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Computing

Huge focus on “High Performance Computing”

Security issues regarding the data, the computations, the results:
Cryptology

What about the accuracy and the reliability of these computations?
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Floating Point (FP) Arithmetic

Given  a radix β > 2,
a precision n > 1,
a set of exponents Emin · · ·Emax.

A finite FP number x is represented by 2 integers:
integer mantissa : M , βn−1 6 |M | 6 βn − 1;
exponent E, Emin 6 E 6 Emax

such that
x =

M

βn−1
× βE .

We assume binary FP arithmetic (that is to say β = 2.)
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IEEE Precisions

See http://en.wikipedia.org/wiki/IEEE_floating_point or
(older)
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html.

precision minimal exponent maximal exponent
single (binary 32) 24 −126 127
double (binary 64) 53 −1022 1023
extended double 64 −16382 16383
quadruple (binary 128) 113 −16382 16383
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Various bugs

McCullough, B. D. and Vinod, H. D. The numerical reliability of econo-
metric software. J. Economic Lit. 37, pp. 633-665, June 1999.

Improper attention to the method of rounding can produce
disastrous results. The Wall Street Journal (November 8, 1983,
p. 37) reported on the Vancouver Stock Exchange, which
created an index much like the Dow-Jones Index. It began with
a nominal value of 1,000.000 and was recalculated after each
recorded transaction by calculation to four decimal places, the
last place being truncated so that three decimal places were
reported. Truncating the fourth decimal of a number measured
to approximately 103 might seem innocuous. Yet, within a few
months the index had fallen to 520, while there was no general
downturn in economic activity. The problem, of course, was
insufficient attention given to the method of rounding. When
recalculated properly, the index was found to be 1098.892
(Toronto Star, November 29, 1983).
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Various bugs

S. Rump’s example (1988). Consider

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:

1.172603 in single precision;
1.1726039400531 in double precision; and
1.172603940053178 in extended precision.

And yet, the exact result is −0.8273960599 · · · .
What about more recent systems? On a Pentium4 (gcc, Linux), Rump’s
C program returns

5.960604× 1020 in single precision;
2.0317× 1029 in double precision;
−9.38724× 10−323 in extended precision.
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Various bugs

M. Joldeş. Rigorous Polynomial Approximations and Applications. PhD
thesis, ENS Lyon, 2011.

Let J =

∫ 3

0

sin

(
1

(10−3 + (1− x)2)3/2
)
dx.
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Maple15: 0.7499743685;
Pari/GP: 0.7927730971479080755;
Mathematica, Chebfun fail to answer;
Chen, ’06: 0.7578918118.
WHAT IS THE CORRECT ANSWER?
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Various bugs

W. Tucker. Validated Numerics. Princeton University Press, 2011.

Let I =

∫ 8

0

sin(x+ ex)dx. Let’s evaluate it using MATLAB.

fcn_str = ’sin(x+exp(x))’;
f = vectorize(inline(fcn_str));
a = 0; b = 8;
>> q = quad(f,a,b)
q =

0.251102722027180

Actually, I ∈ [0.3474, 0.3475]...
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A statement by Alston Householder

“It makes me nervous to fly on airplanes since I know they are designed
using floating-point arithmetic.” A. Householder

Well, the situation is not completely tragic! There are some useful
computations that we can perform in a fast and certified way.
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.
Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p?, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certified evalutation error of p?: GAPPA
(G. Melquiond).
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Applications

specific hardware implementations in low precision (∼ 15 bits).
Reduce the cost (time and silicon area) keeping a correct accuracy;

single or double IEEE precision software implementations. Get very
high accuracy keeping an acceptable cost (time and memory).
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Scientific Framework and Tools

Computer Arithmetic

Numerical Analysis, Approximation Theory, Interval Analysis,
Fine-tuned Implementation

Algorithmic Number Theory, Computer Algebra, Functional Analysis,
Complex Analysis, Logic, Formal Proof
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Argument reduction

In order to evaluate ϕ(x) with x a floating-point number, we
transform x into x∗, the reduced argument.
x∗ belongs to the convergence domain of an elementary function f .
We know how to get ϕ(x) from f(x∗).
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Worst Cases for Argument Reduction

W. Kahan. “Minimizing q ∗m− n”, available at
http://www.cs.berkeley.edu/˜wkahan/testpi/, text at the
beginning of nearpi.c
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Example: The cos function (additive argument reduction)

The goal is to evaluate cos. The convergence domain of the evaluation
algorithm of sin and cos contains [−π/4,+π/4].

We decompose the
computation of cos(x) into three steps:

we compute x∗ and k s. t. x∗ ∈ [−π/4,+π/4] and x∗ = x− kπ/2;
we compute g(x∗, k) =

cos(x∗) if k mod 4 = 0,
− sin(x∗) if k mod 4 = 1,
− cos(x∗) if k mod 4 = 2,

sin(x∗) if k mod 4 = 3;

we obtain cos(x) = g(x∗, k).
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Argument reduction: loss of accuracy problems

Reminder. We compute x∗ and k s. t. x∗ ∈ [−π/4,+π/4] and
x∗ = x− kπ/2.

Extreme caution required!!! We can encounter terrible loss of accuracy
problems.

Naive method: compute

k =

⌊
x

π/2

⌋
,

x∗ = x− kπ/2,

using machine precision.

Problem: when kπ/2 near x, almost all (or all) the accuracy is lost when
computing x− kπ/2.
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Argument Reduction: loss of accuracy problems

Example : if x = 8248.251512, right value of
x∗ = −2.14758367 · · · × 10−12, and k = 5251.

Computation of x− kπ/2 on a pocket calculator (10 digits) using
rounding to nearest mode and a rounding of π/2. We get −1.0× 10−6.

