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LEARNING WITH ERRORS PROBLEM 



Learning With Errors (LWE) Problem 

8 

3 

12 

5 

There is a secret vector s in Zp
n (we'll use Z4

17
 as a running example) 

An oracle (who knows s) generates a random vector a in Zp
n 

and 

 “small” noise element e in Z 

The oracle outputs (a,b=<a,s>+e mod 17)  

3 7 13 2 1 13 * + = 

This procedure is repeated with the same s and fresh a and e 

 

Our task is to find s 

1 9 7 4 -1 12 

11 5 14 6 2 3 



Once there are enough ai , the s is uniquely determined 

 

Theorem [Regev '05] : There is a polynomial-time quantum reduction from solving 

certain lattice problems in the worst-case to solving LWE. 

 

Learning With Errors (LWE) Problem 
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Decision LWE Problem 
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Search LWE < Decision LWE 
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3 7 13 2 1 * + = 

13+rg 

Use the Decision oracle to figure out the coefficients of s one at a time 

 

Let g be our guess for the first coefficient of s 

 

Repeat the following: 

        Receive LWE pair (a,b) 

 

Pick random r in Z17 

Send sample below to the Decision Oracle 

 

 3 7 13 2+r 

13 

If g is right, then we are sending a 

distribution from World 1 

 

If g is wrong, then we are sending a 

distribution from World 2 

 

We will find the right g in O(p) time 

 

Use the same idea to recover all 

coefficients of s one at a time 

a b 



LWE and Lattices 
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Lattice  L┴
p(A) = { y : yA = 0 mod p} 

 
 

Find a short vector v in L┴
p(A). 

 
Called the Small Independent Solution (SIS) 

problem 
 



Decision LWE < SIS 
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PUBLIC KEY ENCRYPTION FROM LWE 
 
 



Public-Key Cryptography 

Secret Key = s 
Public Key = p 



Public-Key Cryptography 

Secret Key = s 
Public Key = p 

Public Key = p 

Public Key = p 



Public Key Encryption 

• (sk,pk)  KeyGen(1n) 

• c = Enc (pk,m) 

• m = Dec(sk,c) 

 

• Correctness: Dec(sk,Enc(pk,m))=m 

• CPA-Security: Enc(pk,mi) are computationally  
indistinguishable from each other   



“Computationally Indistinguishable” 
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“Dual” Cryptosystem 
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“Dual” Cryptosystem 
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“Dual” Cryptosystem Security 
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IDENTITY-BASED ENCRYPTION 
 
 



Identity-Based Encryption 

Secret Key = s 
Public Key = Bob 

Key Authority 
Master Public Key 
Master Secret Key 



Identity-Based Encryption 
Key Authority 

Master Public Key 
Master Secret Key 

Secret Key = sChris 
Public Key = Chris 

Secret Key = sBob 
Public Key = Bob 

Secret Key = sDave 
Public Key = Dave 

Encrypt(Chris,msg) 



Security for IBE 
Key Authority 

Master Public Key 
Master Secret Key 

Secret Key = sChris 
Public Key = Chris 

Secret Key = sBob 
Public Key = Bob 

Secret Key = sDave 
Public Key = Dave 

Encrypt(Chris,msg) 

CPA-Security: For all mi , Encrypt(Chris,mi) are 
computationally indistinguishable from each other   



IBE based on LWE  
(in the Random Oracle Model) 

H 
x1, x2, x3 …  H(x1), H(x2), H(x3)  …  

(x1, H(x1)), (x2, H(x2)), (x3, H(x3)), …  
is computationally indistinguishable from (x1,u1), (x2,u2), (x3,u3), …  

Security in the Random Oracle Model: 
 There is a “pseudorandom function” H 
 Prove security assuming that everyone only has “black box access” to H 
 In reality, H is replaced by a ”cryptographic hash function” (e.g. SHA-256) 
  
