

Lattice-Based Cryptography

Vadim Lyubashevsky
INRIA / ENS, Paris

March 20, 2013

Lattice Problems

Small Integer
Solution

Problem (SIS)

Learning With
Errors

Problem (LWE)

One-Way Functions

Collision-Resistant Hash Functions

Digital Signatures

Identification Schemes

…

(Minicrypt)

Public Key Encryption

Oblivious Transfer

Identity-Based Encryption

Hierarchical Identity-Based Encryption

…

(Cryptomania)

Worst-Case

Average-Case

Lattice Problems

Small Integer
Solution

Problem (SIS)

Learning With
Errors

Problem (LWE)

One-Way Functions

Collision-Resistant Hash Functions

Digital Signatures

Identification Schemes

…

(Minicrypt)

Public Key Encryption

Oblivious Transfer

Identity-Based Encryption

Hierarchical Identity-Based Encryption

…

(Cryptomania)

Worst-Case

Average-Case

LEARNING WITH ERRORS PROBLEM

Learning With Errors (LWE) Problem

8

3

12

5

There is a secret vector s in Zp
n (we'll use Z4

17
 as a running example)

An oracle (who knows s) generates a random vector a in Zp
n

and

 “small” noise element e in Z

The oracle outputs (a,b=<a,s>+e mod 17)

3 7 13 2 1 13 * + =

This procedure is repeated with the same s and fresh a and e

Our task is to find s

1 9 7 4 -1 12

11 5 14 6 2 3

Once there are enough ai , the s is uniquely determined

Theorem [Regev '05] : There is a polynomial-time quantum reduction from solving

certain lattice problems in the worst-case to solving LWE.

Learning With Errors (LWE) Problem

. . .

a1

a2

am

s

+ e = b

Decision LWE Problem

. . .

a1
a2

am

s

+ e = b

World 1

. . .

a2

a1

am

b

uniformly

random in Zp
m

World 2

Decision

LWE

Oracle

I am in World 1 (or 2)

. . .

a2

a1

am

b

Search LWE < Decision LWE

8

3

12

5

3 7 13 2 1 * + =

13+rg

Use the Decision oracle to figure out the coefficients of s one at a time

Let g be our guess for the first coefficient of s

Repeat the following:

 Receive LWE pair (a,b)

Pick random r in Z17

Send sample below to the Decision Oracle

 3 7 13 2+r

13

If g is right, then we are sending a

distribution from World 1

If g is wrong, then we are sending a

distribution from World 2

We will find the right g in O(p) time

Use the same idea to recover all

coefficients of s one at a time

a b

LWE and Lattices

. . .

a1
a2

am

s

+ e = b

World 1

. . .

a2

a1

am

b

uniformly

random in Zp
m

World 2

A

v

0

=

Lattice L┴
p(A) = { y : yA = 0 mod p}

Find a short vector v in L┴
p(A).

Called the Small Independent Solution (SIS)

problem

Decision LWE < SIS

. . .

a1
a2

am

s

+ e = b

World 1

. . .

a2

a1

am

b

uniformly

random in Zp
m

World 2

b

v

b

v

= <v,e> = small

= uniform mod p

PUBLIC KEY ENCRYPTION FROM LWE

Public-Key Cryptography

Secret Key = s
Public Key = p

Public-Key Cryptography

Secret Key = s
Public Key = p

Public Key = p

Public Key = p

Public Key Encryption

• (sk,pk)  KeyGen(1n)

• c = Enc (pk,m)

• m = Dec(sk,c)

• Correctness: Dec(sk,Enc(pk,m))=m

• CPA-Security: Enc(pk,mi) are computationally
indistinguishable from each other

“Computationally Indistinguishable”

DY

Y1

Y2

…

Yk

…

DX

X1

X2

…

Xk

…

D?

Z1

Z2

…

Zk

…

=
?

=
?