Conclusion: the computed value of cos(x) is −1.0× 10−6, but the
correct value is −2.14758367 · · · × 10−12.
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Argument Reduction: loss of accuracy problems

First solution: multiple precision. Problems: slow, difficult to know the
necessary accuracy beforehand.

Second solution: computing the worst cases, i.e. those which are the
hardest to round. Method due to W. Kahan.
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Rational Approximation

Let p/q ∈ Q, we define the height of p/q by h(p/q) = max(|p|, |q|).

Property

Q is dense in R : for all x ∈ R, for all ε > 0, there exists p/q ∈ Q s.t.∣∣∣∣x− p

q

∣∣∣∣ < ε.

Not precise enough to be useful to us: we’d rather have h(p, q) as small
as possible.
More precisely: given x ∈ R and ε > 0, we want to have |x− p/q| < ε or
|qx− p| < ε with p ∈ Z, q ∈ N \ {0} as small as possible.
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Notations

Let x ∈ R. We denote bxc the floor part of x, and ‖x‖ = minn∈Z |x− n|
the distance of x to the nearest integer.

We want to have |x− p/q| or rather |qx− p| small with p ∈ Z,
q ∈ N \ {0} as small as possible.

We consider ‖qx‖ for q ∈ N∗ in the sequel.
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Best Approximations to a Real Number

Let x ∈ R.

Definition
A fraction p/q (p ∈ Z and q ∈ N, q 6= 0) is a best approximation to x if
and only if {

‖qx‖ = |qx− p| and
‖q′x‖ > ‖qx‖ for 0 < q′ < q.
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Best Approximations to a Real Number

Theorem (Dirichlet)

Let x ∈ R and Q ∈]1,+∞[. Then there exists q ∈ N∩]0, Q[ s. t.
‖qx‖ ≤ Q−1.

We set q1 = 1. Let p1 s.t.. ‖q1x‖ = ‖x‖ = |x− p1|. p1/q1 is a best
rational approximation to x.

If ‖q1x‖ = 0, x ∈ Z and p1/q1 is its only one best approx.

If ‖q1x‖ > 0, Dirichlet Theorem with Q > ‖q1x‖−1 ⇒ there exists q ∈ N
s.t.. ‖qx‖ ≤ Q−1 < ‖q1x‖.

Let q2 be the smallest integer q s.t. ‖qx‖ < ‖q1x‖. Let p2 s.t.
‖q2x‖ = |q2x− p2|.

By construction, p2/q2 is a best rational approximation to x, with the
smallest denominator greater than q1.
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Best Approximations to a Real Number

We iterate this process. We get, by induction, a strictly increasing
sequence (finite if x ∈ Q) of integers 1 = q1 < q2 < · · · and a sequence
of integers p1, p2, . . . s. t. :

‖qnx‖ = |qnx− pn| , (1)
‖qn+1x‖ < ‖qnx‖ , (2)
‖qx‖ ≥ ‖qnx‖ pour 0 < q < qn+1. (3)

From (1-3), the pn/qn are best approximations to x.
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Best Approximations to a Real Number

By construction, p1/q1 is a best approximation, and pn+1/qn+1 is the
best approximation of x with the smallest denominator greater than qn.
We proved

Theorem
The pn/qn are the best approximations to x, sorted by increasing size of
the denominators.
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If x is a rational number

If x ∈ Q i.e. x = a/b with a ∈ Z, b ∈ N∗ and pgcd(a, b) = 1, then a/b is
a best approximation to x.

There exists N ∈ N s.t. x = pN/qN and, as ‖qNx‖ = 0, the process
stops at the order N : the number of best approximations is finite.
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If x is an irrational number

If x /∈ Q, then the sequence pn/qn converges to x. From the previous
results, we get

qn‖qnx‖ < qn+1‖qnx‖ ≤ 1 .

Hence, we have ∣∣∣∣x− pn
qn

∣∣∣∣ = 1

qn
‖qnx‖ 6

1

qnqn+1
<

1

q2n
,

which shows limn→∞ pn/qn = x.

-28-



If x is an irrational number

If x /∈ Q, then the sequence pn/qn converges to x. From the previous
results, we get

qn‖qnx‖ < qn+1‖qnx‖ ≤ 1 .

Hence, we have ∣∣∣∣x− pn
qn

∣∣∣∣ = 1

qn
‖qnx‖ 6

1

qnqn+1
<

1

q2n
,

which shows limn→∞ pn/qn = x.

-28-



If x is an irrational number

If x /∈ Q, we have, for all n > 0,∣∣∣∣x− pn
qn

∣∣∣∣ 6 1

qnqn+1

(
6

1

q2n

)
.

Note that we can also show, for all n > 0,

1

qn(qn + qn+1)
6

∣∣∣∣x− pn
qn

∣∣∣∣ .
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An Algorithm for Computing Best Rational Approximations
to x

Theorem
Let x ∈ R. We define the sequences (finite or infinite) (pn), (qn) and
(an) by the initial conditions a0 = bxc, (p0, q0, p1, q1) = (1, 0, bxc, 1) and
the recurrence relations defined for n ∈ N∗{

pn+1 = anpn + pn−1 ,
qn+1 = anqn + qn−1 ,

where

an =

⌊ |qn−1x− pn−1|
|qnx− pn|

⌋
if qnx 6= pn (the sequences are finite if qnx = pn). Then the pn/qn are
best rational approximations to x for n ≥ 1 if a1 ≥ 2, and for n ≥ 2 if
a1 = 1.

If we put r0 = x, rn =
1

rn−1 − an−1
, we have an = brnc.
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An Algorithm for Computing Best Rational Approximations
to x

The fractions pn/qn are called the convergents and the an the partial
quotients of the continued fraction expansion of x.