 If the real scheme is insecure, then there is something wrong  
 with the hash function 



Security Proofs Using a Random Oracle 

Adversary cannot access H directly 
He must ask us (i.e. the reduction) for H(z) 
We pick a random y and output y=H(z) 
 
What’s the point? 
Suppose f is a 1-way function and f(x) is uniform for random x 
For a random y, it’s hard to find an x such that f(x)=y 
 
But, for any z, we can simulate knowing an x such that f(x)=H(z) 
Given z, we pick a random x, compute y=f(x), and program y=H(z) 
So f(x)=H(z) and all the distributions are as they should be 



IBE Based on LWE 

A 

Lattice  L┴
p(A) = { y : Ay = 0 mod p} 

T 

T is a basis for L┴
p(A) and has “short” vectors  

b 
s 

= Master Public Key: A 
Master Secret Key: T 

 
Identity = “Bob” 

b = H(Bob) 
 

Use the GPV algorithm to find a 
short s such that As = b mod p 

 
Use “Dual” LWE encryption to 

Encrypt to Bob 



Lattice  L┴
p(A) = { y : Ay = 0 mod p} 

Cosets of  Zm / L┴
p(A)  

A  =  0 mod p A  =  mod p 



Lattice  L┴
p(A) = { y : Ay = 0 mod p} 

H(Bob) =  

A  =  mod p A  =  mod p 

 -  

short 



Properties Needed 

A b 
s 

= 

T 

1. Distribution D of s only depends on the length of the 
vectors comprising T 
 

2. The following produce the same distribution of (s,b)  
        
       (a) Choose s ~ D.  Set b=As        
       (b) Choose random b.  Use T to find an s such that As=b.  

(1) is guaranteed by the GPV algorithm 
(2) is true if s has enough entropy (to make As=b 

uniform mod p) 



Security Proof Sketch 

Show that breaking IBE implies breaking the “Dual” cryptosystem 
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 =   =  H(Bob)  

program the random oracle 



Security Proof Sketch 

Show that breaking IBE implies breaking the “Dual” cryptosystem 
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Security Proof Sketch 

Show that breaking IBE implies breaking the “Dual” cryptosystem 

A t 

u v 

public key 

ciphertext 

A 

master public key 

I will break an encryption to Dave  

 =  H(Dave)  t 

u v 
Decryption 



LWE Encryption  

n-bit Encryption Have Want 

Public Key Size Õ(n) / Õ(n2) O(n) 

Secret Key Size Õ(n) / Õ (n2) O(n) 

Ciphertext Expansion Õ(n) / Õ (1) O(1) 

Encryption Time Õ(n3) / Õ (n2) O(n) 

Decryption Time Õ(n2) O(n) 



Source of Inefficiency of LWE 
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1 Getting just one extra random-looking 

number requires n random numbers 

and a small error element. 

 

Wishful thinking: get n random numbers and produce n 

pseudo-random numbers in “one shot” 
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IDEAL LATTICES 



Cyclic Lattices 

 A set L in Zn is a cyclic lattice if: 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, a cyclic shift of v is also in L 

3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 



Cyclic Lattices = Ideals in Z[x]/(xn-1) 

 A set L in Zn is a cyclic lattice if L is an ideal in Z[x]/(xn-1) 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, a cyclic shift of v is also in L vx is also in L 

3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

(-1+2x+3x2-4x3) +  (-7-2x+3x2+6x3)=  (-8+0x+6x2+2x3) 

(-1+2x+3x2-4x3)       (1-2x-3x2+4x3) 

-1+2x+3x2-4x3 

(-1+2x+3x2-4x3)x=-4-x+2x2+3x3 

(-1+2x+3x2-4x3)x2 =3-4x-x2+2x3 

(-1+2x+3x2-4x3)x3 =2+3x-4x2-x3 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 



Why Cyclic Lattices? 