“Dual” Cryptosystem

A

s

t = t
r

+

u v
=

0 m

+

A

Secret Key

(short)

Public Key

“Dual” Cryptosystem

v - =

A

s

t = t
r

+

u v
=

0 m

+

+ m

represent 0 by m=0
represent 1 by m=(q-1)/2

A

u

s

“Dual” Cryptosystem Security

A

s

t = t
r

+

u v
=

0 m

+

A

Random

Pseudorandom

IDENTITY-BASED ENCRYPTION

Identity-Based Encryption

Secret Key = s
Public Key = Bob

Key Authority
Master Public Key
Master Secret Key

Identity-Based Encryption
Key Authority

Master Public Key
Master Secret Key

Secret Key = sChris
Public Key = Chris

Secret Key = sBob
Public Key = Bob

Secret Key = sDave
Public Key = Dave

Encrypt(Chris,msg)

Security for IBE
Key Authority

Master Public Key
Master Secret Key

Secret Key = sChris
Public Key = Chris

Secret Key = sBob
Public Key = Bob

Secret Key = sDave
Public Key = Dave

Encrypt(Chris,msg)

CPA-Security: For all mi , Encrypt(Chris,mi) are
computationally indistinguishable from each other

IBE based on LWE
(in the Random Oracle Model)

H
x1, x2, x3 … H(x1), H(x2), H(x3) …

(x1, H(x1)), (x2, H(x2)), (x3, H(x3)), …
is computationally indistinguishable from (x1,u1), (x2,u2), (x3,u3), …

Security in the Random Oracle Model:
 There is a “pseudorandom function” H
 Prove security assuming that everyone only has “black box access” to H
 In reality, H is replaced by a ”cryptographic hash function” (e.g. SHA-256)

 If the real scheme is insecure, then there is something wrong
 with the hash function

Security Proofs Using a Random Oracle

Adversary cannot access H directly
He must ask us (i.e. the reduction) for H(z)
We pick a random y and output y=H(z)

What’s the point?
Suppose f is a 1-way function and f(x) is uniform for random x
For a random y, it’s hard to find an x such that f(x)=y

But, for any z, we can simulate knowing an x such that f(x)=H(z)
Given z, we pick a random x, compute y=f(x), and program y=H(z)
So f(x)=H(z) and all the distributions are as they should be

IBE Based on LWE

A

Lattice L┴
p(A) = { y : Ay = 0 mod p}

T

T is a basis for L┴
p(A) and has “short” vectors

b
s

= Master Public Key: A
Master Secret Key: T

Identity = “Bob”

b = H(Bob)

Use the GPV algorithm to find a
short s such that As = b mod p

Use “Dual” LWE encryption to

Encrypt to Bob

Lattice L┴
p(A) = { y : Ay = 0 mod p}

Cosets of Zm / L┴
p(A)

A = 0 mod p A = mod p

Lattice L┴
p(A) = { y : Ay = 0 mod p}

H(Bob) =

A = mod p A = mod p

 -

short

Properties Needed

A b
s

=

T

1. Distribution D of s only depends on the length of the
vectors comprising T

2. The following produce the same distribution of (s,b)

 (a) Choose s ~ D. Set b=As
 (b) Choose random b. Use T to find an s such that As=b.

(1) is guaranteed by the GPV algorithm
(2) is true if s has enough entropy (to make As=b

uniform mod p)

Security Proof Sketch

Show that breaking IBE implies breaking the “Dual” cryptosystem

A t

u v

public key

ciphertext

A

master public key

Bob

pick from D

 = = H(Bob)

program the random oracle

Security Proof Sketch

Show that breaking IBE implies breaking the “Dual” cryptosystem

A t

u v

public key

ciphertext

A

master public key

Bob

 = = H(Bob)

program the random oracle

Security Proof Sketch

Show that breaking IBE implies breaking the “Dual” cryptosystem

A t

u v

public key

ciphertext

A

master public key

I will break an encryption to Dave

 = H(Dave) t

u v
Decryption

LWE Encryption

n-bit Encryption Have Want

Public Key Size Õ(n) / Õ(n2) O(n)