Note that if x ∈ Q, it is exactly the Euclidean algorithm.

Since the knowledge of the sequence (an) is equivalent to the one of x
(x = pN/qN if x ∈ Q and x = limn→∞ pn/qn if x /∈ Q), we will use the
notation x = [a0; a1, a2, . . .] (the number of terms between brackets can
be finite).
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“Continued Fraction”?

Let, for n ∈ N∗,
xn =

|qnx− pn|
|qn−1x− pn−1|

,

so that we have

x0 = x−1 and x−1n = an + xn+1.

So we get

x =
1

x0
= a0 + x1 = a0 +

1

a1 + x2

= a0 +
1

a1 +
1

a2 + x3

= a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

This writing explains the name “continued fraction".
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Examples: When We’re Lucky

We have √
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 + . . .

which we can denote
√
2 = [1, 2].

We also have
√
3 = [1, 1, 2],√

5 = [2, 4],
√
7 = [2, 1, 1, 1, 4].

A quadratic number has a periodic continued fraction expansion: there
exist k and L ∈ N s.t. al = al+k for all l > L.

Euler : e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . , 1, 2n, 1, . . .].

It is fairly uncommon to encounter such closed expression for continued
fraction expansions (c.f.e).
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Examples

For instance, we don’t know anything regarding the c.f.e. of
π = 3.14159265358979....

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 + . . . ,

Its first convergents are
p1
q1

= 3,
p2
q2

=
22

7
= 3.142...,

p3
q3

=
333

106
=

3.14150...,
p4
q4

=
355

113
= 3.1415929...,

p5
q5

=
103993

33102
= 3.1415926530....
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Two classical results

Reminder. The best approximations pn/qn of a real number x satisfy
qn|qnx− pn| < 1.

Theorem
Among two consecutive best approximations to x, one at least satisfies
the inequality q‖qx‖ < 1/2.

And the reciprocal:

Theorem (Legendre)

If q|qx− p| < 1/2, then p/q is a convergent of (the continued fraction
expansion of) x.
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We still address the cos example with a reduction mod π/2. Let
C = π/2.

Reminder. We compute x∗ and k s. t. x∗ ∈ [−π/4,+π/4] and
x∗ = x− kC.

We use radix 2, with mantissas over n bits and exponents between emin
and emax.
Our x has the following form

x = x0.x1x2x3 · · ·xn−1 × 2E , with x0 6= 0

or
x =M × 2E−n+1,

with M = x0x1x2x3 · · ·xn−1, 2n−1 6M 6 2n − 1.
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Reminder. We compute x∗ and k s. t. x∗ ∈ [−π/4,+π/4] and
x∗ = x− kC.

We search for p ∈ Z and s ∈ R, |s| < 1/2 s.t.
x

C
= p+ s.

⇒ x∗ is equal to sC.
Remember that x =M × 2E−n+1. Therefore we search for

2E−n+1

C
=

p

M
+

s

M
.

x∗ is very small: p/M is a very good approximation to 2E−n+1/C.
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Let (pn/qn)n>0 the sequence of convergents of
2E−n+1

C
.

Let j = max{k ∈ N t.q. qk 6 2n − 1}.
We have ∣∣∣∣p−M 2E−n+1

C

∣∣∣∣ > ∣∣∣∣pj − qj 2E−n+1

C

∣∣∣∣ .

Therefore ∣∣pC −M2E−n+1
∣∣ > εE := C

∣∣∣∣pj − qj 2E−n+1

C

∣∣∣∣ .
Let ε = min

emin6E6emax
εE . The number − log2(ε) makes it possible to

know the precision accuracy which is necessary to perform a safe
reduction argument.
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Worst Cases for the Additive Argument Reduction for
Several Floating-Points Systems and Constants C

r n C emax Worst case − logr(ε)

2 24 π/2 127 16367173× 2+72 29.2

2 24 ln(2) 127 8885060× 2−11 31.6

10 10 π/2 99 8248251512× 10−6 11.7

10 10 π/4 99 4124125756× 10−6 11.9

10 10 ln(10) 99 7908257897× 10+30 11.7

2 53 π/2 1023 6381956970095103× 2+797 60.9

2 53 ln(2) 1023 5261692873635770× 2+499 66.8

2 113 π/2 1024 614799 · · · 1953734× 2+797 122.79
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.
Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p?, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certified evalutation error of p?: GAPPA
(G. Melquiond).
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Minimax Approximation

Reminder. Let g : [a, b]→ R, ||g||[a,b] = supa6x6b |g(x)|.
We denote Rn[X] = {p ∈ R[X]; deg p 6 n}.

Minimax approximation: let f : [a, b]→ R, n ∈ N, we search for
p ∈ Rn[X] s.t.

||p− f ||[a,b] = inf
q∈Rn[X]

||q − f ||[a,b].

An algorithm due to Remez gives p (minimax function in Maple, also
available in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.
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Truncated Polynomials

Our context: the coefficients of the polynomials must be written on a
finite (imposed) number of bits.

Let m = (mi)06i6n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi ,∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded

to âi/2mi , the nearest integer multiple of 2−mi →
p̂(x) =

â0
2m0

+
â1
2m1

x+ · · · + ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the
polynomials of Pmn .
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Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
06x6π/4

∣∣∣cosx− ( a0
212

+
a1
210

x+
a2
26
x2 +

a3
24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x− 34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....
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Approximation of the Function cos over [0, π/4] by a
Degree-3 Polynomial
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But the best “truncated”
approximant:

p? =
4095

212
+

6

210
x− 34

26
x2 +

1

24
x3

which gives || cos−p?||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.
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An Approach based on Lattice Basis Reduction
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An Approach based on Lattice Basis Reduction

Definition
Let L be a nonempty subset of Rd, L is a lattice iff there exists a set of
vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.
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Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)
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Example: The Lattice Z(2, 0)⊕ Z(1, 2)

(0, 0) (2, 0)

(1, 2)

u

v−3u+ v

2u− v

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
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Lenstra-Lenstra-Lovász Algorithm

SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are
NP-hard.
Factoring Polynomials with Rational Coefficients, A. K. Lenstra, H. W.
Lenstra and L. Lovász, Math. Annalen 261, 515-534, 1982.

