n) with b?i := proj. of bi orth. to < b1, b2, . . . bi−1 >

and the matrix P := (mi,j) which expresses B as a function of B?.

P :=



b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1


LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

( b?i b?i+1

ui 1 0

vi mi+1,i 1

)



The LLL algorithm performs the Gauss algorithm on local bases Ui,

with three differences

(a) The output test is weaker and depends on a parameter t > 1: the

test |vi| > |ui| is replaced by the test |vi| > (1/t)|ui|.
(b) The operations first performed on the local basis (ui, vi) are then

reflected on the system (bi, bi+1).

(c) The Gauss algorithm is performed on the local basis Ui step by

step. The index i begins at i = 1, ends at i = p, and is incremented

i := i+ 1 or decremented i := i− 1 at each step.



Main parameters of interest for the LLL algorithm.

The lengths `i := |b?i |, the Siegel ratios ri :=
`i+1

`i
the interval [a := min `i, A := max `i].

The interval [a,A] provides an approximation of λ(L) and detL:

λ(L) ≥ a, λ(L) ≤ A√p, ap ≤ detL ≤ Ap

Three actions of the algorithm.

For t > 1 let s := (2t)/
√

4− t2. For t = 1, then s = 2/
√

3.

– The algorithm narrows the interval [a,A]

– It provides lower bounds for final ratios r̂i that satisfy r̂i ≥
1

s
– At each step where Test in 2. is negative,

D :=

p−1∏
i=1

detL(b1, b2, . . . , bi) =

p−1∏
i=1

`p−ii is decreased with a factor
1

t
.



Upper bounds for output parameters: exponential wrt dimension p

the Hermite defect γ(B) :=
|b̂1|2

(detL)2/p
≤ sp−1

the lenght defect θ(B) :=
|b̂1|
λ(L)

≤ sp−1

the orthogonality defect ρ(B) :=

∏d
i=1 |b̂i|
detL ≤ sp(p−1)/2

Upper bounds for the number of iterations K: polynomial wrt to dimension p

K ≤ (p− 1) + p(p− 1) logt
A

a
, with a := min `i, A := max `i

K ≤ p2

2
logt

N
√
p

λ(L)
, with N := max |bi|2 and λ(L),

K ≤ (p− 1) + p(p− 1)
M

lg t
, when L ⊂ Zn, with M := maxi `(|bi|2)



The LLL Algorithm – the Lovasz version.

A fundamental role played by the lengths `i and their ratios ri

`i := ‖b?i ‖, ri :=
`i+1

`i
.

The algorithm aims at obtaining lower bounds on ratios ri.

More precisely, the algorithm with t > 1 computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤ 1/2

(ii) fulfills the Lovasz conditions Lt(i):

v̂i ≥
1

t
ûi or ˆ̀2

i+1 + m̂2
i+1,i

ˆ̀2
i ≥

1

t2
ˆ̀2
i .

Such a basis B is t–Lovasz reduced.

When t and s are related by the equality (1/t2) = (1/4) + (1/s2),

such a basis fulfills the Siegel conditions Ss(i): r̂i ≥
1

s

Optimal value for s : s = 2/
√

3.



A weaker version for the LLL Algorithm – the Siegel version.

A fundamental role played by the lengths `i and their ratios ri

`i := ‖b?i ‖, ri :=
`i+1

`i
.

The algorithm aims at obtaining lower bounds on ratios ri.

The Siegel version (with a parameter s > 2/
√

3) computes a basis B̂ that

(i) is size–reduced: |m̂i,j | ≤
1

2

(ii) fulfills the Siegel conditions Ss(i): r̂i ≥
1

s

Such a basis B is s–Siegel reduced. It has good euclidean properties.



P :=



b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1



LLL algorithm =

Gauss’ reduction steps on local bases Ui :=

( b?i b?i+1

ui 1 0

vi mi+1,i 1

)



Two main types of operations performed:

(i) Translations bi+1 := bi+1 − bmi+1,jebj .
This does not change `i+1, and entails the inequality |mi+1,j | ≤ (1/2).