Secret Key Size Õ(n) / Õ (n2) O(n)

Ciphertext Expansion Õ(n) / Õ (1) O(1)

Encryption Time Õ(n3) / Õ (n2) O(n)

Decryption Time Õ(n2) O(n)

Source of Inefficiency of LWE

1

0

2

1

3 7 8 2 2 *

+ =

1 Getting just one extra random-looking

number requires n random numbers

and a small error element.

Wishful thinking: get n random numbers and produce n

pseudo-random numbers in “one shot”

2

8

7

3

*

+ =

1

0

2

1

IDEAL LATTICES

Cyclic Lattices

 A set L in Zn is a cyclic lattice if:

1.) For all v,w in L, v+w is also in L

2.) For all v in L, -v is also in L

3.) For all v in L, a cyclic shift of v is also in L

3 2 -1 -4

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2

-4 3 2 -1 4 -3 -2 1

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8

Cyclic Lattices = Ideals in Z[x]/(xn-1)

 A set L in Zn is a cyclic lattice if L is an ideal in Z[x]/(xn-1)

1.) For all v,w in L, v+w is also in L

2.) For all v in L, -v is also in L

3.) For all v in L, a cyclic shift of v is also in L vx is also in L

3 2 -1 -4

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2

(-1+2x+3x2-4x3) + (-7-2x+3x2+6x3)= (-8+0x+6x2+2x3)

(-1+2x+3x2-4x3) (1-2x-3x2+4x3)

-1+2x+3x2-4x3

(-1+2x+3x2-4x3)x=-4-x+2x2+3x3

(-1+2x+3x2-4x3)x2 =3-4x-x2+2x3

(-1+2x+3x2-4x3)x3 =2+3x-4x2-x3

-4 3 2 -1 4 -3 -2 1

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8

Why Cyclic Lattices?

 Succinct representations
 Can represent an n-dimensional lattice with 1 vector

 Algebraic structure

 Allows for fast arithmetic (using FFT)
 Makes proofs possible

 One-way functions based on
 worst-case hardness of SVP in
 cyclic lattices [Mic02]

Shortest Vector Problem (SVP)

• SVP: Given a lattice L, find the (non-zero) vector
with the smallest norm in L

• SVPγ : Given a lattice L, find a non-zero vector
whose length is within a factor γ of the shortest
vector

Is SVPpoly(n) Hard for Cyclic Lattices?

Short answer: we don't know but conjecture it is.

What's wrong with the following argument that SVPn is easy?

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 4 3 2 1 v is a shortest vector in L

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 1 4

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 1 4 3

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 1 4 3 2

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 10 10 10 10

+
Also in L

Length at most n||v||

Algorithm for solving SVPn(L) for a cyclic lattice L:
1. Construct 1-dimensional lattice L'=L ∩ {1n}
2. Find and output the shortest vector in L'

The Hard Cyclic Lattice Instances

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 v is a shortest vector in L

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 -1 -4

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 -1 -4 3

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 0 0 0 0

+
Also in L

Length at most n||v||

1n

The “hard” instances of cyclic lattices lie on plane P perpendicular to the 1n vector

In algebra language:

If R=Z[x]/(xn-1), then
 1n = (xn-1+xn-2+...+1) ≈ Z[x]/(x-1)
 P = (x-1) ≈ Z[x]/(xn-1+xn-2+...+1)

f-Ideal Lattices = Ideals in Z[x]/(f)

Want f to have 3 properties:

1)Monic (i.e. coefficient of largest exponent is 1)

2)Irreducible over Z

3)For all polynomials g,h ||gh mod f||<poly(n)||g||∙||h||

Conjecture: For all f that satisfy the above 3 properties, solving
SVPpoly(n) for ideals in Z[x]/(f) takes time 2Ω(n).