The LLL algorithm gives an approximate solution to SVP in polynomial
time.

Babai’s algorithm (based on LLL) gives an approximate solution to CVP
in polynomial time.
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Absolute Error Problem

We search for (one of the) best(s) polynomial of the form

p? =
a?0
2m0

+
a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z ) that minimizes ‖f − p‖[a, b].
Discretize the continuous problem: we choose x1, · · · , xd points in [a, b]

such that a?0
2m0

+
a?1
2m1

xi + · · ·+ a?n
2mn x

n
i as close as possible to f(xi) for

all i = 1, . . . , d.
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That is to say we want the vectors
a?0
2m0

+
a?1
2m1

x1 + · · ·+ a?n
2mn x

n
1

a?0
2m0

+
a?1
2m1

x2 + · · ·+ a?n
2mn x

n
2

...
a?0
2m0

+
a?1
2m1

xd + · · ·+ a?n
2mn x

n
d

 and


f(x1)
f(x2)

...
f(xd)


to be as close as possible, which can be rewritten as: we want the vectors

a?0


1

2m0
1

2m0

...
1

2m0


︸ ︷︷ ︸

−→v0

+a?1


x1

2m1
x2

2m1

...
xd

2m1


︸ ︷︷ ︸

−→v1

+ · · ·+ a?n


xn
1

2mn

xn
2

2mn

...
xn
d

2mn


︸ ︷︷ ︸

−→vn

and


f(x1)
f(x2)

...
f(xd)


︸ ︷︷ ︸

−→y

to be as close as possible.
We have to minimize ‖a?0−→v0 + · · ·+ a?n

−→vn −−→y ‖.
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We have to minimize ‖a?0−→v0 + · · ·+ a?n
−→vn −−→y ‖.

This is a closest vector problem in a lattice!

It is NP-hard: LLL algorithm gives an approximate solution.
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Summary

We can use the method we developed in two directions
it is able to give us a smaller (in term of degree and/or size of the
coefficients) polynomial providing the same accuracy.
we can also use it to find a much better polynomial (in term of
accuracy) with same precision for the coefficients than the rounded
minimax.

We illustrate the second item with an example taken from CRLibm.

-53-



An Example from CRlibm

CRlibm is a library designed to compute correctly rounded functions
in an efficient way (target : IEEE double precision).

http://lipforge.ens-lyon.fr/www/crlibm/

It uses specific formats such as double-double or triple-double.

Here is an example we worked on with C. Lauter, and which is used
to compute arcsin(x) on [0.79; 1].
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Arcsine Function

After argument reduction we have the problem to approximate

g(z) =
arcsin(1− (z +m))− π

2√
2 · (z +m)

where 0xBFBC28F800009107 6 z 6 0x3FBC28F7FFFF6EF1 (i.e.
approximately −0.110 6 z 6 0.110) and
m = 0x3FBC28F80000910F ' 0.110.
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Data

Target accuracy to achieve correct rounding : 2−119.
The minimax of degree 21 is sufficient (error = 2−119.83).
Each approximant is of the form

p0︸︷︷︸
t.d.

+ p1︸︷︷︸
t.d.

x+ p2︸︷︷︸
d.d.

x2 + · · ·︸︷︷︸
···

+ p9︸︷︷︸
d.d.

x9 + p10︸︷︷︸
d.

x10 + · · ·︸︷︷︸
···

+ p21︸︷︷︸
d.

x21

where the pi are either double precision numbers (d.), a sum of two
double precision numbers (d.d.), a sum of two double precision numbers
(t.d.).

Figure: binary logarithm of the absolute error of several approximants

Target -119
Minimax -119.83
Rounded minimax -103.31
Our polynomial -119.77
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Exact Minimax, Rounded Minimax, our Polynomial

We save 16 bits with our method.
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.
Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p?, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certified evalutation error of p?: GAPPA
(G. Melquiond).
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Binary Floating Point (FP) Arithmetic

Given {
a precision n > 1,
a set of exponents Emin · · ·Emax.

A finite FP number x is represented by 2 integers:
integer mantissa : M , 2n−1 6 |M | 6 2n − 1;
exponent E, Emin 6 E 6 Emax

such that
x =

M

2n−1
× 2E .
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IEEE Precisions

See http://en.wikipedia.org/wiki/IEEE_floating_point or
(older)
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html.

precision minimal exponent maximal exponent
single (binary 32) 24 −126 127
double (binary 64) 53 −1022 1023
extended double 64 −16382 16383
quadruple (binary 128) 113 −16382 16383
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Correct rounding

In the IEEE 754 standard, the user defines an active rounding mode (or
rounding direction attribute) among:

round to the nearest (default). If x ∈ R, RN(x) is the floating-point
number that is the closest to x. In case of a tie, value whose
integral significand is even.
round towards +∞.
round towards −∞.
round towards zero.

A correctly-rounded operation whose entries are FP numbers must return
what we would get by infinitely precise operation followed by rounding.

