Lattice-Based Cryptography

Vadim Lyubashevsky INRIA / ENS, Paris

March 20, 2013

(Minicrypt)

(Cryptomania)

(Minicrypt)

(Cryptomania)

LEARNING WITH ERRORS PROBLEM

Learning With Errors (LWE) Problem

There is a secret vector s in Z_p^n (we'll use Z_{17}^4 as a running example) An oracle (who knows s) generates a random vector a in Z_p^n and "small" noise element e in Z

The oracle outputs (a,b=<a,s>+e mod 17)

This procedure is repeated with the same s and fresh a and e

Our task is to find s

Learning With Errors (LWE) Problem

Once there are enough a_i , the s is uniquely determined

Theorem [Regev '05] : There is a polynomial-time quantum reduction from solving certain lattice problems in the worst-case to solving LWE.

Decision LWE Problem

Search LWE < Decision LWE

Use the Decision oracle to figure out the coefficients of s one at a time

Let g be our guess for the first coefficient of s

Repeat the following:

Pick random r in Z₁₇ Send sample below to the Decision Oracle

If g is right, then we are sending a distribution from World 1

If g is wrong, then we are sending a distribution from World 2

We will find the right g in O(p) time

Use the same idea to recover all coefficients of s one at a time

LWE and Lattices

Decision LWE < SIS

PUBLIC KEY ENCRYPTION FROM LWE

Public-Key Cryptography

Public Key Encryption

- (sk,pk) ← KeyGen(1ⁿ)
- c = Enc (pk,m)
- m = Dec(sk,c)

- Correctness: Dec(sk,Enc(pk,m))=m
- CPA-Security: Enc(pk,m_i) are computationally indistinguishable from each other

"Computationally Indistinguishable"

"Dual" Cryptosystem

"Dual" Cryptosystem

"Dual" Cryptosystem Security

IDENTITY-BASED ENCRYPTION

Identity-Based Encryption

CPA-Security: For all m_i, Encrypt(Chris,m_i) are **computationally indistinguishable** from each other

IBE based on LWE (in the Random Oracle Model)

 $(x_1, H(x_1)), (x_2, H(x_2)), (x_3, H(x_3)), ...$ is computationally indistinguishable from $(x_1, u_1), (x_2, u_2), (x_3, u_3), ...$

Security in the Random Oracle Model:

There is a "pseudorandom function" H Prove security assuming that everyone only has "black box access" to H In reality, H is replaced by a "cryptographic hash function" (e.g. SHA-256)

If the real scheme is insecure, then there is something wrong with the hash function

Security Proofs Using a Random Oracle

Adversary cannot access H directly He must ask us (i.e. the reduction) for H(z) We pick a random y and output y=H(z)

What's the point? Suppose f is a 1-way function and f(x) is uniform for random x For a random y, it's hard to find an x such that f(x)=y

But, for any z, we can *simulate* knowing an x such that f(x)=H(z)Given z, we pick a random x, compute y=f(x), and *program* y=H(z)So f(x)=H(z) and all the distributions are as they should be

IBE Based on LWE

T is a basis for $L_p^{\perp}(\mathbf{A})$ and has "short" vectors

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

Properties Needed

- Distribution D of s only depends on the length of the vectors comprising T
- 2. The following produce the same distribution of (**s**,**b**)

- (1) is guaranteed by the GPV algorithm
- (2) is true if s has enough entropy (to make As=b uniform mod p)

Security Proof Sketch

Show that breaking IBE implies breaking the "Dual" cryptosystem

Security Proof Sketch

Show that breaking IBE implies breaking the "Dual" cryptosystem

Security Proof Sketch

Show that breaking IBE implies breaking the "Dual" cryptosystem

LWE Encryption

n-bit Encryption	Have	Want
Public Key Size	Õ(n) / Õ(n²)	O(n)
Secret Key Size	Õ(n) / Õ (n²)	O(n)
Ciphertext Expansion	Õ(n) / Õ (1)	O(1)
Encryption Time	Õ(n³) / Õ (n²)	O(n)
Decryption Time	Õ(n²)	O(n)

Source of Inefficiency of LWE

Getting just **one** extra random-looking number requires **n** random numbers and a small error element.

Wishful thinking: get **n** random numbers and produce **n** pseudo-random numbers in "one shot"

IDEAL LATTICES

Cyclic Lattices

A set L in **Z**ⁿ is a *cyclic lattice* if:

1.) For all v,w in L, v+w is also in L -1 2 3 -4 + -7 -2 3 6 = -8 0 6 2

 2.) For all v in L, -v is also in L

 -1
 2
 3
 -4
 1
 -2
 -3
 4

3.) For all v in L, a cyclic shift of v is also in L

Cyclic Lattices = Ideals in **Z**[x]/(xⁿ-1)

A set L in Z^n is a cyclic lattice if L is an ideal in $Z[x]/(x^n-1)$
Why Cyclic Lattices?