 Succinct representations 
 Can represent an n-dimensional lattice with 1 vector 

 
 Algebraic structure 

 Allows for fast arithmetic (using FFT) 
 Makes proofs possible 

 
 One-way functions based on  
    worst-case hardness of SVP in  
    cyclic lattices [Mic02] 



Shortest Vector Problem (SVP) 

• SVP: Given a lattice L, find the (non-zero) vector 
with the smallest norm in L 

 

• SVPγ : Given a lattice L, find a non-zero vector 
whose length is within a factor γ of the shortest 
vector 

 



Is SVPpoly(n) Hard for Cyclic Lattices? 

Short answer: we don't know but conjecture it is. 

What's wrong with the following argument that SVPn is easy? 

  

 

 

 

 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 4 3 2 1 v is a shortest vector in L  

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 1 4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 1 4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 1 4 3 2 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 10 10 10 10 

+ 
Also in L 

Length at most n||v|| 

Algorithm for solving SVPn(L) for a cyclic lattice L: 
1.  Construct 1-dimensional lattice L'=L ∩ {1n} 
2.  Find and output the shortest vector in L' 



The Hard Cyclic Lattice Instances 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 v is a shortest vector in L  

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 3 2 -1 -4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 2 -1 -4 3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 -4 3 2 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 0 0 0 0 

+ 
Also in L 

Length at most n||v|| 

1n 

The “hard” instances of cyclic lattices lie on plane P perpendicular to the 1n vector 

In algebra language: 
 
If R=Z[x]/(xn-1), then  
    1n = (xn-1+xn-2+...+1) ≈  Z[x]/(x-1)  
    P = (x-1) ≈ Z[x]/(xn-1+xn-2+...+1) 



f-Ideal Lattices = Ideals in Z[x]/(f) 

Want f to have 3 properties: 

1)Monic (i.e. coefficient of largest exponent is 1) 

2)Irreducible over Z 

3)For all polynomials g,h ||gh mod f||<poly(n)||g||∙||h|| 

Conjecture: For all f that satisfy the above 3 properties, solving 
SVPpoly(n) for ideals in Z[x]/(f) takes time 2Ω(n). 

 

Some “good” f to use: 

f=xn-1+xn-2+...+1  where n is prime 

f=xn+1 where n is a power of 2 



(xn+1)-Ideal Lattices = Ideals in Z[x]/(xn+1) 

 A set L in Zn is a (xn+1)-ideal lattice if L is an ideal in Z[x]/(xn+1) 

1.)  For all v,w in L, v+w is also in L 

2.)  For all v in L, -v is also in L 

3.)  For all v in L, vx is also in L 

3 2 -1 4 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 

-4 3 2 -1 -4 3 2 -1 2 -1 4 -3 

-4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -4 3 2 -1 -1 4 -3 -2 

(-1+2x+3x2-4x3) +  (-7-2x+3x2+6x3)=  (-8+0x+6x2+2x3) 

(-1+2x+3x2-4x3)       (1-2x-3x2+4x3) 

-1+2x+3x2-4x3 

(-1+2x+3x2-4x3)x=4-x+2x2+3x3 

(-1+2x+3x2-4x3)x2 =-3+4x-x2+2x3 

(-1+2x+3x2-4x3)x3 =-2-3x+4x2-x3 

-4 3 2 -1 4 -3 -2 1 

-4 3 2 -1 6 3 -2 -7 + = 2 6 0 -8 



RING-LWE 



Ring-LWE 

Ring R=Zq[x]/(xn+1) 

Given:  

a1, a1s+e1 

a2, a2s+e2 

 …  

ak, aks+ek 

Find: s 

ai are random in R 

s and ei have “small” coefficients (distribution symmetric around 0) 



Ring R=Zq[x]/(xn+1) 

Given:  

a1, b1 

a2, b2 

 …  

ak, bk 

Question: Does there exist “small” s and   

                   e1, … , ek such that bi=ais+ei  

              or are all bi uniformly random in R?  

