

Fully Homomorphic Encryption Part II

Mehdi Tibouchi

NTT Secure Platform Laboratories

EPIT 2013, 2013-03-22

Outline

Breaking things with lattices

Yesterday's game

Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE

Recap on LWE A secret key homomorphic scheme Achieving homomorphic multiplication Obtaining fully homomorphic encryption

The scheme we wanted to break

- Recall yesterday's "improved" variant of vDGHV:
 - Only two public key elements $x_0 = q_0 \cdot p$, $x_1 = q_1 \cdot p + 2r_1$.
 - Encrypt *m* as $c = m + 2r'_0 + r'_1x_1 \mod x_0$ for small random r'_0 , r'_1 .
 - Decrypt c as $m = (c \mod p) \mod 2$.

In particular, all ciphertexts are of the form:

$$c = (m+2r_0') + A \cdot x_0 + B \cdot x_1$$

were A, B, C are small unknown integers (less that ρ bits, say), and x_0, x_1 are very large public constants (γ bit long, with $\gamma \gg \rho$)..

▶ This is a weighted knapsack problem: we should be able to recover the coefficients of *x*₀, *x*₁ and 1 with lattice reduction!

The scheme we wanted to break

- Recall yesterday's "improved" variant of vDGHV:
 - Only two public key elements $x_0 = q_0 \cdot p$, $x_1 = q_1 \cdot p + 2r_1$.
 - Encrypt *m* as $c = m + 2r'_0 + r'_1x_1 \mod x_0$ for small random r'_0 , r'_1 .
 - Decrypt c as $m = (c \mod p) \mod 2$.
- In particular, all ciphertexts are of the form:

$$c = (m+2r_0') + A \cdot x_0 + B \cdot x_1$$

were A, B, C are small unknown integers (less that ρ bits, say), and x_0, x_1 are very large public constants (γ bit long, with $\gamma \gg \rho$)..

This is a weighted knapsack problem: we should be able to recover the coefficients of x₀, x₁ and 1 with lattice reduction!

The scheme we wanted to break

- Recall yesterday's "improved" variant of vDGHV:
 - Only two public key elements $x_0 = q_0 \cdot p$, $x_1 = q_1 \cdot p + 2r_1$.
 - Encrypt *m* as $c = m + 2r'_0 + r'_1x_1 \mod x_0$ for small random r'_0 , r'_1 .
 - Decrypt c as $m = (c \mod p) \mod 2$.
- In particular, all ciphertexts are of the form:

$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

were A, B, C are small unknown integers (less that ρ bits, say), and x_0, x_1 are very large public constants (γ bit long, with $\gamma \gg \rho$)..

This is a weighted knapsack problem: we should be able to recover the coefficients of x₀, x₁ and 1 with lattice reduction!

• $c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$

$$L = egin{pmatrix} 1 & 0 & 0 & S \cdot 1 \ 0 & 1 & 0 & S \cdot x_0 \ 0 & 0 & 1 & S \cdot x_1 \ 0 & 0 & 0 & S \cdot c \end{pmatrix}, \quad S \in \mathbb{N}^*$$

- ► *L* clearly contains $\mathbf{v} = (m + 2r'_0, A, B, 0)$ of norm $\|\mathbf{v}\| \le \sqrt{3} \cdot 2^{\rho}$.
- ► Heuristic: this is considerably smaller than (det L)^{1/4} so LLL should find it... but not if S is too small?
- Provable claim: pick S large enough, say S = 5 · 2^ρ > 2^{(4-1)/2} ||**v**||. With overwhelming probability on the choice of public key elements x₀, x₁, ||**v**|| = λ₁(L) and the first vector of any LLL-reduced basis is ±**v**.

•
$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

$$L = \begin{pmatrix} 1 & 0 & 0 & S \cdot 1 \\ 0 & 1 & 0 & S \cdot x_0 \\ 0 & 0 & 1 & S \cdot x_1 \\ 0 & 0 & 0 & S \cdot c \end{pmatrix}, \quad S \in \mathbb{N}^*$$

- ► *L* clearly contains $\mathbf{v} = (m + 2r'_0, A, B, 0)$ of norm $\|\mathbf{v}\| \le \sqrt{3} \cdot 2^{\rho}$.
- Heuristic: this is considerably smaller than (det L)^{1/4} so LLL should find it... but not if S is too small?
- Provable claim: pick S large enough, say S = 5 · 2^ρ > 2^{(4-1)/2} ||**v**||. With overwhelming probability on the choice of public key elements x₀, x₁, ||**v**|| = λ₁(L) and the first vector of any LLL-reduced basis is ±**v**.