(ii) Exchange between bi and bi+1 when Ss(i) is not satisfied.

b̂∗i+1

vi=b̂
∗
i

ui=b
∗
i

b∗i+1

1

This modifies the lengths `i, `i+1.

The new values ˇ̀
i, ˇ̀

i+1 satisfy

ˇ̀
i = ρ `i ˇ̀

i+1 =

(
1

ρ

)
`i+1

The factor ρ satisfies

ρ2 =
`2i+1

`2i
+m2

i+1,i ≤
1

s2
+

1

4

s >
2√
3

=⇒ ρ < 1



LLL (s)

with s > 2/
√

3.

Input. A sequence (`1, `2, . . . `n)

Output. A sequence (ˆ̀
1, ˆ̀

2, . . . ˆ̀
n)

with ˆ̀
i+1 ≥ (1/s)ˆ̀

i.

i := 1;

While i < n do

If `i+1 ≥ (1/s) `i, then i := i+ 1

else compute ρ ;

`i := ρ `i;

`i+1 := (1/ρ) `i+1;

i := max(i− 1, 1);

The general scheme of the LLL Algorithm.



Main parameters of interest for the LLL Algorithm:

The number of iterations and the quality of the output basis.

Complexity bounds involve the potential D(B) and the determinant detB

D(B) =

n∏
i=1

`ii, detB =

n∏
i=1

`i.

During the execution, D(B) is decreasing and detB is not modified.

Number of iterations. K(B) ≤ 1

| log ρ0(s)| log
D(B)

D(B̂)
,

where ρ0(s) is the maximal value of the decreasing factor ρ.

Quality of the output. The first output vector b̂1 is short enough;

γ(B) :=
||b̂1||

(detB)1/n
≤ s(n−1)/2.

What are the mean values of these two parameters?
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Various notions of a random basis of a lattice.

(a)“Useful” lattice bases arise in applications: variations around knapsack

bases and their transposes with bordered identity matrices.

(
A Ip

) (
y 0

x qIp

) (
Ip Hp

0p qIp

) (
q 0

x Ip−1

)

(b) Ajtai “bad” bases B(p) := (b
(p)
i ) associated to a sequence a

(p)
i

b
(p)
i ∈ Zp, b

(p)
i = a

(p)
i ei +

i−1∑
j=1

a
(p)
i,j ej (⇒ `

(p)
i = a

(p)
i )

with m
(p)
i,j =

a
(p)
i,j

a
(p)
j

= rand

(
−1

2
,

1

2

)
[size-reduced]

and r
(p)
i =

a
(p)
i+1

a
(p)
i

→ 0 when p→∞ [bad Siegel ratios]



Experimental mean values .... versus proven upper bounds

[Nguyen and Stehlé]

Main parameters. r̂i γ K

Worst-case 1/s sp−1 Θ(Mp2)

(Proven upper bounds)

“Bad” lattice bases

Random Ajtai bases 1/β βp−1 Θ(Mp2)

(Experimental mean values)

“Useful ” lattice bases

Random knapsack–shape bases 1/β βp−1 Θ(Mp)

(Experimental mean values)

The execution parameters depend on the type of the lattice basis.

The output configuration does not depend strongly neither on index i nor on

the type of bases.

It remains “exponential wrt p”.

What about the “experimental” value β?



Experiments on the LLL Alg. [Nguyen and Stehlé]

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 50  60  70  80  90  100  110  120  130
 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

On the left, experimental results for log2 γ.

The experimental value of parameter [1/(2p)]E[log2 γ] ≈ 0.03, so that β ≈ 1.04.

On the right,

the output distribution of “local bases” shows an accumulation in the “corners”.



Other notions of a random basis of a lattice – reference models.

(c) Spherical model.

Choose independently each one of the p vectors in the ambient space Rn,

under a common distribution that is invariant by rotation.

Classical instances :

– uniform distribution in the ball, on the sphere

– gaussian distribution on coordinates

(d) Random lattices.

The space of (full-rank) lattices in Rn (modulo scale) isXn = SLn(R)/SLn(Z).

It possesses a unique probability measure

which is invariant under the action of SLn(R).

This gives rise to a natural notion of random lattices.



Probabilistic analyses of lattice reduction

in the spherical model.