Decision Ring-LWE 



Decision  
Learning With Errors over Rings 

a1 
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 a3 

  
 
… 

  
 
am 

 

s 

 
b1 
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 b3 
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bm 

 

+ = 

a1 

 a2 

 a3 
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am 

 

b1 

 b2 

 b3 

 
 

 
… 

  
 
bm 

 

Theorem [LPR ‘10]: In cyclotomic rings, there is a quantum reduction from solving 
worst-case problems in ideal lattices to solving  Decision-RLWE 

World 1 World 2 



Ring-LWE cryptosystem 
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Security 
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Security 
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Pseudorandom based on 
Decision Ring-LWE!! 
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Efficiency 
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+ + = = 

n-bit Encryption From LWE  From Ring-LWE 

Public Key Size Õ(n)  / Õ(n2) Õ(n) 

Secret Key Size Õ(n) / Õ (n2) Õ(n) 

Ciphertext Expansion Õ(n) / Õ (1) Õ(1) 

Encryption Time Õ(n3) / Õ (n2) Õ(n) 

Decryption Time Õ(n2) Õ(n) 

r 
 

t 
 

v 
 

+ = m + 



DIGITAL SIGNATURE SCHEMES 
 
 



Digital Signatures 

(sk,pk) KeyGen 
Sign(sk,mi) = si 
Verify(pk,mi,si) = YES / NO 
 
Correctness: Verify(pk, mi, Sign(sk,mi)) = YES 
Security: Unforgeability 
1. Adversary gets pk 
2. Adversary asks for signatures of m1, m2, …  
3. Adversary outputs (m,s) where m ≠ mi and wins 

if Verify(pk,m,s) = YES  



Signature Schemes 

• Hash-and-Sign 

– Requires a trap-door function (like the GPV one) 

 

• Fiat-Shamir transformation 

– Conversion from an identification scheme 

– No trap-door function needed  



HASH-AND-SIGN SIGNATURE SCHEMES BASED ON SIS 



Hash-and-Sign Lattice Signature 

A 

Lattice  L┴
p(A) = { y : Ay = 0 mod p} 

T 

T is a basis for L┴
p(A) and has “short” vectors  

b 
s 

= Public Key: A 
Secret Key: T 

 
Sign(T,m) 
1.  b = H(m) 
2. Use the GPV algorithm to find a 
short s such that As = b mod p 
3.  s is the signature of m 

 
Verify(A,m,s)  
1. check that s is “short” and  
 As = H(m) mod p 



Security Proof Sketch 

A 

pick          from D 

 =   =  H(mi)  

program the random oracle 

sign mi 



Security Proof Sketch 

A 

pick          from D 

 =   =  H(mj)  

program the random oracle 

give me H(mj) 



Security Proof Sketch 

I will forge the 
signature of m 

To forge on m, the Adversary needs H(m) 
 
So m is one of the mj he asked for H(mj) 
 
Thus we know an sj such that Asj=H(mj) 

A  =  A  =  



Security Proof Sketch 

A 
 -  

 =  0 

short and hopefully non-zero 

if it’s non-zero, then we have a solution to SIS 



Properties Needed 

A b 
s 

= 

T 

1. Distribution D of s only depends on the length of the 
vectors comprising T 
 

2. The following produce the same distribution of (s,b)  
        
       (a) Choose s ~ D.  Set b=As        
       (b) Choose random b.  Use T to find an s such that As=b. 
 
3.   For a random b, there is more than one likely possible  
 output s such that b=As. 

(1) is guaranteed by the GPV algorithm 
(2) is true if s has enough entropy (to make As=b 

uniform mod p) 
(3) is true because the standard deviation of GPV is big 



IDENTIFICATION AND “FIAT-SHAMIR” 
SIGNATURE SCHEMES BASED ON SIS 



Canonical 3-move Identification Scheme 

Prover (sk) Verifier (pk) 

commit 

challenge 

response 

Verify(pk, commit, 
challenge,response)=1? 