Some “good” f to use:

f=xn-1+xn-2+...+1 where n is prime

f=xn+1 where n is a power of 2

(xn+1)-Ideal Lattices = Ideals in Z[x]/(xn+1)

 A set L in Zn is a (xn+1)-ideal lattice if L is an ideal in Z[x]/(xn+1)

1.) For all v,w in L, v+w is also in L

2.) For all v in L, -v is also in L

3.) For all v in L, vx is also in L

3 2 -1 4

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1

-4 3 2 -1 -4 3 2 -1 2 -1 4 -3

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 4 -3 -2

(-1+2x+3x2-4x3) + (-7-2x+3x2+6x3)= (-8+0x+6x2+2x3)

(-1+2x+3x2-4x3) (1-2x-3x2+4x3)

-1+2x+3x2-4x3

(-1+2x+3x2-4x3)x=4-x+2x2+3x3

(-1+2x+3x2-4x3)x2 =-3+4x-x2+2x3

(-1+2x+3x2-4x3)x3 =-2-3x+4x2-x3

-4 3 2 -1 4 -3 -2 1

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8

RING-LWE

Ring-LWE

Ring R=Zq[x]/(xn+1)

Given:

a1, a1s+e1

a2, a2s+e2

 …

ak, aks+ek

Find: s

ai are random in R

s and ei have “small” coefficients (distribution symmetric around 0)

Ring R=Zq[x]/(xn+1)

Given:

a1, b1

a2, b2

 …

ak, bk

Question: Does there exist “small” s and

 e1, … , ek such that bi=ais+ei

 or are all bi uniformly random in R?

Decision Ring-LWE

Decision
Learning With Errors over Rings

a1

 a2

 a3

…

am

s

b1

 b2

 b3

…

bm

+ =

a1

 a2

 a3

…

am

b1

 b2

 b3

…

bm

Theorem [LPR ‘10]: In cyclotomic rings, there is a quantum reduction from solving
worst-case problems in ideal lattices to solving Decision-RLWE

World 1 World 2

Ring-LWE cryptosystem

a

s

t

r

a

u

r

t

v

v

u

s

+ +

+

= =

=

- r

t

+ r

a

+ s

r

a

s

+ + r

a

+ s

r

+ s

= -

-

- =

Public Key

m +

m +

m +

m +

Secret Key Encryption

Decryption

m +

Security

a

s

t

r

a

u

+ + = =

Pseudorandom??

r

t

v

+ = m +

Security

a

s

t

r

a

u

+ + = =

Pseudorandom based on
Decision Ring-LWE!!

r

t

v

+ = m +

Efficiency

a

s

t

r

a

u

+ + = =

n-bit Encryption From LWE From Ring-LWE

Public Key Size Õ(n) / Õ(n2) Õ(n)

Secret Key Size Õ(n) / Õ (n2) Õ(n)

Ciphertext Expansion Õ(n) / Õ (1) Õ(1)

Encryption Time Õ(n3) / Õ (n2) Õ(n)

Decryption Time Õ(n2) Õ(n)

r

t

v

+ = m +

DIGITAL SIGNATURE SCHEMES

Digital Signatures

(sk,pk) KeyGen
Sign(sk,mi) = si
Verify(pk,mi,si) = YES / NO

Correctness: Verify(pk, mi, Sign(sk,mi)) = YES
Security: Unforgeability
1. Adversary gets pk
2. Adversary asks for signatures of m1, m2, …
3. Adversary outputs (m,s) where m ≠ mi and wins

if Verify(pk,m,s) = YES

Signature Schemes

• Hash-and-Sign

– Requires a trap-door function (like the GPV one)

