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Homomorphic encryption

� Computing on encrypted data.

� Multiplicatively homomorphic: “textbook RSA”.

c1 � me
1 mod N

c2 � me
2 mod N

ñ c1 � c2 � pm1 �m2q
e mod N

� Additively homomorphic: Paillier.

c1 � gm1xN1 mod N2

c2 � gm2xN2 mod N2
ñ c1 �c2 � gm1�m2 rNspx1x2q

N mod N2

� Fully homomorphic: homomorphic for both addition and
multiplication

� Open problem until Gentry’s breakthrough in 2009.
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Homomorphic encryption for e-voting

� A typical application of additively homomorphic encryption is
secure voting schemes.

� In a yes-no election, each voter casts a ballot by encrypting 0
or 1 using the Paillier public key of the organizer of the
election.

� The ballots are then shuffled and added together
homomorphically by some independent third parties.

� Decrypting the resulting ciphertext reveals the tally, while
individual votes remain secret.

� Add in zero-knowledge proofs to ensure that each step is
correct, and use threshold encryption/secret sharing to avoid
a single authority.

� Make sure voters have Ph.D.’s in cryptography to understand
the whole process.
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Timeline of privacy homomorphisms

� [RSA77]: multiplication mod N;
� [RAD78]: introduce the notion of privacy homomorphism

� almost suggests FHE as an open problem...

� [GM84]: addition mod 2, CPA-security;

� [ElGamal84]: multiplication mod p;

� [Paillier98], [OU98]: addition mod N (resp. mod p);

� [BGN06]: polynomials of degree 2 mod p;
� [Gentry09]: addition and multiplication mod 2!

� a.k.a. fully homomorphic encryption.
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Fully homomorphic encryption

� We restrict ourselves to encrypting a single bit:
� 0Ñ 203ef6124 . . . 23ab8716
� 1Ñ b327653c1 . . . db326516
� no loss of generality, by the hybrid argument.

� Fully homomorphic property
� Given E pb0q and E pb1q, one can compute E pb0 ` b1q and
E pb0 � b1q without knowing the private key.

� Computing over a ring:
� Given a circuit with xors and ands, and encrypted input bits,
one can compute the output in encrypted form, without
knowing the private key.

� Hence, compute any function on encrypted data that can be
represented as a boolean circuit with polynomially many gates
(and BPP � P/poly).
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Security notions

� One can consider both secret-key and public-key FHE
schemes.

� Both are interesting.

� Usual security notion: IND-CPA.
� In the view of an adversary without the secret/private key,
E p0q � E p1q.

� Can we have more?
� CCA2 is incompatible with homomorphic properties.
� CCA1 is possible, some conversions exist.
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Compactness

� Trivial construction of FHE from any encryption scheme:
� Same key generation and encryption;
� Evalppk, f , cq � pc , f q;
� Decryptpsk, pc , f qq � f pDecryptpsk, cqq.

� We want to exclude such trivial constructions, where no
computation is actually carried out on ciphertexts.

� Usual extra requirement: compactness.
� Ciphertext size independent of successive homomorphic
operations.

� One can ask for something stronger: circuit privacy.
� For a given plaintext, ciphertext distribution independent of
successive homomorphic operations.

� Rather costly to achieve; usually relaxed somewhat in
“practical” schemes.
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What can we do with FHE? (1)

� Recall the secure voting protocol from a few slides back:
� To cast their ballots, voters encrypt xi � 0 or 1 under an
additive homomorphic encryption scheme, together with a
zero-knowledge proof of equality to 0 or 1;

� Third parties shuffle the ballots, add the ciphertexts
homomorphically, checking all the proofs;

� Organizers decrypt the tally.
� Using fully homomorphic encryption, do away with the voters’
zero-knowledge proofs:

� In addition to computing the homomorphic sum of the ballots,
the third parties can compute a ciphertext for:

t �
¹

xi pxi � 1q.
� The organizers can decrypt this ciphertext and check that
t � 0 to ensure all ballots were valid (equal to 0 or 1).