Security of ID Schemes 

Passive Adversary 

 

1. Receive public key 

2. Receive interaction 
transcripts 

3. Try to impersonate the 
valid prover 

Active Adversary 

 

1. Receive public key 

2. Interact with the valid 
prover 

3. Try to impersonate the 
valid prover 



Fiat-Shamir Transform 

Passively-Secure 3-round scheme     

Signature scheme in the random oracle model 

Sign(μ) 
     commit 
     challenge = H(μ, commit) 
     response 
     (commit,challenge,response) 
 
 

VerifySig(μ, pk, commit, challenge, response) 
     challenge=H(μ, commit)?  
     VerifyID(pk, commit, challenge, response)=1? 
       
 



Identification Scheme Based on SIS 

Secret Key: S 
 

Public Key: A, T=AS mod q 
 

Pick a random y w=Ay mod q 

pick a random c 
c 

z=Sc+y 
check that 
    1. ||z|| is small 
    2. Az=Tc+w mod q 

(  Az=A(Sc+y)=Tc+w  ) 



Active Security Reduction (Stage 1) 

Secret Key: S 
 

Public Key: A, T=AS mod q 
 

Pick a random y w=Ay mod q 

c 

z=Sc+y 

A Adversary 



Active Security Reduction (Stage 2) 

Public Key: A, T=AS mod q 
 

w 

c 

z 

     Az=Tc+w mod q 
     Az’=Tc’+w mod q 
 
     A(z-z’)=T(c-c’) mod q 
     A(z-z’)=AS(c-c’) mod q 
      

     Hope: z-z’ ≠ S(c-c’)   

Adversary 

c’ 
 

z’ 

Observation: If the adversary knows S, then he can 
         always give us z-z’ = S(c-c’)  
Solution: Make sure adversary does not learn S 



Identification Scheme Based on SIS 

Secret Key: S 
 

Public Key: A, T=AS mod q 
 

Pick a random y w=Ay mod q 

pick a random c 
c 

z=Sc+y 
check that 
    1. ||z|| is small 
    2. Az=Tc+w mod q 

(  Az=A(Sc+y)=Tc+w  ) 

 
Make y uniform?? 
NO! Then z is too big 
and SIS is not hard. 
 



Rejection Sampling 

g(x) 

f(x) 
Have access to samples from g(x) 
 
Want f(x) 



Rejection Sampling 

g(x) 

f(x)/M 
Have access to samples from g(x) 
 
Want f(x) 

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1 
 
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M 
Something is output with probability 1/M 



Rejection Sampling 

h(x) 

Have access to samples from g(x) 
 
Want f(x) 

Sample from g(x), accept x with probability f(x)/Mg(x) ≤ 1 
or … Sample from h(x), accept x with probability f(x)/Mh(x) ≤ 1 
Pr[x] = g(x)∙(f(x)/Mg(x)) = f(x)/M = h(x)∙(f(x)/Mh(x)) 
Something is output with probability 1/M 

g(x) 

f(x)/M 

Impossible to tell whether g(x) or h(x) was the original distribution 



Rejection Sampling 

Secret Key: S 
 

y ~ f w=Ay mod q 

c 

z=Sc+y 



Rejection Sampling 

Secret Key: S 
 

y ~ f w=Ay mod q 

c 

z=Sc+y 

f(x+v) f(x-v) 

-v v 

v=max ||Sc|| 



What We Want 

Choose a target distribution f for z 
Choose a distribution g for y 
Distribution of z will be g(y-Sc) 
Rejection sample to make the distribution of z be f  
 
Need: 
For all likely x and Sc, f(x)/M ≤ g(x-Sc) 
 
Want: 
1. M to be as small as possible (1/M is acceptance rate) 
2. E[||x|| ; x ~ f] to be as small as possible (determines size of 

signature and hardness of SIS problem) 
  