- Succinct representations
 - Can represent an n-dimensional lattice with 1 vector
- Algebraic structure
 - Allows for fast arithmetic (using FFT)
 - Makes proofs possible
- One-way functions based on worst-case hardness of SVP in cyclic lattices [Mic02]

Shortest Vector Problem (SVP)

• SVP: Given a lattice L, find the (non-zero) vector with the smallest norm in L

- SVP $_{\gamma}$: Given a lattice L, find a non-zero vector whose length is within a factor γ of the shortest vector

Is SVP_{poly(n)} Hard for Cyclic Lattices?

Short answer: we don't know but conjecture it is.

What's wrong with the following argument that SVP_n is easy?

Algorithm for solving $SVP_n(L)$ for a cyclic lattice L:

- 1. Construct 1-dimensional lattice $L'=L \cap \{1^n\}$
- 2. Find and output the shortest vector in L'

The Hard Cyclic Lattice Instances

The "hard" instances of cyclic lattices lie on plane P perpendicular to the 1ⁿ vector In algebra language:

If
$$R=Z[x]/(x^{n}-1)$$
, then
 $1^{n} = (x^{n-1}+x^{n-2}+...+1) \approx Z[x]/(x-1)$
 $P = (x-1) \approx Z[x]/(x^{n-1}+x^{n-2}+...+1)$

f-Ideal Lattices = Ideals in Z[x]/(f)

Want f to have 3 properties:

Monic (i.e. coefficient of largest exponent is 1)
 Irreducible over Z
 For all polynomials g,h ||gh mod f||<poly(n)||g||·||h||
 <u>Conjecture:</u> For all f that satisfy the above 3 properties, solving SVP_{poly(n)} for ideals in Z[x]/(f) takes time 2^{Ω(n)}.

Some "good" f to use:

 $f=x^{n-1}+x^{n-2}+...+1$ where n is prime

 $f=x^n+1$ where n is a power of 2

(xⁿ+1)-Ideal Lattices = Ideals in **Z**[x]/(xⁿ+1)

A set L in \mathbb{Z}^n is a (x^n+1) -ideal lattice if L is an ideal in $\mathbb{Z}[x]/(x^n+1)$

RING-LWE

Ring-LWE

a₁, a₁s+e₁ a₂, a₂s+e₂ ... a_k, a_ks+e_k

Find: s

a_i are random in R

s and e_i have "small" coefficients (distribution symmetric around 0)

Decision Ring-LWE

Ring
$$R=Z_q[x]/(x^n+1)$$

Given:

a₁, b₁ a₂, b₂ ... a_k, b_k

Question: Does there exist "small" s and

 $e_1, ..., e_k$ such that $b_i = a_i s + e_i$ or are all b_i uniformly random in R?

Decision Learning With Errors over Rings

<u>Theorem</u> [LPR '10]: In *cyclotomic* rings, there is a quantum reduction from solving worst-case problems in ideal lattices to solving Decision-RLWE

Ring-LWE cryptosystem

Security

Pseudorandom??

Security

Pseudorandom based on Decision Ring-LWE!!

Efficiency

n-bit Encryption	From LWE	From Ring-LWE
Public Key Size	Õ(n) /Õ(n²)	Õ(n)
Secret Key Size	Õ(n) / Õ (n²)	Õ(n)
Ciphertext Expansion	Õ(n) / Õ (1)	Õ(1)
Encryption Time	Õ(n³) / Õ (n²)	Õ(n)
Decryption Time	Õ(n²)	Õ(n)

DIGITAL SIGNATURE SCHEMES

Digital Signatures

```
(sk,pk) ← KeyGen
Sign(sk,m<sub>i</sub>) = s<sub>i</sub>
Verify(pk,m<sub>i</sub>,s<sub>i</sub>) = YES / NO
```

Correctness: Verify(pk, m_i, Sign(sk,m_i)) = YES Security: Unforgeability

- 1. Adversary gets pk
- 2. Adversary asks for signatures of m_1 , m_2 , ...
- Adversary outputs (m,s) where m ≠ m_i and wins if Verify(pk,m,s) = YES

Signature Schemes

• Hash-and-Sign

Requires a trap-door function (like the GPV one)

- Fiat-Shamir transformation
 - Conversion from an identification scheme
 - No trap-door function needed

HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS

Hash-and-Sign Lattice Signature

Lattice $L_p^{\perp}(\mathbf{A}) = \{ \mathbf{y} : \mathbf{A}\mathbf{y} = \mathbf{0} \mod p \}$

Т	

T is a basis for $L_p^{\perp}(\mathbf{A})$ and has "short" vectors

Public Key: **A** Secret Key: **T**

Sign(**T**,m) 1. **b** = H(m)

Use the GPV algorithm to find a short s such that As = b mod p
 s is the signature of m

Verify(**A**,m,**s**)

check that s is "short" and
 As = H(m) mod p

if it's non-zero, then we have a solution to SIS

Properties Needed

- 2. The following produce the same distribution of (**s**,**b**)
 - (a) Choose **s** ~ D. Set **b**=As
 - (b) Choose random **b**. Use **T** to find an **s** such that **As=b**.