•
$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

$$L = \begin{pmatrix} 1 & 0 & 0 & S \cdot 1 \\ 0 & 1 & 0 & S \cdot x_0 \\ 0 & 0 & 1 & S \cdot x_1 \\ 0 & 0 & 0 & S \cdot c \end{pmatrix}, \quad S \in \mathbb{N}^*$$

- ► *L* clearly contains $\mathbf{v} = (m + 2r'_0, A, B, 0)$ of norm $\|\mathbf{v}\| \le \sqrt{3} \cdot 2^{\rho}$.
- ► Heuristic: this is considerably smaller than (det L)^{1/4} so LLL should find it... but not if S is too small?
- ▶ Provable claim: pick *S* large enough, say $S = 5 \cdot 2^{\rho} > 2^{(4-1)/2} \|\mathbf{v}\|$. With overwhelming probability on the choice of public key elements $x_0, x_1, \|\mathbf{v}\| = \lambda_1(L)$ and the first vector of any LLL-reduced basis is $\pm \mathbf{v}$.

•
$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

$$L = \begin{pmatrix} 1 & 0 & 0 & S \cdot 1 \\ 0 & 1 & 0 & S \cdot x_0 \\ 0 & 0 & 1 & S \cdot x_1 \\ 0 & 0 & 0 & S \cdot c \end{pmatrix}, \quad S \in \mathbb{N}^*$$

- ► *L* clearly contains $\mathbf{v} = (m + 2r'_0, A, B, 0)$ of norm $\|\mathbf{v}\| \le \sqrt{3} \cdot 2^{\rho}$.
- ► Heuristic: this is considerably smaller than (det L)^{1/4} so LLL should find it... but not if S is too small?
- ▶ Provable claim: pick *S* large enough, say $S = 5 \cdot 2^{\rho} > 2^{(4-1)/2} \|\mathbf{v}\|$. With overwhelming probability on the choice of public key elements $x_0, x_1, \|\mathbf{v}\| = \lambda_1(L)$ and the first vector of any LLL-reduced basis is $\pm \mathbf{v}$.

•
$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

$$L = \begin{pmatrix} 1 & 0 & 0 & S \cdot 1 \\ 0 & 1 & 0 & S \cdot x_0 \\ 0 & 0 & 1 & S \cdot x_1 \\ 0 & 0 & 0 & S \cdot c \end{pmatrix}, \quad S \in \mathbb{N}^*$$

- ► *L* clearly contains $\mathbf{v} = (m + 2r'_0, A, B, 0)$ of norm $\|\mathbf{v}\| \le \sqrt{3} \cdot 2^{\rho}$.
- ► Heuristic: this is considerably smaller than (det L)^{1/4} so LLL should find it... but not if S is too small?
- Provable claim: pick S large enough, say S = 5 ⋅ 2^ρ > 2^{(4-1)/2} ||v||. With overwhelming probability on the choice of public key elements x₀, x₁, ||v|| = λ₁(L) and the first vector of any LLL-reduced basis is ±v.

Outline

Breaking things with lattices

Yesterday's game Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE

Recap on LWE A secret key homomorphic scheme Achieving homomorphic multiplication Obtaining fully homomorphic encryption

Lattices against PACD

- The security of (the compact variant of) vDGHV is based on the partial approximate GCD problem:
 - Given $x_0 = q_0 \cdot p$, $x_1 = q_0 \cdot p + r$, find p.
 - Depends on the sizes $\gamma \gg \eta \gg \rho$ of x_i, p, r .
 - More samples x_i possible...

 Howgrave-Graham [H01] proposes of Coppersmith-like approach to solving the problem for some parameter sets.

Polynomials of the form

$$Q_{i,j}(X) = x_0^{u-i} \cdot (X+x_1)^i X^j$$

satisfy $p^u | Q_{ij}(-r)$.

Suppose we can find a linear combination Q of these with small coefficients, such that $|Q|(|r|) < p^u$. Then -r is a root of Q in \mathbb{Z} so we can find it and recover p.