In the sequel, we focus on rounding to nearest.
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Correct rounding

IEEE-754 (1985): Correct rounding for +, −, ×, ÷, √ and some
conversions. Advantages:

if the result of an operation is exactly representable, we get it;
if we just use the 4 arith. operations and √, deterministic arithmetic:
one can elaborate algorithms and proofs that use the specifications;
accuracy and portability are improved;
playing with rounding towards +∞ and −∞→ certain lower and
upper bounds.

FP arithmetic becomes a structure in itself, that can be studied.
IEEE-754 (2008): suggests correct rounding for some elementary
functions.
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The Table Maker’s Dilemma

Let f : R→ R a function. Let x be a FP number. We want to compute
RN(f(x)).

Most of the time, we use an approximated value f̃(x) of f(x). For
instance, f = exp over [0, 1] and P is a polynomial approximant to f ,
then f̃(x) = P (x) for x ∈ [0, 1].

Question: how to make sure that RN(f(x)) = RN
(
f̃(x)

)
?

TMD: how to make sure that, for all FP number x,

RN(f(x)) = RN
(
f̃(x)

)
?
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The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes.

Restatement of the question: determine mx ∈ N, s.t.
f(x) ∈ (f̃(x)− 2−mx , f̃(x) + 2−mx);

there is no breakpoint in (f̃(x)− 2−mx , f̃(x) + 2−mx).

Two important additional issues:
mx ∈ N should be as small as possible (otherwise the cost of
evaluation of f̃(x) will get prohibitive!);
well, are we sure that mx does exist? No: if f(x) is a breakpoint!

TMD: how to make sure that, for all FP number x,

RN(f(x)) = RN
(
f̃(x)

)
?
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The Table Maker’s Dilemma

A breakpoint is a point where the rounding function changes. In this
talk, it is the middle of two consecutive FP numbers.

Two-step challenge:
Determine the set BPf of all the FP numbers x such that f(x) is a
breakpoint;

Find m ∈ N, as small as possible, such that for all FP number
y /∈ BPf , if we use an internal precision of m bits to evaluate the
f(y)’s, then we will always get RN(f(y)).
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The Table Maker’s Dilemma: an Example

Consider the function 2x and the binary64/double precision FP number
(base 2, n = 53)

x =
8520761231538509

262

We have

253+x = 9018742077413030.999999999999999998805 · · · (decimal)
= 1 · · · 0.1 · · · · · · · · · · · · 1︸ ︷︷ ︸

60consecutive1′s

0 · · · (binary).

Hardest-to-round (HR) case for function 2x and double precision FP
numbers. The value of m is 113 here.

Function f : n
√, sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,

cosh...
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Finding m beyond which there is no problem ?

Function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh.

Lindemann’s theorem (z 6= 0 algebraic ⇒ ez transcendental) →
except for straightforward cases (e0, ln(1), sin(0), . . . ), if x is a FP
number, there exists an m, say mx, s.t. rounding the mx-bit
approximation ⇔ rounding f(x);
finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x,
rounding the mmax-bit approximation to f(x) is equivalent to
rounding f(x);
Questions: how large can m be? How to determine it?
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approximation ⇔ rounding f(x);

finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x,
rounding the mmax-bit approximation to f(x) is equivalent to
rounding f(x);
Questions: how large can m be? How to determine it?

-69-



Finding m beyond which there is no problem ?

Function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh.
Lindemann’s theorem (z 6= 0 algebraic ⇒ ez transcendental) →
except for straightforward cases (e0, ln(1), sin(0), . . . ), if x is a FP
number, there exists an m, say mx, s.t. rounding the mx-bit
approximation ⇔ rounding f(x);
finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x,
rounding the mmax-bit approximation to f(x) is equivalent to
rounding f(x);

Questions: how large can m be? How to determine it?

-69-



Finding m beyond which there is no problem ?

Function f : sin, cos, arcsin, arccos, tan, arctan, exp, log, sinh,
cosh.
Lindemann’s theorem (z 6= 0 algebraic ⇒ ez transcendental) →
except for straightforward cases (e0, ln(1), sin(0), . . . ), if x is a FP
number, there exists an m, say mx, s.t. rounding the mx-bit
approximation ⇔ rounding f(x);
finite number of FP numbers → ∃mmax = maxx(mx) s.t. ∀x,
rounding the mmax-bit approximation to f(x) is equivalent to
rounding f(x);
Questions: how large can m be? How to determine it?

-69-



Some insight (Warning: Hand-waving!). . .

the infinitely precise significand y of f(x) has the form:
y = y0.y1y2 · · · yn−1 01111111 · · · 11︸ ︷︷ ︸

k bits

xxxxx · · ·

or

y = y0.y1y2 · · · yn−1

k bits︷ ︸︸ ︷
10000000 · · · 00xxxxx · · ·

with k > 1.

Assuming that after the kth position the “1” and “0” are equally
likely, the “probability” of having k > k0 is 21−k0 ;
if we consider N input FP numbers, around N × 21−k0 values for
which k > k0;

→ no longer happens as soon as k0 is significantly larger than log2(N)
(for one given value of the exponent, as soon as k0 � n).

→ roughly,
”mmax = log2(N) + n+ o(1)”.

Hence, if N = 2n−1, then mmax should be slightly larger than 2n.
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The TMD is a Diophantine Approximation Problem

We want to determine m ∈ N such that, for all FP number x,
either f(x) is a breakpoint (in this talk, the middle of two
consecutive FP numbers);

or there is no breakpoint in (f̃(x)− 2−m, f̃(x) + 2−m).

Second constraint restated: assume, w.l.o.g, that x and f(x) ∈ [1, 2], we
want to ensure that, for all 2n−1 6 j 6 2n − 1, we have∣∣∣f̃(x)− 2j+1

2n

∣∣∣ > 2−m.