Secret Key: S 
 

w=Ay mod q 

c 

z=Sc+y 



Rejection Sampling (L ‘09) 

Distribution of the coefficients of y 

Possible distribution of the coefficients of z 

Possible distribution of the coefficients of z 

Target distribution of the coefficients of z 

Range of coefficients of Sc 

Probability each coefficient of z is in the target range = p 
Want pm ≈ constant  
So p ≈ 1-1/m 
So coefficients of Sc must be m times smaller than coefficients of y 

g(x) 

f(x) 



Size of the SIS solution 

 

Coefficients of Sc = O(1) 

Coefficients of y = O(m) 

||z|| ≈ ||y|| = O(m1.5) 

 

Can we do better?? 

 

Use Normal distribution to get ||z|| = O(m) 

 



Normal Distribution 

1-dimensional Normal distribution: 

 ρσ(x) = 1/(√2πσ)e-x2/2σ2 

It is: 

 Centered at 0 

 Standard deviation: σ 

  

  

  

  



Examples 



Shifted Normal Distribution 

1-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)e-(x-v)2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

  

  

  

  



n-Dimensional Normal Distribution 

n-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

 

 

  

  

  

  



2-Dimensional Example 



n-Dimensional Normal Distribution 

n-dimensional shifted Normal distribution: 

 ρσ,v(x) = 1/(√2πσ)ne-||x-v||2/2σ2 

It is: 

 Centered at v 

 Standard deviation: σ 

 

Discrete Normal: for x in Zn, 

Dσ,v (x)= ρσ,v(x) / ρσ,v(Z
n)  

 

  

  

  

  



New Rejection Sampling  

g(x)=f(x) = Dσ,0 (x) 

 

Lemma: If σ = k||v||, then with very high 
probability, for all likely x ~ f,  

 

Dσ,0 (x) / Dσ,v (x) < e12/k 

 



Rejection Sampling 

Secret Key: S 
 

y ~ Dσ,0 (x) 
 

w=Ay mod q 

c 

z=Sc+y 

Dσ,0 (x) Dσ,v (x)  



Rejection Sampling 

Secret Key: S 
 

y ~ Dσ,0 (x) 
 

w=Ay mod q 

c 

z=Sc+y 

-v v 

v=max ||Sc|| 

M < e12/k 

Dσ,v (x)  

Dσ,0 (x) / M 



New Rejection Sampling  

g(x)=f(x) = Dσ,0 (x) 

 

Lemma: If σ = k||v||, then with very high 
probability, for all likely x ~ f,  

 

Dσ,0 (x) / Dσ,v (x) < e12/k 

 

Set k=12 (asymptotically √log m)  M < e 

 



New Rejection Sampling  

g(x)=f(x) = Dσ,0 (x) 

 

Lemma: If σ = k||v||, then with very high 
probability, for all likely x ~ f,  

 

Dσ,0 (x) / Dσ,v (x) < e12/k 

 

Set k=12 (asymptotically √log m)  M < e 

||x|| ≈ √m ||v|| ≈ O(m) 

 



Identification Scheme Based on SIS 

Secret Key: S  
 

Public Key: A, T=AS mod q 
 

Pick y ~ Dσ,0 w=Ay mod q 

pick a random c 
c 

z=Sc+y 
z = □ with probability  

1 - Dσ,0 (z) / (MDσ,Sc (z)) 
z 

If AS=AS’ mod q, then (c,z) has the same distribution whether S or S’ is used 
                                        (w,c,z) as well ... 



Security Reduction (Stage 2) 

Public Key: A, T=AS mod q 
 

w 

c 

z 

     Az=Tc+w mod q 
     Az’=Tc’+w mod q 
 
     A(z-z’)=T(c-c’) mod q 
     A(z-z’)=AS(c-c’) mod q 
      

     Hope: z-z’ ≠ S(c-c’)   

Adversary 

c’ 
 

z’ 

Observation: If the adversary knows S, then he can 
         always give us z-z’ ≠ S(c-c’)  
Solution: Make sure adversary does not learn S 
With probability at least ½, we solve SIS. 