Lattices against PACD

- The security of (the compact variant of) vDGHV is based on the partial approximate GCD problem:
 - Given $x_0 = q_0 \cdot p$, $x_1 = q_0 \cdot p + r$, find p.
 - Depends on the sizes $\gamma \gg \eta \gg \rho$ of x_i, p, r .
 - More samples x_i possible...
- Howgrave-Graham [H01] proposes of Coppersmith-like approach to solving the problem for some parameter sets.
 - Polynomials of the form

$$Q_{i,j}(X) = x_0^{u-i} \cdot (X+x_1)^i X^j$$

satisfy $p^u | Q_{ij}(-r)$.

Suppose we can find a linear combination Q of these with small coefficients, such that |Q|(|r|) < p^u. Then −r is a root of Q in Z so we can find it and recover p.

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X+x_1)^i X^j$?
- ▶ Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \le u$ and $P_k = Q_{u,k-u}$ for $u < k \le h$.
- For u = 2, h = 4, this gives the Coppersmith lattice:

$$L = \begin{pmatrix} x_0^2 & 0 & 0 & 0 & 0 \\ x_0 x_1 & x_0 B & 0 & 0 & 0 \\ x_1^2 & 2x_1 B & B^2 & 0 & 0 \\ 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\ 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4 \end{pmatrix}, \quad B = 2^{\rho}$$

▶ Thus we get, for general *u*, *h*:

det $L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}$

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j$?
- ▶ Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \le u$ and $P_k = Q_{u,k-u}$ for $u < k \le h$.
- For u = 2, h = 4, this gives the Coppersmith lattice:

$$L = \begin{pmatrix} x_0^2 & 0 & 0 & 0 & 0 \\ x_0 x_1 & x_0 B & 0 & 0 & 0 \\ x_1^2 & 2x_1 B & B^2 & 0 & 0 \\ 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\ 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4 \end{pmatrix}, \quad B = 2^{\rho}$$

▶ Thus we get, for general *u*, *h*:

det $L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}$

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X+x_1)^i X^j$?
- ▶ Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \le u$ and $P_k = Q_{u,k-u}$ for $u < k \le h$.
- ▶ For u = 2, h = 4, this gives the Coppersmith lattice:

$$L = \begin{pmatrix} x_0^2 & 0 & 0 & 0 & 0 \\ x_0 x_1 & x_0 B & 0 & 0 & 0 \\ x_1^2 & 2x_1 B & B^2 & 0 & 0 \\ 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\ 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4 \end{pmatrix}, \quad B = 2^{\rho}$$

▶ Thus we get, for general *u*, *h*:

det $L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}$

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X+x_1)^i X^j$?
- ▶ Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \le u$ and $P_k = Q_{u,k-u}$ for $u < k \le h$.
- For u = 2, h = 4, this gives the Coppersmith lattice:

$$L = \begin{pmatrix} x_0^2 & 0 & 0 & 0 & 0 \\ x_0 x_1 & x_0 B & 0 & 0 & 0 \\ x_1^2 & 2x_1 B & B^2 & 0 & 0 \\ 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\ 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4 \end{pmatrix}, \quad B = 2^{\rho}$$

▶ Thus we get, for general *u*, *h*:

det
$$L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}$$

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\leq p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- ► LHS minimal for $u/h \sim \sqrt{\rho/\gamma}$, which gives the asymptotic condition $\rho\gamma \lesssim \eta^2$.
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\leq p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- ► LHS minimal for $u/h \sim \sqrt{\rho/\gamma}$, which gives the asymptotic condition $\rho\gamma \lesssim \eta^2$.
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\lesssim p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- ► LHS minimal for $u/h \sim \sqrt{\rho/\gamma}$, which gives the asymptotic condition $\rho\gamma \lesssim \eta^2$.
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\leq p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- ► LHS minimal for $u/h \sim \sqrt{\rho/\gamma}$, which gives the asymptotic condition $\rho\gamma \lesssim \eta^2$.
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\leq p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- LHS minimal for u/h ~ √ρ/γ, which gives the asymptotic condition ργ ≤ η².
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

$$(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}$$

- We were looking for vectors of length $\lesssim p^u \approx 2^{\eta u}$.
- Hence the condition to the attack to work:

$$\frac{u+1}{h+1}\gamma + \frac{h}{u}\rho \lesssim 2\eta$$

- LHS minimal for u/h ~ √ρ/γ, which gives the asymptotic condition ργ ≤ η².
- Thus, pick $\rho\gamma$ much larger than η^2 to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.