A random basis Bp,(n) of dimension p in the ambient space Rn

– formed with p independent vectors

– drawn with the same distribution that is invariant by rotation.

Classical instances.

– uniform distribution in the ball or on the sphere

– gaussian distribution for coordinates



Probability of reduction.

For s > 1 and n→∞,

what is the probability πp,(n),s that Bp,(n) is already s–reduced?

i.e., all the Siegel ratios ri :=
`i+1

`i
already satisfy ri ≥

1

s
(for i ≤ p)?

The answer depends on the position of p wrt n:

Two different behaviours!

Theorem. [Akhavi, Marckert, Rouault (2005)]

(i) If n− p→∞, then πp,(n),s → 1.

(ii) If n− p = k is constant, then πn−k,(n),s → Πk,s ∈ (0, 1).

In particular: Π0,s ∼s→∞ 1− 1

s
,

Π0,s ≤ exp

[
− τ2

(s2 − 1)2

]
when s→ 1



For the LLL algorithm, and the first minimum too,

there are also two different behaviours.... according to the position of p wrt n:

Theorem. [Daudé and Vallée 1994] Under the random ball model,

– the number of iterations K of the LLL alg. on Bp,(n),

– the first minimum λ of the lattice generated by Bp,(n)
satisfy “on average”

In the case of p = n

En,(n)[K] ≤ n2
(

1

log t

)[
1

2
log n+ 2

]
, En,(n)[λ] ≥ 1

4
√
n

In the case when p = cn, with c < 1,

Ecn,(n)[K] ≤ cn

1− c

(
1

log t

)[
1

2
log n+ 2

]
, Ecn,(n)[λ] ≥ exp

[
− 4 log n

2(1− c)n

]
.



Distribution of the last “local bases” i = n− k
[Akhavi, Marckert, Rouault (2005)]

For the last “local bases”, at indices i := n − k, for fixed k and n → ∞,

the distribution of the ratio rn−k admits a density ϕk,

ϕk(y) = 2B

(
k

2
,
k + 1

2

)
yk−1

(1 + y2)k+(1/2)
1[0,∞[(y),

with B(a, b) :=
Γ(a+ b)

Γ(a)Γ(b)
.

Near 0, the density ϕk behaves as a power function,

(ay)k−1 ≤ ϕk(y) ≤ (by)k−1, for some a, b for y near to 0.

The last local bases, of index n− k with k fixed, become

– more and more skew when k becomes smaller

– and thus more and more difficult to reduce

The first local bases, of index n− k with k →∞, are already reduced....



A general probabilistic model for input bases.

Lattice bases B of full–rank whose matrix B = (bi,j) is triangular.

The matrix P and the ratios ri are easy to compute

ri =
bi+1,i+1

bi,i
, mi,j =

bi,j
bj,j

.

– Main parameters: the ratios ri

The ratios ri follow power laws : ∀i ∈ [1..n− 1], ∃θi > 0

for which Pr [ri ≤ x] = x1/θi for x ∈ [0, 1].

– Auxilliary parameters: the coefficients mi,j .

For j < i, the coefficients mi,j are i.i.d in [−1/2,+1/2].

Realistic instances whose difficulty increases with the parameters θi.

This distribution arises in a natural way in various frameworks,

– in the two dimensional case, and in the transition Euclid −→ Gauss.

– when the initial basis is uniformly chosen in the unit ball.



Return to the LLL alg. with an additive point of view.

qi := logs `i, ci := − logs ri = qi − qi+1, α := − logs ρ,

The Siegel condition becomes qi ≤ qi+1 + 1 or ci ≤ 1,

The exchange in the LLL algorithm becomes

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α, ].

In our probabilistic model, each ci follows an exponential law of the form

Pr[ci ≥ y] = s−y/θi for y ∈ [0,+∞[ with E[ci] =
θi

log s
.

This model is then called the Exp-Ajtai(θ) model.



Some instances of cfg related to natural inputs



Some instances of cfg related to natural inputs



The regularized version of the LLL algorithm.

The main difficulty of the analysis of the LLL algorithm:

the decreasing factor ρ can vary throughout the interval [0, ρ0(s)].