� Not really an improvement of existing voting protocols, but
gives an idea of what you can do.

10/30 c©2013 NTT Secure Platform Laboratories



What can we do with FHE? (1)

� Recall the secure voting protocol from a few slides back:
� To cast their ballots, voters encrypt xi � 0 or 1 under an
additive homomorphic encryption scheme, together with a
zero-knowledge proof of equality to 0 or 1;

� Third parties shuffle the ballots, add the ciphertexts
homomorphically, checking all the proofs;

� Organizers decrypt the tally.
� Using fully homomorphic encryption, do away with the voters’
zero-knowledge proofs:

� In addition to computing the homomorphic sum of the ballots,
the third parties can compute a ciphertext for:

t �
¹

xi pxi � 1q.
� The organizers can decrypt this ciphertext and check that
t � 0 to ensure all ballots were valid (equal to 0 or 1).

� Not really an improvement of existing voting protocols, but
gives an idea of what you can do.

10/30 c©2013 NTT Secure Platform Laboratories



What can we do with FHE? (1)

� Recall the secure voting protocol from a few slides back:
� To cast their ballots, voters encrypt xi � 0 or 1 under an
additive homomorphic encryption scheme, together with a
zero-knowledge proof of equality to 0 or 1;

� Third parties shuffle the ballots, add the ciphertexts
homomorphically, checking all the proofs;

� Organizers decrypt the tally.
� Using fully homomorphic encryption, do away with the voters’
zero-knowledge proofs:

� In addition to computing the homomorphic sum of the ballots,
the third parties can compute a ciphertext for:

t �
¹

xi pxi � 1q.
� The organizers can decrypt this ciphertext and check that
t � 0 to ensure all ballots were valid (equal to 0 or 1).

� Not really an improvement of existing voting protocols, but
gives an idea of what you can do.

10/30 c©2013 NTT Secure Platform Laboratories



What can we do with FHE? (2)

� Possibe business model courtesy of J.-S. Coron:
� You have a software that given the revenue, past income,
headcount, etc., of a company can predict its future stock
price.

� I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

� And you don’t want to give me your software containing secret
formulas.

� Using homomorphic encryption:
� I encrypt all the inputs using fully homomorphic encryption
and send them to you in encrypted form.

� You process all my inputs, viewing your software as a circuit.
� You send me the result, still encrypted.
� You didn’t learn any information about my company.
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What can we do with FHE? (3)

� Some say FHE is a very nice solution in search of a problem.
� Applications I do not believe in:

� Fully homomorphic Google queries.
� Or anything about secure cloud computing, really.
� Because cloud computing is database search, and doing this
with encrypted queries is intrinsically inefficient (linear instead
of logarithmic in the size of the database).

� Unless interactive protocols are fine, but then use PIR.

� Applications that may see the light of day:
� Handling of data sensitive enough that parties are prepared to
pay a heavy price for extra security;

� involving relatively simple functions (shallow circuits).

� In the meantime, FHE is a powerful crypto primitive that lets
you build many advanced protocols (NIZK, MPC, secure
databases, etc.) provided you do not care to much about
efficiency.
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Efficiency is improving

� 2009: breakthrough scheme by Gentry.
� Concrete parameters unclear, probably prohibitively inefficient.

� 2010: vDGHV scheme over the integers.
� Public key size ¡ 260 bits at reasonable security levels!

� 2011: first implementations of these schemes with numerous
optimizations [GH11], [CMNT11].

� 15–30 min. per multiplication gate, public key � 1 GB.

� 2011–2013: (R)LWE-based schemes.
� Simpler, more efficient, more versatile.
� Optimized implementations evaluate the full AES circuit in
10–30 min. amortized.

� Lauter et al. announce performance in the millisecond per gate
range for shallow circuits.
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Ingredients for FHE

� Consider an integer lattice L � Zn.
� Secret/private key: a good basis for the lattice, that can
“correct large errors”.