• Fiat-Shamir transformation

– Conversion from an identification scheme

– No trap-door function needed

HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS

Hash-and-Sign Lattice Signature

A

Lattice L┴
p(A) = { y : Ay = 0 mod p}

T

T is a basis for L┴
p(A) and has “short” vectors

b
s

= Public Key: A
Secret Key: T

Sign(T,m)
1. b = H(m)
2. Use the GPV algorithm to find a
short s such that As = b mod p
3. s is the signature of m

Verify(A,m,s)
1. check that s is “short” and
 As = H(m) mod p

Security Proof Sketch

A

pick from D

 = = H(mi)

program the random oracle

sign mi

Security Proof Sketch

A

pick from D

 = = H(mj)

program the random oracle

give me H(mj)

Security Proof Sketch

I will forge the
signature of m

To forge on m, the Adversary needs H(m)

So m is one of the mj he asked for H(mj)

Thus we know an sj such that Asj=H(mj)

A = A =

Security Proof Sketch

A
 -

 = 0

short and hopefully non-zero

if it’s non-zero, then we have a solution to SIS

Properties Needed

A b
s

=

T

1. Distribution D of s only depends on the length of the
vectors comprising T

2. The following produce the same distribution of (s,b)

 (a) Choose s ~ D. Set b=As
 (b) Choose random b. Use T to find an s such that As=b.

3. For a random b, there is more than one likely possible
 output s such that b=As.

(1) is guaranteed by the GPV algorithm
(2) is true if s has enough entropy (to make As=b

uniform mod p)
(3) is true because the standard deviation of GPV is big

IDENTIFICATION AND “FIAT-SHAMIR”
SIGNATURE SCHEMES BASED ON SIS

Canonical 3-move Identification Scheme

Prover (sk) Verifier (pk)

commit

challenge

response

Verify(pk, commit,
challenge,response)=1?

Security of ID Schemes

Passive Adversary

1. Receive public key

2. Receive interaction
transcripts

3. Try to impersonate the
valid prover

Active Adversary

1. Receive public key

2. Interact with the valid
prover

3. Try to impersonate the
valid prover

Fiat-Shamir Transform

Passively-Secure 3-round scheme 

Signature scheme in the random oracle model

Sign(μ)
 commit
 challenge = H(μ, commit)
 response
 (commit,challenge,response)

VerifySig(μ, pk, commit, challenge, response)
 challenge=H(μ, commit)?
 VerifyID(pk, commit, challenge, response)=1?

Identification Scheme Based on SIS

Secret Key: S

Public Key: A, T=AS mod q

Pick a random y w=Ay mod q

pick a random c
c

z=Sc+y
check that
 1. ||z|| is small
 2. Az=Tc+w mod q

(Az=A(Sc+y)=Tc+w)

Active Security Reduction (Stage 1)

Secret Key: S

Public Key: A, T=AS mod q

Pick a random y w=Ay mod q

c

z=Sc+y

A Adversary

Active Security Reduction (Stage 2)

Public Key: A, T=AS mod q

w

c

z

 Az=Tc+w mod q
 Az’=Tc’+w mod q

 A(z-z’)=T(c-c’) mod q
 A(z-z’)=AS(c-c’) mod q

 Hope: z-z’ ≠ S(c-c’)

Adversary

c’

z’

Observation: If the adversary knows S, then he can
 always give us z-z’ = S(c-c’)
Solution: Make sure adversary does not learn S

Identification Scheme Based on SIS

Secret Key: S

Public Key: A, T=AS mod q

Pick a random y w=Ay mod q

pick a random c
c

z=Sc+y
check that
 1. ||z|| is small
 2. Az=Tc+w mod q

(Az=A(Sc+y)=Tc+w)

Make y uniform??
NO! Then z is too big
and SIS is not hard.