Signature Scheme 

Secret Key: S 
Public Key: A, T=AS mod q 
 
Sign(μ) 
 Pick y ~ Dσ,0  
 Compute c=H(Ay mod q,μ) 
 z=Sc+y 
 Output(z,c) with probability 
         Dσ,0 (z) / (MDσ,Sc (z)) 
(If nothing was output, repeat) 
 
 

Verify(z,c,μ) 

 Check that z is “small” 

                and 

 c = H(Az – Tc mod q, μ) 



PRACTICAL CONSIDERATIONS 



The Knapsack Problem 

A  

s 

t = 

A is random in Zq
n x m 

s is a random “small” vector in Zq
m 

t=As mod q 

 

Given (A,t), find small s' such that  

As'=t mod q 

mod q 



Hardness of the Knapsack Problem 

hardness 

||S|| 

“LWE” SIS 

A  

s 

t = mod q 



hardness 

hardness of finding 

the secret key hardness of forging 

signatures 

Construction based on SIS 

Signature Hardness 

||S|| 



Lattice Signatures 

hardness 

||S|| 

“LWE” SIS 

A  

s 

t = mod q 

Signature based on LWE 

Signature based on SIS 

Everything extends to Ring-SIS and Ring-LWE 



IDENTIFICATION AND “FIAT-SHAMIR” 
SIGNATURE SCHEMES BASED ON LWE 



hardness 

hardness of finding 

the secret key hardness of forging 

signatures 

a gap of ~ √n 

a gap of ~ √n 

Construction based on SIS 

Construction based on LWE 

Signature Based on LWE 

||S|| 



Identification Scheme Based on SIS 

Secret Key: S  
 

Public Key: A, T=AS mod q 
 

Pick y ~ Dσ,0  w=Ay mod q 

pick a random c 
c 

z=Sc+y 
z = □ with probability  

1 - Dσ,0 (z) / (MDσ,Sc (z)) 
z 

If AS=AS’ mod q, then (c,z) has the same distribution whether S or S’ is used 
                                        (w,c,z) as well ... 
There is only one S, so reduction does not work in the second step!! 

Adversary 



Passive Adversary 

Public Key: A, T 
 

w=Az-Tc mod q 

pick a random c 
c 

z ~ Dσ,0  

A,T (Decide whether T is LWE or Random) 

z 

Adversary 

Important: cannot do simulation if z = □, (how do you generate w??)  
But this is not needed because z = □ never appears in the signature scheme. 



Security Reduction (Stage 2) 

Public Key: A, T mod q 
 

w 

c 

z 

     Az=Tc+w mod q 
     Az’=Tc’+w mod q 
 
     A(z-z’)=T(c-c’) mod q 

Adversary 

c’ 
 

z’ 

If there is an S such that AS=T, then the Adversary must succeed. 
If T is random: 
 If adversary does not succeed, then we can solve LWE 
 If adversary still succeeds, then we solve SIS for (A|T)  can solve LWE 



Hardness of the Knapsack Problem 

hardness 

||S|| 

“LWE” SIS 

A  

s 

t = mod q 



hardness 

hardness of finding 

the secret key hardness of forging 

signatures 

a gap of ~ √n 

a gap of ~ √n 

Construction based on SIS 

Construction based on LWE 

Signature Hardness 

||S|| 



Parameters (Using Rings) 
        [GLP ‘12] 

sk size (bits) 12,000 2000 2000 

pk size (bits) 12,000 12,000 12,000 

sig size (bits) 140,000 17,000 9000 

hardness 

||S|| 

≈ 80-100 bit security level [GN ‘08, CN ‘11]  