� Public key (optional): a bad basis, or even a noisy bad basis:
lets you sample a point close to the lattice, but not distinguish
between a point close to the lattice and a random point.

� With this data, we can construct an encryption scheme:
� Epkp0q is a point close to the lattice.
� Epkp1q is a random point.
� CPA secure by assumption!
� Almost additively homomorphic.
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A more homomorphic construction

� Idea for addition: encode the message in the parity of the
noise.

� Say the pk lets you sample a point of the form x� 2e (x
lattice point, e small random error).

� Then, encrypt m P t0, 1u as:

Epkpmq � x� 2e� pm, 0, . . . , 0q
� Still CPA, easy to decrypt.
� And now, additively homomorphic.

� For multiplication, use an ideal lattice.
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Gentry’s SHE scheme

� Public parameters: n a power of 2, R � Zrxs{pxn � 1q.
� Key generation returns a lattice L which is an ideal of
Zrxs{pxn � 1q.

� Private key is a good basis Bsk for L, whose fundamental
parallelipiped contains the ball of radius d .

� Public key is a bad basis Bpk for L (usually the HNF); with it,
decisional BDD up to distance d should be hard.

� Encryptppk,mq � 2e�m mod Bpk, with e random such that
}e}   δ.

� Thus a ciphertext is of the form x� 2e�m for some x P L.

� Decryptpsk, cq � pc mod Bskq mod 2.
� Correct decryption if the “noise” is of norm   d .

� Add and Mult are the corresponding operations in R.
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Homomorphic properties of Gentry’s scheme

� Addition:

c1 � x1 � 2e1 �m1

c2 � x2 � 2e2 �m2
ñ c1 � c2 � x111 � 2e111 �m1 �m2

� Multiplication:

c1 � x1 � 2e1 �m1

c2 � x2 � 2e2 �m2
ñ c1 � c2 � x111 � 2e111 �m1 �m2

with e111 � 2e1 � e2 �m1e2 �m2e1.
� In particular, }e111} À 2

?
n}e1} � }e2}.

� The scheme supports circuits with � log2
� log2 d
log2 δ

�
levels of

Mult gates (somewhat homomorphic encryption).
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The DGHV Scheme (symmetric version)

� Ciphertext for m P t0, 1u:

c � q � p � 2r �m

where p is the secret key (lattice basis), q and r are randoms.

� Decryption:
pc mod pq mod 2 � m

� Parameters:

...................c � ...

γ � 2 � 107 bits

...

p : η � 2700 bits

...

r : ρ � 71 bits
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Homomorphic properties of vDGHV

� Addition:

c1 � q1 � p � 2r1 �m1

c2 � q2 � p � 2r2 �m2
ñ c1 � c2 � q1 � p � 2r 1 �m1 �m2

� Multiplication:

c1 � q1 � p � 2r1 �m1

c2 � q2 � p � 2r2 �m2
ñ c1 � c2 � q2 � p � 2r2 �m1 �m2

with
r2 � 2r1r2 � r1m2 � r2m1

� Noise becomes twice as large.
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Public-key encryption with vDGHV

� We need to provide a “noisy” description of the ideal pZ
� Ciphertext

c � q � p � 2r �m

� Public-key: a set of τ encryptions of 0’s.

xi � qi � p � 2ri

� Public-key encryption:

c � m � 2r �
τ̧

i�1

εi � xi

for random εi P t0, 1u.
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Security of the scheme

� As described here, reduces to the General Approximate GCD
(GACD) problem: given polynomially many close multiples of
p, find p.

� Idea of the reduction: using an adversary that distinguishes
E p0q and E p1q with significant probability, construct an
algorithm that predicts the LSB of q in q � p � r with high
probability. Conclude using binary GCD.

� In practice, we change the algorithm slightly, by adding an
exact multiple of p, x0 � q0 � p, in the public key.

� Then, homomorphic addition an multiplication can be done
mod x0, keeping ciphertexts from growing exponentially.