Rejection Sampling

g(x)

f(x)
Have access to samples from g(x)

Want f(x)

Rejection Sampling

g(x)

f(x)/M
Have access to samples from g(x)

Want f(x)

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1

Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M
Something is output with probability 1/M

Rejection Sampling

h(x)

Have access to samples from g(x)

Want f(x)

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1
or … Sample from h(x), accept x with probability f(x)/Mh(x) ≤ 1
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M = h(x)∙(f(x)/Mh(x))
Something is output with probability 1/M

g(x)

f(x)/M

Impossible to tell whether g(x) or h(x) was the original distribution

Rejection Sampling

Secret Key: S

y ~ f w=Ay mod q

c

z=Sc+y

Rejection Sampling

Secret Key: S

y ~ f w=Ay mod q

c

z=Sc+y

f(x+v) f(x-v)

-v v

v=max ||Sc||

What We Want

Choose a target distribution f for z
Choose a distribution g for y
Distribution of z will be g(y-Sc)
Rejection sample to make the distribution of z be f

Need:
For all likely x and Sc, f(x)/M ≤ g(x-Sc)

Want:
1. M to be as small as possible (1/M is acceptance rate)
2. E[||x|| ; x ~ f] to be as small as possible (determines size of

signature and hardness of SIS problem)

Secret Key: S

w=Ay mod q

c

z=Sc+y

Rejection Sampling (L ‘09)

Distribution of the coefficients of y

Possible distribution of the coefficients of z

Possible distribution of the coefficients of z

Target distribution of the coefficients of z

Range of coefficients of Sc

Probability each coefficient of z is in the target range = p
Want pm ≈ constant
So p ≈ 1-1/m
So coefficients of Sc must be m times smaller than coefficients of y

g(x)

f(x)

Size of the SIS solution

Coefficients of Sc = O(1)

Coefficients of y = O(m)

||z|| ≈ ||y|| = O(m1.5)

Can we do better??

Use Normal distribution to get ||z|| = O(m)

Normal Distribution

1-dimensional Normal distribution:

 ρσ(x) = 1/(√2πσ)e-x2/2σ2

It is:

 Centered at 0

 Standard deviation: σ

Examples

Shifted Normal Distribution

1-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)e-(x-v)2/2σ2

It is:

 Centered at v

 Standard deviation: σ

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2

It is:

 Centered at v

 Standard deviation: σ

2-Dimensional Example

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2

It is:

 Centered at v

 Standard deviation: σ

Discrete Normal: for x in Zn,

Dσ,v (x)= ρσ,v(x) / ρσ,v(Z
n)

New Rejection Sampling

g(x)=f(x) = Dσ,0 (x)

Lemma: If σ = k||v||, then with very high
probability, for all likely x ~ f,

Dσ,0 (x) / Dσ,v (x) < e12/k

Rejection Sampling

Secret Key: S

y ~ Dσ,0 (x)

w=Ay mod q

c

z=Sc+y

Dσ,0 (x) Dσ,v (x)

Rejection Sampling

Secret Key: S

y ~ Dσ,0 (x)

w=Ay mod q

c

z=Sc+y

-v v

v=max ||Sc||

M < e12/k

Dσ,v (x)

Dσ,0 (x) / M

New Rejection Sampling

g(x)=f(x) = Dσ,0 (x)

Lemma: If σ = k||v||, then with very high
probability, for all likely x ~ f,

Dσ,0 (x) / Dσ,v (x) < e12/k

Set k=12 (asymptotically √log m)  M < e

New Rejection Sampling

g(x)=f(x) = Dσ,0 (x)

Lemma: If σ = k||v||, then with very high
probability, for all likely x ~ f,

Dσ,0 (x) / Dσ,v (x) < e12/k

Set k=12 (asymptotically √log m)  M < e

||x|| ≈ √m ||v|| ≈ O(m)

Identification Scheme Based on SIS

Secret Key: S

Public Key: A, T=AS mod q

Pick y ~ Dσ,0 w=Ay mod q

pick a random c
c

z=Sc+y
z = □ with probability

1 - Dσ,0 (z) / (MDσ,Sc (z))
z

If AS=AS’ mod q, then (c,z) has the same distribution whether S or S’ is used
 (w,c,z) as well ...