Assume that
∣∣∣f̃(x)− f(x)∣∣∣ < 2−m. Then if

∣∣f(x)− 2j+1
2n

∣∣ > 2−m+1, we
get ∣∣∣∣f̃(x)− 2j + 1

2n

∣∣∣∣ > ∣∣∣∣f(x)− 2j + 1

2n

∣∣∣∣− ∣∣∣f̃(x)− f(x)∣∣∣ > 2−m.
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What can Diophantine Approximation do for us?

Theorem (Dirichlet)

For all x ∈ R, the inequality
∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
has an infinite number of

solutions.

What about the inequality
∣∣∣∣x− p

q

∣∣∣∣ < 1

qµ
, with µ > 2?
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What can Diophantine Approximation do for us?

Theorem (Khinchine)

Let ϕ : (0,+∞)→ (0,+∞), continuous, s.t. x 7→ xϕ(x) is
non-increasing. Then

1

∣∣∣∣x− p

q

∣∣∣∣ < ϕ(q)

q
has, for almost all x ∈ R, a finite number of

solutions if for some c > 0,
∫ +∞
c

ϕ(x)dx < +∞.

2

∣∣∣∣x− p

q

∣∣∣∣ < ϕ(q)

q
has, for almost all x ∈ R, an infinite number of

solutions if for some c > 0,
∫ +∞
c

ϕ(x)dx diverges.

Consider ϕ(q) = 1/q, ϕ(q) = 1/q1+ε, ϕ(q) = 1/(q(log q)ε), for ε > 0.
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What can Diophantine Approximation do for us?

Corollary

For almost all x ∈ R, for all ε > 0,∣∣∣∣x− p

q

∣∣∣∣ < 1

q2+ε
has a finite number of solutions.

Almost all or all? Well, for instance, the numbers xa =
∑
n∈N a

−n! with
a ∈ N, a ≥ 2 satisfy:

for all n ∈ N, the inequality
∣∣∣∣x− p

q

∣∣∣∣ < 1

qn
has an infinite number of

solutions.
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What can Diophantine Approximation do for us? Case of
the Algebraic Numbers

Theorem (Roth, 1955)

If x ∈ R, x algebraic, then,

∀ ε > 0, ∃C(x, ε) ∈ R+ :

∀(p, q) ∈ Z× N∗ ,
∣∣∣∣x− p

q

∣∣∣∣ ≥ C(x, ε)

q2+ε
.

Important remark: in our setting, q is a power of 2.

-75-



What can Diophantine Approximation do for us? Case of
the S-integers

Theorem (Ridout, 1957)

If x ∈ R, x algebraic, then,

∀ ε > 0, ∃C(x, ε) ∈ R+ :

∀(p, n) ∈ Z× N∗ ,
∣∣∣x− p

2n

∣∣∣ ≥ C(x, ε)

2(1+ε)n
.

Big problem: the constant C(x, ε) can’t be effectively computed...
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What can Diophantine Approximation do for us? Case of
the Algebraic Numbers

Theorem (Liouville, 1844 and 1851)

Let x is algebraic of degree d, and P its minimal polynomial over Z, then,

∀(p, q) ∈ Z× N∗ ,
∣∣∣∣x− p

q

∣∣∣∣ ≥ C(x)

qd
,

with C(x) =
1

max
x− 1

26t6x+
1
2

|P ′(t)| .
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What can Diophantine Approximation do for us? The exp
function

From a study by Nesterenko and Waldschmidt (1995), we have, in the
case of the double-precision/binary64 format (α and α′ are binary64FP
formats): ∣∣∣eα′ − α∣∣∣ ≥ 2−7290678.

Computing with precision 7290678 is feasible, but far too expensive in
practice.

Moreover, the hand-waving argument suggests that precision 120 should
be enough for double-precision/binary64 arguments.

We need an algorithmic approach!
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The Algorithmic Approach

Assume, w.l.o.g., that f maps [1, 2] to [1, 2]. Remember that we want to
find m ∈ N, as small as possible, s.t. for all 2n−1 6 j 6 2n − 1, we have∣∣∣∣f(x)− 2j + 1

2n

∣∣∣∣ > 2−m+1.

The idea is to replace f with a polynomial P ∈ Q[x]. Here again, if, for
y ∈ [1, 2], if |f(y)− P (y)| 6 2−m+1 then∣∣∣∣P (x)− 2j + 1

2n

∣∣∣∣ > 2−m+1 will imply
∣∣∣∣f(x)− 2j + 1

2n

∣∣∣∣ > 2−m+1.
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The Algorithmic Approach

Idea: replacing the function f with P ∈ Q[x], but there are issues:
we have to work on subintervals I of [1, 2] over which the
approximation |f(y)− P (y)| 6 2−m+1 will be satisfied;
the size of I is related to the degree of P ;
the degree of P has an impact on the solving of the inequalities∣∣∣∣P (x)− 2j + 1

2n

∣∣∣∣ > 2−m+1.
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The Algorithmic Approach

If the approximation is of degree 1: algorithm by V. Lefèvre
(actually, this kind of stuff was addressed before by Ostrowski,
Cassels and other people);

If the approximation is of degree > 2: an algorithm by Stehlé,
Zimmermann and Lefèvre, relying on Coppersmith’ method.
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Degree 1 approximation: Cassels-Lefèvre-Ostrowski-...
algorithm

The problem (more or less) boils down to, given α and β ∈ R,
minimizing the distance of αZ+ β to Z.

More precisely, given α and β ∈ R, N ∈ N, we want to prove that

|qα+ β − p| > 2−m+1 for all (p, q) ∈ Z× N s.t. q < N.