- 3. For a random **b**, there is more than one likely possible output **s** such that **b=As**.
 - (1) is guaranteed by the GPV algorithm
 - (2) is true if s has enough entropy (to make As=b uniform mod p)
 - (3) is true because the standard deviation of GPV is big

IDENTIFICATION AND "FIAT-SHAMIR" SIGNATURE SCHEMES BASED ON SIS

Canonical 3-move Identification Scheme

Prover (sk)

Verifier (pk)

commit

challenge

response

Verify(pk, commit, challenge,response)=1?

Security of ID Schemes

Passive Adversary

Active Adversary

- 1. Receive public key
- 2. Receive interaction transcripts
- Try to impersonate the valid prover

- 1. Receive public key
- 2. Interact with the valid prover
- 3. Try to impersonate the valid prover

Fiat-Shamir Transform

Passively-Secure 3-round scheme \rightarrow Signature scheme in the random oracle model

Sign(µ) commit challenge = H(µ, commit) response (commit,challenge,response) VerifySig(µ, pk, commit, challenge, response)
 challenge=H(µ, commit)?
 VerifyID(pk, commit, challenge, response)=1?

Identification Scheme Based on SIS

Active Security Reduction (Stage 2)

<u>Adversary</u>

Public Key: **A**, **T=AS** mod q

Az=Tc+w mod q Az'=Tc'+w mod q

A(z-z')=T(c-c') mod q A(z-z')=AS(c-c') mod q

Observation: If the adversary knows **S**, then he can always give us **z**-**z**' = **S**(**c**-**c**') Solution: Make sure adversary does not learn **S**

Hope: **z**-**z'** ≠ **S**(**c**-**c'**)

Identification Scheme Based on SIS

Have access to samples from g(x) Want f(x)

 $Pr[x] = g(x) \cdot (f(x)/Mg(x)) = f(x)/M$ Something is output with probability 1/M

Impossible to tell whether g(x) or h(x) was the original distribution

Rejection Sampling

v=max ||<mark>Sc</mark>||

What We Want

```
Choose a target distribution f for z
Choose a distribution g for y
Distribution of z will be g(y-Sc)
Rejection sample to make the distribution of z be f
```


Need:

For all *likely* **x** and **Sc**, $f(\mathbf{x})/M \le g(\mathbf{x}-\mathbf{Sc})$

Want:

- 1. M to be as small as possible (1/M is acceptance rate)
- E[||x|| ; x ~ f] to be as small as possible (determines size of signature and hardness of SIS problem)

Rejection Sampling (L '09)

Size of the SIS solution

Coefficients of Sc = O(1) Coefficients of y = O(m) $||z|| \approx ||y|| = O(m^{1.5})$

Can we do better??

Use Normal distribution to get $||\mathbf{z}|| = O(m)$

Normal Distribution

1-dimensional Normal distribution:

$$\rho_{\sigma}(x) = 1/(\sqrt{2\pi}\sigma)e^{-x^2/2\sigma^2}$$

It is:

Centered at 0 Standard deviation: σ

Examples

Shifted Normal Distribution

1-dimensional shifted Normal distribution:

$$\rho_{\sigma,v}(x) = 1/(\sqrt{2\pi}\sigma)e^{-(x-v)^2/2\sigma^2}$$

It is:

Centered at v

Standard deviation: σ

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

$$\rho_{\sigma,\mathbf{v}}(\mathbf{x}) = 1/(\sqrt{2\pi}\sigma)^{n} \mathrm{e}^{-||\mathbf{x}-\mathbf{v}||^{2}/2\sigma^{2}}$$

It is:

Centered at **v** Standard deviation: σ

2-Dimensional Example

n-Dimensional Normal Distribution

n-dimensional shifted Normal distribution:

$$\rho_{\sigma,\mathbf{v}}(\mathbf{x}) = 1/(\sqrt{2\pi}\sigma)^{n} \mathrm{e}^{-||\mathbf{x}-\mathbf{v}||^{2}/2\sigma^{2}}$$

It is:

Centered at \mathbf{v} Standard deviation: σ

Discrete Normal: for **x** in **Z**ⁿ, $D_{\sigma,v} (\mathbf{x}) = \rho_{\sigma,v}(\mathbf{x}) / \rho_{\sigma,v}(\mathbf{Z}^n)$