ρ =

√
`2i+1

`2i
+m2

i+1,i.

We assume that the following Regularity Hypothesis holds (R):

The decreasing factor ρ (and thus its logarithm α := − logs ρ) are constant.

Then, the equation

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α].

defines a sandpile model.

The equation

If ci > 1, then [či = ci − 2α, ˇci+1 = ci+1 + α, ˇci−1 = ci−1 + α, ].

defines a chip firing game.



RLLL (ρ, s)

with s > 2/
√

3, ρ ≤ ρ0(s) < 1

Input. A sequence (`1, `2, . . . `n)

Output. A sequence (ˆ̀
1, ˆ̀

2, . . . ˆ̀
n)

with ˆ̀
i+1 ≥ (1/s)ˆ̀

i.

i := 1;

While i < n do

If `i+1 ≥ (1/s) `i, then i := i+1

else `i := ρ `i;

`i+1 := (1/ρ) `i+1;

i := max(i− 1, 1);

ARLLL (α) with α > α0(s).

Input. A sequence (q1, q2, . . . qn)

Output. A sequence (q̂1, q̂2, . . . q̂n)

with q̂i − q̂i+1 ≤ 1.

i := 1;

While i < n do

If qi − qi+1 ≤ 1, then i := i+ 1

else qi := qi − α;

qi+1 := qi+1 + α;

i := max(i− 1, 1);

Two versions of the regularized LLL algorithm.

On the left, the classical version, which depends on parameters s, ρ.

On the right, the additive version, which depends on the parameter α := − logs ρ.



There are now three main questions:

– Is the Regularity Hypothesis (R) reasonable?

– What are the main features of the regularized versions of the LLL alg.,

namely sandpiles?

– What consequences can be deduced for the probabilistic behaviour of

the LLL algorithm?
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A general experimental study of parameter α.

We do not assume that there is a universal value for α := − logs ρ.

Four variables may have an influence on the parameter α (for n→∞).

– The parameters θi of input distribution of Exp-Ajtai type.

– The position i ∈ [1..n(B)− 1]: the index where the reduction occurs.

– The discrete time j ∈ [1..K(B)]: the index when the reduction occurs,

– The strategy defines the position i at the j–th iteration, inside the set

N (j) := {i; ConditionS(i) not satisfied at the j–th iteration}
Three main strategies :

– The standard strategy chooses i := MinN (j)

– The random strategy chooses i ∈R N (j)

– The greedy strategy chooses i ∈ N (j)

for which the ratio ri is minimum.



P :=



b?1 b?2 . . . b?i−1 b?i b?i+1 . . . b?p

b1 1 0 . . . 0 0 0 0 0

b2 m2,1 1 . . . 0 0 0 0 0
...

...
...

. . .
...

...
...

...
...

bi−1 mi−1,1 mi−1,2 . . . 1 0 0 0 0

bi mi,1 mi,2 . . . mi,i−1 1 0 0 0

bi+1 mi+1,1 mi+1,2 . . . mi+1,i−1 mi+1,i 1 0 0
...

...
...

...
...

...
...

. . .
...

bp mp,1 mp,2 . . . mp,i−1 mp,i mp,i+1 . . . 1





Distribution of the parameter α as a function of the dimension n

(Input distribution given by θi = 1.5)
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n = 5 (•);n = 10 (�);n = 15 (N);n = 20 (�)

When the dimension grows,

the distribution of α gets more and more concentrated,

around a value which appears to tend to 2.5.



Influence of the discrete time and position on α.

ᾱ〈y〉 := mean value of α when the time is close to (y/20)K

ᾱ〈x〉 := mean value of α when the position is close to (x/5)n

5 10 15 20

2

4
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10

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

The functions y 7→ ᾱ〈y〉(left) and x 7→ ᾱ〈x〉 (right),

for n = 5 (•);n = 10 (�);n = 15 (N);n = 20 (�)

The variations of the functions y 7→ ᾱ〈y〉 and x 7→ ᾱ〈x〉 are small,

and become smaller when the dimension n increases.



Distribution of α〈y〉 and α〈x〉
Remind: x refers to the position and y refers to the time.
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Here n = 20, Y = 20, X = 5.