Security Reduction (Stage 2)

Public Key: A, T=AS mod q

w

c

z

 Az=Tc+w mod q
 Az’=Tc’+w mod q

 A(z-z’)=T(c-c’) mod q
 A(z-z’)=AS(c-c’) mod q

 Hope: z-z’ ≠ S(c-c’)

Adversary

c’

z’

Observation: If the adversary knows S, then he can
 always give us z-z’ ≠ S(c-c’)
Solution: Make sure adversary does not learn S
With probability at least ½, we solve SIS.

Signature Scheme

Secret Key: S
Public Key: A, T=AS mod q

Sign(μ)
 Pick y ~ Dσ,0
 Compute c=H(Ay mod q,μ)
 z=Sc+y
 Output(z,c) with probability
 Dσ,0 (z) / (MDσ,Sc (z))
(If nothing was output, repeat)

Verify(z,c,μ)

 Check that z is “small”

 and

 c = H(Az – Tc mod q, μ)

PRACTICAL CONSIDERATIONS

The Knapsack Problem

A

s

t =

A is random in Zq
n x m

s is a random “small” vector in Zq
m

t=As mod q

Given (A,t), find small s' such that

As'=t mod q

mod q

Hardness of the Knapsack Problem

hardness

||S||

“LWE” SIS

A

s

t = mod q

hardness

hardness of finding

the secret key hardness of forging

signatures

Construction based on SIS

Signature Hardness

||S||

Lattice Signatures

hardness

||S||

“LWE” SIS

A

s

t = mod q

Signature based on LWE

Signature based on SIS

Everything extends to Ring-SIS and Ring-LWE

IDENTIFICATION AND “FIAT-SHAMIR”
SIGNATURE SCHEMES BASED ON LWE

hardness

hardness of finding

the secret key hardness of forging

signatures

a gap of ~ √n

a gap of ~ √n

Construction based on SIS

Construction based on LWE

Signature Based on LWE

||S||

Identification Scheme Based on SIS

Secret Key: S

Public Key: A, T=AS mod q

Pick y ~ Dσ,0 w=Ay mod q

pick a random c
c

z=Sc+y
z = □ with probability

1 - Dσ,0 (z) / (MDσ,Sc (z))
z

If AS=AS’ mod q, then (c,z) has the same distribution whether S or S’ is used
 (w,c,z) as well ...
There is only one S, so reduction does not work in the second step!!

Adversary

Passive Adversary

Public Key: A, T

w=Az-Tc mod q

pick a random c
c

z ~ Dσ,0

A,T (Decide whether T is LWE or Random)

z

Adversary

Important: cannot do simulation if z = □, (how do you generate w??)
But this is not needed because z = □ never appears in the signature scheme.

Security Reduction (Stage 2)

Public Key: A, T mod q

w

c

z

 Az=Tc+w mod q
 Az’=Tc’+w mod q

 A(z-z’)=T(c-c’) mod q

Adversary

c’

z’

If there is an S such that AS=T, then the Adversary must succeed.
If T is random:
 If adversary does not succeed, then we can solve LWE
 If adversary still succeeds, then we solve SIS for (A|T)  can solve LWE

Hardness of the Knapsack Problem

hardness

||S||

“LWE” SIS

A

s

t = mod q

hardness

hardness of finding

the secret key hardness of forging

signatures

a gap of ~ √n

a gap of ~ √n

Construction based on SIS

Construction based on LWE

Signature Hardness

||S||

Parameters (Using Rings)
 [GLP ‘12]

sk size (bits) 12,000 2000 2000

pk size (bits) 12,000 12,000 12,000

sig size (bits) 140,000 17,000 9000

hardness

||S||

≈ 80-100 bit security level [GN ‘08, CN ‘11]