� The reduction is then to the Partial Approximate GCD (PACD)
problem.
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Somewhat homomorphic scheme

� The number of multiplications is limited.
� Noise grows with the number of multiplications.
� Noise must remain   p for correct decryption.

� This is a problem with all schemes in this framework.

......................

p

....................
�

.......................................

ρ

..

�

.....................
p

.....................

2ρ

..

�

.....................
p

...

4ρ
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Solution: Bootstrapping

� Gentry’s breakthrough idea: refresh the ciphertext by
evaluating the decryption circuit homomorphically:
bootstrapping.
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Ciphertext refresh

� Refreshed ciphertext:
� If the degree of the decryption polynomial is small enough, the
resulting noise in this new ciphertext can be smaller than in
the original ciphertext

� Fully homomorphic encryption:
� Given two refreshed ciphertexts one can apply again the
homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

� Using this ciphertext refresh (or recryption) procedure, the
number of homomorphic operations becomes unlimited and we
get a fully homomorphic encryption scheme.
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Problems with bootstrapping

� Do we know that the encryption scheme remains secure even
after publishing encryption of the secret key bits?

� This is called circular security.
� Only a couple of encryption schemes are proved circular secure,
none of them fully homomorphic.

� Add circular security as an ad hoc assumption.

� The noise of refreshed ciphertexts depends on the AND-depth
d of the decryption circuit (it is roughly dρ, where ρ is the
noise of fresh ciphertexts).

� But d can be huge! In vDGHV, it is the depth of the circuit
computing pc mod pq mod 2 given c and the bits of p.

� Probably impossible to set parameters making the scheme
bootstrappable as is.

� We need squashing: change the decryption algorithm to make
it low depth. Quite technical.
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The squashed vDGHV scheme (idea)

� Write decryption as:

m Ð rcs2 ` rtc � p1{pqss2

This formula can be used for ciphertext refresh if 1{p can be
put in a compact encrypted form in the public key.

� Idea (Gentry): use secret sharing. Represent 1{p as a sparse
subset sum:

t2κ{ps �
Θ̧

i�1

si � ui

with random κ-bit integers ui , and si P t0, 1u. Publish the ui ’s
and encryptions of the si ’s.

� The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.

29/30 c©2013 NTT Secure Platform Laboratories



The squashed vDGHV scheme (idea)

� Write decryption as:

m Ð rcs2 ` rtc � p1{pqss2

This formula can be used for ciphertext refresh if 1{p can be
put in a compact encrypted form in the public key.

� Idea (Gentry): use secret sharing. Represent 1{p as a sparse
subset sum:

t2κ{ps �
Θ̧

i�1

si � ui

with random κ-bit integers ui , and si P t0, 1u. Publish the ui ’s
and encryptions of the si ’s.

� The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.

29/30 c©2013 NTT Secure Platform Laboratories



The squashed vDGHV scheme (idea)

� Write decryption as:

m Ð rcs2 ` rtc � p1{pqss2

This formula can be used for ciphertext refresh if 1{p can be
put in a compact encrypted form in the public key.

� Idea (Gentry): use secret sharing. Represent 1{p as a sparse
subset sum:

t2κ{ps �
Θ̧

i�1

si � ui

with random κ-bit integers ui , and si P t0, 1u. Publish the ui ’s
and encryptions of the si ’s.

� The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.

29/30 c©2013 NTT Secure Platform Laboratories



A little game

� In 2012, the best paper award of a minor Indian conference
went to an “improvement” of the vDGHV scheme that goes
basically like this:

� Only two public key elements x0 � q0 � p, x1 � q1 � p � 2r1.
� Encrypt m as c � m � 2r 1

0 � r 1

1x1 mod x0 for small random r 1

0,
r 1

1.
� Decrypt as before.

� Game for tomorrow:
� Show that one can decrypt any ciphertext with the public key
alone!

� Hint: this involves lattice reduction in very small dimension.
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