M. Gouicem did a really nice bibliographic search regarding this problem.
Thanks also to Guillaume Hanrot and Thomas Caissard.
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Ostrowski’s numeration system

Let α ∈ (0, 1) be an irrational number. Let α = [0; a1, a2, · · · , an, · · · ] be
its continued fraction expansion with convergents
pn/qn = [0; a1, a2, · · · , an].

Proposition

Every integer N can be expanded uniquely in the form
N =

∑m
k=1 bkqk−1, where 0 6 b1 6 a1 − 1, 0 6 bk 6 ak for

k > 2, bk = 0 if bk+1 = ak+1.
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Ostrowski’s numeration system

Real numbers are expanded according to the basis given by the sequence
(θn)n>0, where θn = qnα− pn.

Proposition (Lesca)

Every real number −α 6 β < 1− α can be expanded uniquely in the
form β =

∑+∞
k=1 ckθk−1, where 0 6 c1 6 a1 − 1, 0 6 ck 6 ak for

k > 2, ck = 0 if ck+1 = ak+1, ck = ak for infinitely many even and odd
integers.

A modification of Euclid’s algorithm computes this expansion.
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Ostrowski’s numeration system

Ostrowski’s numeration system is used to approximate β modulo 1 by
numbers of the form Nα, with N ∈ N .

Indeed, the sequence of integers Nn =
∑n
k=1 ckqk−1 provides good

approximations of β =
∑+∞
k=1 ckθk−1, since

Nnα =

n∑
k=1

ckqk−1α ≡
n∑
k=1

ck (qk−1α− pk−1)︸ ︷︷ ︸
θk−1

mod 1.
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The Algorithmic Approach

If the approximation is of degree 1: algorithm by V. Lefèvre
(actually, this kind of stuff was addressed before by Ostrowski,
Cassels and other people);
If the approximation is of degree > 2: an algorithm by Stehlé,
Zimmermann and Lefèvre, relying on a bivariate extension of
Coppersmith’ method.

It is slightly simpler (for me!) to present an earlier work by Boneh and
Durfee, which was the first to use this bivariate extension.
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Small roots modulo N

Works by Vallée, Girault, Toffin.

Works by Coppersmith and Howgrave-Graham.

Let P ∈ Z[X] monic, N ∈ N, we search for the “small” x0 ∈ Z s.t.
P (x0) = 0 mod N .

This method, based on LLL, works (and it’s fast) as |x0| < N1/ degP .
Consequences:

Factorization of numbers of the form prq : Work by Boneh, Durfee
and Howgrave-Graham.
Attack of RSA with a small decryption exponent: Boneh and Durfee.
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Cryptanalysis of RSA with a small decryption exponent

Reminder: Let p and q be prime, let N = pq.
One chooses e prime s.t. ϕ(N) = (p− 1)(q − 1) and d s.t.
ed = 1 mod ϕ(N).
Encryption: x = me mod N .
Decryption: xd mod N = m mod N .
N and e are public, d, p, q secret.

Modular exponentiation is expensive ⇒ let’s use a small d!

Boneh-Durfee : d should not be too small.

Conjecture

We can easily recover d if d < N0.5.
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Cryptanalysis of RSA with a small decryption exponent

Wiener (1990) : true if d < N0.25 (continued fractions).

Boneh and Durfee (1999) : true if d < N0.292.

Let s = −(p+ q)/2 and A = (N + 1)/2, there exists k s.t.

k(A+ s) = 1 mod e :

A and e are known, k and s are unknown.

Assumption: e has the same order of magnitude as N .

We set f(x, y) = x(A+ y)− 1. We search for (x0, y0) s.t.
f(x0, y0) = 0 mod e with |x0| 6 eδ, |y0| < e0.5.
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Cryptanalysis of RSA with a small decryption exponent

We set f(x, y) = x(A+ y)− 1. We search for (x0, y0) s.t.
f(x0, y0) = 0 mod e with |x0| 6 eδ, |y0| < e0.5.

Bivariate version of Coppersmith’ method.

Let h(x, y) =
∑
i,j ai,jx

iyj , we put ||h(x, y)||2 =
∑
i,j |ai,j |2.

Lemma
Let h(x, y) ∈ Z[x, y], sum of at most w monomials, s.t.

1 h(x0, y0) = 0 mod em for an integer m with |x0| < X, |y0| < Y ;
2 ||h(xX, yY )|| < em/

√
w ;

then h(x0, y0) = 0.
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Cryptanalysis of RSA with a small decryption exponent

We set f(x, y) = x(A+ y)− 1. We search for (x0, y0) s.t.
f(x0, y0) = 0 mod e with |x0| 6 eδ, |y0| < e0.5.

LLL yields P1 et P2 ∈ Z[x, y] s. t. P1(x0, y0) = 0 et P2(x0, y0) = 0 in Z.

Soit R(y) = Résx(P1, P2), heuristic : R 6= 0.

y0 ∈ Z root de R : easy to compute. As y0 = p+q
2 , we obtain p and q.

Remark: we could (should) also use Hensel lifting to determine the roots.
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Cryptanalysis of RSA with a small decryption exponent

We set f(x, y) = x(A+ y)− 1. We search for (x0, y0) s.t.
f(x0, y0) = 0 mod e avec |x0| 6 eδ, |y0| < e0.5.

Idea: construct, from f , a lattice L “generated” by the polynomials. To
each polynomial corresponds one vector and the coordinates of the vector
are the coefficients of the polynomials.

LLL yields two “short” vectors P1 and P2 of this lattice: the lemma will
ensure that P1(x0, y0) = 0 and P2(x0, y0) = 0 in Z.