Outline

Breaking things with lattices

- Yesterday's game
- Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE Recap on LWE

A secret key homomorphic scheme Achieving homomorphic multiplication Obtaining fully homomorphic encryption

▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).

- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_a, i.e. outputs (a, (s, a)).
- Can you recover s in polynomial time?
- ▶ Of course: after O(n) queries, the queries gives vectors a₁,..., a_n forming a basis of Zⁿ_q and the corresponding projections, so recovering s is simple linear algebra.

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_q, i.e. outputs (a, (s, a)).
- Can you recover s in polynomial time?
- ▶ Of course: after O(n) queries, the queries gives vectors a₁,..., a_n forming a basis of Zⁿ_q and the corresponding projections, so recovering s is simple linear algebra.

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_a, i.e. outputs (a, (s, a)).
- Can you recover s in polynomial time?
- ▶ Of course: after O(n) queries, the queries gives vectors a₁,..., a_n forming a basis of Zⁿ_q and the corresponding projections, so recovering s is simple linear algebra.

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_a, i.e. outputs (a, (s, a)).
- Can you recover s in polynomial time?
- ► Of course: after O(n) queries, the queries gives vectors a₁,..., a_n forming a basis of Zⁿ_q and the corresponding projections, so recovering s is simple linear algebra.

▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).

- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_q with some random small error e, i.e. outputs (a, (s, a) + e).
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values *e*, this is as hard as solving worst-case lattice problems (Regev, Peikert).

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_q with some random small error e, i.e. outputs (a, (s, a) + e).
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values e, this is as hard as solving worst-case lattice problems (Regev, Peikert).

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_q with some random small error e, i.e. outputs (a, (s, a) + e).
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values *e*, this is as hard as solving worst-case lattice problems (Regev, Peikert).

- ▶ I have a secret vector $\mathbf{s} \in \mathbb{Z}_q^n$ (q = poly(n)).
- I give you access to an oracle that reveals the projection of s along some random vector a ∈ Zⁿ_q with some random small error e, i.e. outputs (a, (s, a) + e).
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values e, this is as hard as solving worst-case lattice problems (Regev, Peikert).

- ▶ Previous slide: it is hard to find s given polynomially many samples (a, (s, a) + e).
 - Equivalently, it is hard to find **s** given a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and the vector $\mathbf{s} \cdot \mathbf{A} + \mathbf{e}$ for some random short vector $\mathbf{e} \in \mathbb{Z}_q^m$.
- ▶ Decision problem: distinguish between (A, s · A + e) and (A, u), u ∈ Z^m_q uniformly random.
- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim's talk).
- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.

- ▶ Previous slide: it is hard to find s given polynomially many samples (a, (s, a) + e).
 - Equivalently, it is hard to find **s** given a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and the vector $\mathbf{s} \cdot \mathbf{A} + \mathbf{e}$ for some random short vector $\mathbf{e} \in \mathbb{Z}_q^m$.
- ▶ Decision problem: distinguish between (A, s · A + e) and (A, u), u ∈ Z^m_q uniformly random.
- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim's talk).
- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.

- ▶ Previous slide: it is hard to find s given polynomially many samples (a, (s, a) + e).
 - Equivalently, it is hard to find **s** given a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and the vector $\mathbf{s} \cdot \mathbf{A} + \mathbf{e}$ for some random short vector $\mathbf{e} \in \mathbb{Z}_q^m$.
- ▶ Decision problem: distinguish between (A, s · A + e) and (A, u), u ∈ Z^m_q uniformly random.
- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim's talk).
- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.

- ▶ Previous slide: it is hard to find s given polynomially many samples (a, (s, a) + e).
 - Equivalently, it is hard to find **s** given a random matrix $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ and the vector $\mathbf{s} \cdot \mathbf{A} + \mathbf{e}$ for some random short vector $\mathbf{e} \in \mathbb{Z}_q^m$.
- ▶ Decision problem: distinguish between (A, s · A + e) and (A, u), u ∈ Z^m_q uniformly random.
- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim's talk).
- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- ► Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry's scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.