(left) the distribution of α〈y〉 for y = 2 (•); 5 (�); 10 (N); 15 (�); 20 (H)

(right) the distribution of α〈x〉 for x = 1 (•); 2 (�); 3 (N); 4 (�); 5 (H)

The distributions of α〈x〉 and α〈y〉 are concentrated,

at least for y’s not too small and for central values of x.



Influence of the strategy (not often studied):

• for standard, N for greedy, and � for random.
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Here, n = 20.

(left): the functions x 7→ K〈x〉 ( K〈x〉 is the number of steps near the position x).

(middle) the functions y 7→ ᾱ〈y〉. (right) the distribution of α.

– The standard strategy performs a larger number of steps.

The value of α is concentrated below α = 5.

– The two other strategies perform a much smaller number of steps.

The values of α vary in [5, 20] and decrease with the discrete time.
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Three main questions about the RLLL algorithm.

(Q1) Does the RLLL algorithm depend on the strategy?

(Q2) Are there lower bounds on average for the number of iterations? the

output configuration?

(Q3) Does there exist a characterisation for two blocks to be independent?

The two blocks B− and B+ are independent if the total basis formed by

concatening the two reduced bases B̂− and B̂+ is reduced.

The sandpile model is very well studied. However, ....

the RLLL algorithm gives rise to non classical instances of sandpile models.



General sandpiles and chip firing games with parameters (H,h).

The equation

If qi > qi+1 +H, then [q̌i = qi − h, ˇqi+1 = qi+1 + h].

defines the sandpile model of parameters (H,h).

Letting ci = qi − qi+1, the equation

If ci > H, then [či = ci − 2h, ˇci+1 = ci+1 + h, ˇci−1 = ci−1 + h, ].

defines the chip firing game of parameters (H,h).

Classical instances studied: basic and decreasing.

– Basic instances: Initial integer qi’s and parameters H,h equal to 1.

– Basic (strictly) decreasing instances:

The sequence i 7→ qi is (strictly) decreasing.

Here, we study general instances of sandpile models.



The evolution of a basic chip firing game (above),

and its associated sandpile (below).



Possible evolutions of a basic sandpile.



For any sandpile of parameters (h,H)

(i) There is a unique final q̂. The length of any path q→ q̂ is

T (q) =
1

2h

n−1∑
i=1

i(n− i) (ci − ĉi)

(ii) If the sandpile is decreasing, H − 2h < ĉi ≤ H,

0 ≤ T (q)− 1

2h

n−1∑
i=1

i(n− i) (ci −H) ≤ 2A(n) with A(n) := n
n2 − 1

12

(iii) If the sandpile is strictly decreasing,

∃!j ∀i 6= j, H − h < ĉi ≤ H, and H − 2h < ĉj ≤ H − h,

0 ≤ T (q)−
[
A(n) +

1

2h

n−1∑
i=1

i(n− i) (ci −H)

]
≤ 1

8
n2

(iv) For a general sandpile,

H − 2h < ĉi ≤ H if ci > H − h, ĉi ≥ ci if ci ≤ H − h
1

2h

n−1∑
i=1

i(n− i)(ci −H + h) ≤ T (q) ≤ 1

2h

n−1∑
i=1

i(n− i) max(ci −H + h, 0)



(v) A sufficient condition for two adjacent strictly decreasing basic sandpiles

q− := (q1, q2, . . . , qp), q+ := (qp+1, qp+2, . . . , qn+p)

to be independent is

1

p

(
p∑
i=1

qi

)
− 1

n

(
n∑
i=1

qp+i

)
≤
(
n+ p

2

)
− 2.

In this case, the number of steps for the total sandpile q is (in parallel)

T (q) = max [T (q−), T (q+)]
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Two interesting kinds of input bases.

(i)Totally non-reduced bases, for which Condition Ss(i) is never satisfied:

the sandpile is strictly decreasing.

(ii) A general input basis is a sequence of blocks,

some totally non-reduced, and other ones totally reduced.

Comparing two results:

– proven results for regular executions of the LLL algorithm.

– experimental results performed on general executions.