Reminder: Let (b1, . . . , bd) be an LLL-reduced basis of L then

||b1|| 6 2d/2(detL)1/d et ||b2|| 6 2d/2(detL)
1

d−1 .
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Cryptanalysis of RSA with a small decryption exponent

Let gi,k = xifk(x, y)em−k et hj,k = yjfk(x, y)em−k with m ∈ N .

(x0, y0) is a root of the gi,k and hj,k modulo em for k = 0, . . . ,m.

We consider the lattice generated by the polynomials gi,k(xX, yY ) et
hj,k(xX, yY ).
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Cryptanalysis of RSA with a small decryption exponent

f(x, y) = x(A+ y)− 1.
Example: lattice generated by gi,k = xifk(x, y)em−k and
hj,k = yjfk(x, y)em−k for m = 3, k = 0, . . . , 3, i = 0, . . . , 3− k and
j = 0, 1.

e3 xe3 fe2 x2e3 xfe2 f2e x3e3 x2fe2 xf2e f3 ye3 yfe2 yf2e yf3

1 e3 − − −
x 0 e3X − − − − −
xy

...
. . . e2XY − − − − −

x2
...

. . . e3X2 − − − − −
x2y

...
. . . e2X2Y − − − −

x2y2
...

. . . eX2Y 2 − − −
x3

...
. . . e3X3 − − −

x3y
...

. . . e2X3Y − − −
x3y2

...
. . . eX3Y 2 − −

x3y3
...

. . . X3Y 3 −
y

...
. . . e3Y − − −

xy2
...

. . . e2XY 2 − −
x2y3

...
. . . eX2Y 3 −

x3y4 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 X3Y 4
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Cryptanalysis of RSA with a small decryption exponent

LLL gives two short vectors P1 and P2: we have P1(x0, y0) = 0 in
P2(x0, y0) = 0 in Z (Lemma).

Reminder: Let (b1, . . . , bd) be an LLL-reduced basis L then

||b1|| 6 2d/2(detL)1/d et ||b2|| 6 2d/2(detL)
1

d−1 .

Triangular matrix: RSA broken as soon as d 6 N7/6−
√
7/3 with

7/6−
√
7/3 = 0.2847...

A refinement of the choice of the family of polynomials yields: RSA is
broken as soon as d 6 N1−1/

√
2 with 1− 1/

√
2 = 0.29289....
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Complexity of the two algorithms

It is related to the size of the interval on which the approximation
|f(x)− f̃(x)| is valid!

Case of degree 1 approximation (Cassels-Lefèvre-Ostrowski-... algorithm):
on each interval, the complexity is negligible but to address the whole
interval [1, 2], you need to subdivide it into 22n/3 intervals...
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Complexity of SLZ

The complexity of the algorithm, for solving |f(x)− 2j+1
2n | < 1/M is

essentially

poly(n+ log(M)) · 2 n2

n+log(M) ,

“usual version” of the problem: M ≈ 2n (comes from the
“probabilistic” reasoning given above). The complexity is essentially
a polynomial function times 2n/2. Too costly to be useful for big
values (e.g., n = 113);

“degraded” version: use the fact that if M ≈ 2n
2

the complexity
boils down to polynomial ⇒ information of the form “if the
approximation to f is with error < ε (with ε smaller than necessary
yet reasonable for efficient implementation) then rounding the
approximation ⇔ rounding f ”
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Results

Table: Worst cases for exponentials of double precision FP numbers.

Interval worst case (binary)

[−∞,−2−30]
exp(−1.1110110100110001100011101111101101100010011111101010 × 2−27)

= 1.111111111111111111111111100 · · · 0111000100 1 1590001... × 2−1

[−2−30, 0)
exp(−1.0000000000000000000000000000000000000000000000000001 × 2−51)

= 1.111111111111111 · · · 11111111111111100 0 01001010... × 2−1

(0,+2−30]
exp(1.1111111111111111111111111111111111111111111111111111 × 2−53)

= 1.0000000000000000000000000000000000000000000000000000 1 11040101...

[2−30,+∞]

exp(1.0111111111111110011111111111111011100000000000100100 × 2−32)

= 1.0000000000000000000000000000000101111111111111101000 0 0571101...

exp(1.1000000000000001011111111111111011011111111111011100 × 2−32)

= 1.0000000000000000000000000000000110000000000000010111 1 1570010...

exp(1.1001111010011100101110111111110101100000100000001011 × 2−31)

= 1.0000000000000000000000000000001100111101001110010111 1 0571010...

exp(110.00001111010100101111001101111010111011001111110100)

= 110101100.01010000101101000000100111001000101011101110 0 0571000...
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Results

Table: Worst cases for logarithms of double precision FP numbers.

Interval worst case (binary)

[2−1074, 1)
log(1.1110101001110001110110000101110011101110000000100000 × 2−509)

= −101100000.00101001011010100110011010110100001011111111 1 1600000...

log(1.1001010001110110111000110000010011001101011111000111 × 2−384)

= −100001001.10110110000011001010111101000111101100110101 1 0601010...

log(1.0010011011101001110001001101001100100111100101100000 × 2−232)

= −10100000.101010110010110000100101111001101000010000100 0 0601001...

log(1.0110000100111001010101011101110010000000001011111000 × 2−35)

= −10111.111100000010111110011011101011110110000000110101 0 1600011...

(1, 21024]
log(1.0110001010101000100001100001001101100010100110110110 × 2678)

= 111010110.01000111100111101011101001111100100101110001 0 0641110...
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Evaluation of Elementary Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases: V. Lefèvre and
J.-M. Muller.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the
evaluation of a function f over [a, b].
Step 2. Computation of p?, a “machine-efficient” polynomial
approximation of f .
Step 3. Computation of a rigorous approximation error ||f − p?||.
Step 4. Computation of a certified evalutation error of p?: GAPPA
(G. Melquiond).
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