Outline

Breaking things with lattices

- Yesterday's game
- Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE

Recap on LWE

A secret key homomorphic scheme

Achieving homomorphic multiplication Obtaining fully homomorphic encryption

- First imagine we're trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here's a first attempt:
 - ▶ Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - E_{sk}(b) = c = (⟨s₀, a⟩ + 2e + b, a) for uniformly random a ∈ Zⁿ_q and a small e ∈ Z_q.
 - $D_{\rm sk}(\mathbf{c}) = [\langle \mathbf{s}, \mathbf{c} \rangle]_q \mod 2.$
- ► Clearly, under LWE, this is secure: E_{sk}(0) ≅ E_{sk}(1) since both are indistinguishable from a uniformly random vector in Zⁿ⁺¹_a.
- ► Additively homomorphic (somewhat): E_{sk}(b₁) + E_{sk}(b₂) decrypts to b₁ ⊕ b₂.
- How about multiplication? Encryptions are vectors, we cannot multiply them!

- First imagine we're trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here's a first attempt:
 - ▶ Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - *E*_{sk}(*b*) = c = (⟨s₀, a⟩ + 2e + b, a) for uniformly random a ∈ Zⁿ_q and a small *e* ∈ Z_q.
 - $D_{\mathsf{sk}}(\mathbf{c}) = [\langle \mathbf{s}, \mathbf{c} \rangle]_q \mod 2.$
- ► Clearly, under LWE, this is secure: E_{sk}(0) ≅ E_{sk}(1) since both are indistinguishable from a uniformly random vector in Zⁿ⁺¹_a.
- ► Additively homomorphic (somewhat): E_{sk}(b₁) + E_{sk}(b₂) decrypts to b₁ ⊕ b₂.
- How about multiplication? Encryptions are vectors, we cannot multiply them!

- First imagine we're trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here's a first attempt:
 - ▶ Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - *E*_{sk}(*b*) = **c** = (⟨**s**₀, **a**⟩ + 2**e** + *b*, **a**) for uniformly random **a** ∈ Zⁿ_q and a small *e* ∈ Z_q.
 - $D_{\mathsf{sk}}(\mathbf{c}) = [\langle \mathbf{s}, \mathbf{c} \rangle]_q \mod 2.$
- ► Clearly, under LWE, this is secure: E_{sk}(0) ≈ E_{sk}(1) since both are indistinguishable from a uniformly random vector in Zⁿ⁺¹_q.
- ► Additively homomorphic (somewhat): E_{sk}(b₁) + E_{sk}(b₂) decrypts to b₁ ⊕ b₂.
- How about multiplication? Encryptions are vectors, we cannot multiply them!

- First imagine we're trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here's a first attempt:
 - ▶ Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - *E*_{sk}(*b*) = **c** = (⟨**s**₀, **a**⟩ + 2**e** + *b*, **a**) for uniformly random **a** ∈ Zⁿ_q and a small *e* ∈ Z_q.
 - $D_{\mathsf{sk}}(\mathbf{c}) = [\langle \mathbf{s}, \mathbf{c} \rangle]_q \mod 2.$
- ► Clearly, under LWE, this is secure: E_{sk}(0) ≅ E_{sk}(1) since both are indistinguishable from a uniformly random vector in Zⁿ⁺¹_a.
- ► Additively homomorphic (somewhat): E_{sk}(b₁) + E_{sk}(b₂) decrypts to b₁ ⊕ b₂.
- How about multiplication? Encryptions are vectors, we cannot multiply them!

- First imagine we're trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here's a first attempt:
 - ▶ Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - *E*_{sk}(*b*) = c = (⟨s₀, a⟩ + 2e + b, a) for uniformly random a ∈ Zⁿ_q and a small *e* ∈ Z_q.
 - $D_{\mathsf{sk}}(\mathbf{c}) = [\langle \mathbf{s}, \mathbf{c} \rangle]_q \mod 2.$
- ► Clearly, under LWE, this is secure: E_{sk}(0) ≅ E_{sk}(1) since both are indistinguishable from a uniformly random vector in Zⁿ⁺¹_a.
- ► Additively homomorphic (somewhat): E_{sk}(b₁) + E_{sk}(b₂) decrypts to b₁ ⊕ b₂.
- How about multiplication? Encryptions are vectors, we cannot multiply them!

Outline

Breaking things with lattices

- Yesterday's game
- Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE

Recap on LWE A secret key homomorphic scheme Achieving homomorphic multiplication Obtaining fully homomorphic encryption

Multiplication: basic idea

- Remark:
 - In most previous FHE schemes, obtaining homomorphic operations was easy (ciphertexts were ring elements) and the hard part was to prove security.
 - Here, security is easy; the hard part is to come up with a way to multiply ciphertexts.