New Rejection Sampling

 $g(x)=f(x)=D_{\sigma,0}(x)$

Lemma: If $\sigma = k||v||$, then with very high probability, for all likely **x** ~ f,

$$D_{\sigma,0}(x) / D_{\sigma,v}(x) < e^{12/k}$$

Rejection Sampling

Rejection Sampling

New Rejection Sampling

 $g(\mathbf{x})=f(\mathbf{x})=D_{\sigma,\mathbf{0}}(\mathbf{x})$

Lemma: If $\sigma = k||v||$, then with very high probability, for all likely **x** ~ f,

$$D_{\sigma,0}(x) / D_{\sigma,v}(x) < e^{12/k}$$

Set k=12 (asymptotically $\sqrt{\log m}$) \rightarrow M < e

New Rejection Sampling

 $g(\mathbf{x})=f(\mathbf{x})=D_{\sigma,\mathbf{0}}(\mathbf{x})$

Lemma: If $\sigma = k||v||$, then with very high probability, for all likely **x** ~ f,

$$D_{\sigma,0}(x) / D_{\sigma,v}(x) < e^{12/k}$$

Set k=12 (asymptotically $\sqrt{\log m}$) \rightarrow M < e ||x|| $\approx \sqrt{m}$ ||v|| $\approx O(m)$

Identification Scheme Based on SIS

If AS=AS' mod q, then (c,z) has the same distribution whether S or S' is used (w,c,z) as well ...

Security Reduction (Stage 2)

Adversary

Public Key: **A**, **T=AS** mod q

Az=Tc+w mod q Az'=Tc'+w mod q

A(z-z')=T(c-c') mod q A(z-z')=AS(c-c') mod q

Observation: If the adversary knows **S**, then he can always give us **z**-**z**' ≠ **S**(**c**-**c**') Solution: Make sure adversary does not learn **S** With probability at least ½, we solve SIS.

Hope: **z**-**z'** ≠ **S**(**c**-**c'**)

Signature Scheme

```
Secret Key: S
Public Key: A, T=AS mod q
```

```
\begin{array}{l} \underline{Sign}(\mu) \\ Pick \ensuremath{\mathbf{y}} \sim D_{\sigma,0} \\ Compute \ensuremath{\mathbf{c}}=H(\ensuremath{\mathbf{Ay}}\ensuremath{\,\mathrm{mod}}\ensuremath{\,\mathrm{q}},\mu) \\ \ensuremath{\mathbf{z}}=\ensuremath{\mathbf{Sc}}+\ensuremath{\mathbf{y}} \\ Output(\ensuremath{\mathbf{z}},\ensuremath{\mathbf{c}})\ensuremath{\,\mathrm{with}}\ensuremath{\,\mathrm{probability}} \\ D_{\sigma,0}\ensuremath{\,\mathrm{(z)}}\ensuremath{\,/}\ensuremath{\,\mathrm{(MD}}_{\sigma,\ensuremath{\mathrm{Sc}}}\ensuremath{\,\mathrm{(z)}}\ensuremath{)}) \\ (\text{If nothing was output, repeat)} \end{array}
```

<u>Verify</u>(z,c,μ) Check that z is "small" and c = H(Az – Tc mod q, μ)

PRACTICAL CONSIDERATIONS

Given (A,t), find small s' such that As'=t mod q

Hardness of the Knapsack Problem

Signature Hardness

Construction based on SIS

Lattice Signatures

IDENTIFICATION AND "FIAT-SHAMIR" SIGNATURE SCHEMES BASED ON LWE

Signature Based on LWE

Construction based on LWE

Identification Scheme Based on SIS

Adversary

If AS=AS' mod q, then (c,z) has the same distribution whether S or S' is used (w,c,z) as well ...

There is only one **S**, so reduction does not work in the second step!!

Important: cannot do simulation if $z = \Box$, (how do you generate **w**??) But this is not needed because $z = \Box$ never appears in the signature scheme.

Security Reduction (Stage 2)

Adversary

Public Key: A, T mod q

If there is an **S** such that **AS**=**T**, then the Adversary must succeed. If **T** is random:

If adversary does not succeed, then we can solve LWE

If adversary still succeeds, then we solve SIS for $(A|T) \rightarrow$ can solve LWE

Hardness of the Knapsack Problem

Signature Hardness

Construction based on LWE

Parameters (Using Rings)

	\bigcirc		[GLP '12]
sk size (bits)	12,000	2000	2000
pk size (bits)	12,000	12,000	12,000
sig size (bits)	140,000	17,000	9000

 \approx 80-100 bit security level [GN '08, CN '11]