A good fitting between these two kinds of results, and thus:

– An indirect validation of the property :

“The executions of the LLL algorithm are very often regular enough”.

– Long experiments on the LLL algorithm

can be simulated by fast computations in the sand pile model

(with a good choice of parameter α).



Output configuration: Study of the parameter γ(B̂) :=
‖b̂1‖
detB

.

For a totally non reduced basis B on which the LLL algorithm is ρ–regular,

the output parameter γ(B̂) satisfies

2

n− 1
logs γ(B̂) ∈ [1− α, 1], with α := − logs ρ.

Experiments done on general executions by Nguyen and Stehlé:

They show that, for most of the output bases B̂, the ratio γ(B̂) satisfies

γ(B̂) ≈ β(n−1)/2 with β ∼ 1.04

The relation β ∼ s√ρ is then plausible,

so that the “usual” ρ would be close to 0.81.



Number of iterations.

Consider an input basis B, which follows the Mod-Exp-Ajtai distribution

of parameter θ. If the execution of the LLL algorithm in dimension n is

ρ–regular on the basis B, the number of iterations satisfies

Kn(ρ, θ) ∼ n3

12α

(
ρ1/θ

1− ρ1/θ
)

(n→∞).

Experiments done for general executions by Nguyen and Stehlé.

For the historical choice of Ajtai, namely θ = na, the experiments show a

number of iterations of order n3+a.



An instance of the independence property.

For breaking the RSA cryptosystem when the public exponent E is “small”,

Boneh and Durfee use the LLL algorithm on the following basis B:

The basis B is formed with blocks Bk, indexed from k = 0 to m.

– The block Bk has length k + 1,

– In each Bk, all the ci’s are equal to L/2 with L := logsE

– The total configuration is not totally decreasing,

– The independence condition holds.
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We can prove:

If the execution of the LLL algorithm is ρ-regular on the B-D basis, then:

(i) the blocks Bk are independent,

(ii) The number of iterations Kp (parallel) and Ks (sequential) satisfy

Kp =
m3

12α

(
L

2
− 1

)
Ks =

m∑
i=1

Ki ≈
m4

48α

(
L

2
− 1

)
.



The execution of the LLL alg. on the BD lattice cannot be totally regular:

In this case, the first vector of the reduced lattice basis would be the first

vector of the initial basis, and the method would fail!

Comparing with an execution of the actual LLL algorithm on a BD lattice:

(left) The LLL alg. on a BD lattice (related to m = 5).

(right) The LLL alg. on the basis formed by the concatenation of the B̂k’s.



Each Bk is almost totally non reduced:

the number of iterations fits with the order Θ(k3)

which is proven for a ρ–regular execution.

The blocks are almost independent:

the basis obtained by concatening the B̂k is not reduced,

but few reduction steps are needed for reducing it.

This strategy, whose first step is performed in parallel, is very efficient.



Conclusion

– A simplified model,

very useful for explaining, making experiments, finding conjectures......

– Only qualitative similarities with the actual LLL algorithm.

– Possible (easy) proofs.



And now? A less simplified model ...

We can try to study an intermediary model, less simplified...

The factor ρ depends on the Siegel ratio ri and the coefficient mi+1,i.

ρ2 = r2i +m2
i+1,i

We consider that the coefficient m2
i+1,i is fixed equal to θ,

so that ρ depends on ci but only on ci:

The LLL algorithm is now modelled as a dynamical system:

For instance, in two dimensions, the Siegel ratios

x :=
`22
`21
, x̂ :=

̂̀2
2̂̀2
1

,

are the main variables and define a mapping fθ : x 7→ x̂ as

fθ(x) =
x

(x+ θ)2
if x < 1− θ, fθ(x) = x if x ≥ 1− θ.



The first interesting case: Three dimensional case

There are two boxes and two Siegel ratios x and y.

The dynamical system is defined by two shifts,

A (governed by x), and B, (governed by y)

A(x, y) :=

(
x

(x+ θ)2
, y(x+ θ)

)
if x < 1− θ; A(x, y) = (x, y) else

B(x, y) :=

(
x(y + θ),

y

(y + θ)2
,

)
if y < 1− θ; B(x, y) = (x, y) else

Work in progress....