One way to multiply vectors is tensor product:

 \blacktriangleright To homomorphically multiply $\mathbf{c}^{(1)}$ and $\mathbf{c}^{(2)},$ publish:

$$\mathbf{c}^* = \mathbf{c}^{(1)} \otimes \mathbf{c}^{(2)} = \left(c_i^{(1)} \cdot c_j^{(2)}\right)_{1 \leq i,j \leq r}$$

- We have (s ⊗ s, c*) = (s, c⁽¹⁾) · (s, c⁽²⁾), so we can decrypt (as long as the noise doesn't get too large).
- ▶ Fine, but the new ciphertext c* is much larger (dimension (n+1)²) than the ones we started with!

Multiplication: basic idea

- Remark:
 - In most previous FHE schemes, obtaining homomorphic operations was easy (ciphertexts were ring elements) and the hard part was to prove security.
 - Here, security is easy; the hard part is to come up with a way to multiply ciphertexts.
- One way to multiply vectors is tensor product:
 - To homomorphically multiply $\mathbf{c}^{(1)}$ and $\mathbf{c}^{(2)}$, publish:

$$\mathbf{c}^* = \mathbf{c}^{(1)} \otimes \mathbf{c}^{(2)} = (c_i^{(1)} \cdot c_j^{(2)})_{1 \le i,j \le r}$$

- We have ⟨s ⊗ s, c*⟩ = ⟨s, c⁽¹⁾⟩ · ⟨s, c⁽²⁾⟩, so we can decrypt (as long as the noise doesn't get too large).
- ► Fine, but the new ciphertext c* is much larger (dimension (n+1)²) than the ones we started with!

Multiplication: reducing the size

- How do we convert c* to a ciphertext of the same length as what we started from?
- ► The idea is key switching:
 - ▶ Publish "encryptions" σ_{ij}^* of the components $s_i \cdot s_j$ of $\mathbf{s} \otimes \mathbf{s}$ under a new key \mathbf{t} , i.e. vectors σ_{ii}^* such that:

$$\langle \mathbf{t}, \boldsymbol{\sigma}_{i,j}^*
angle = s_i \cdot s_j + 2e_{ij}$$

• Let
$$\mathbf{c}' = \sum_{ij} c_{ij}^* \boldsymbol{\sigma}_{ij}^* \in \mathbb{Z}_q^{n+1}$$

• We easily obtain:

$$\langle \mathbf{s}, \mathbf{c}^{(1)} \rangle \cdot \langle \mathbf{s}, \mathbf{c}^{(2)} \rangle = \langle \mathbf{s} \otimes \mathbf{s}, \mathbf{c}^* \rangle = \langle \mathbf{t}, \mathbf{c}' \rangle - 2 \sum_{i,j} c_{ij}^* e_{ij}$$

- So under \mathbf{c}' decrypts under \mathbf{t} to the product $D_{\mathbf{s}}(\mathbf{c}^{(1)}) \cdot D_{\mathbf{s}}(\mathbf{c}^{(2)})$, provided that the blue sum is small. But it is not small!
- Solution (rough idea): first decompose c* into bits, and apply the trick to the bit-decomposed extended ciphertext c**. Since the c***'s are bits, the corresponding blue sum is small and we're done.

Multiplication: reducing the size

- How do we convert c* to a ciphertext of the same length as what we started from?
- The idea is key switching:
 - ► Publish "encryptions" σ_{ij}^* of the components $s_i \cdot s_j$ of $\mathbf{s} \otimes \mathbf{s}$ under a new key \mathbf{t} , i.e. vectors σ_{ij}^* such that:

$$\langle \mathbf{t}, \boldsymbol{\sigma}_{i,j}^*
angle = s_i \cdot s_j + 2e_{ij}$$

• Let
$$\mathbf{c}' = \sum_{ij} c_{ij}^* \boldsymbol{\sigma}_{ij}^* \in \mathbb{Z}_q^{n+1}$$
.

We easily obtain:

$$\langle \mathbf{s}, \mathbf{c}^{(1)} \rangle \cdot \langle \mathbf{s}, \mathbf{c}^{(2)} \rangle = \langle \mathbf{s} \otimes \mathbf{s}, \mathbf{c}^* \rangle = \langle \mathbf{t}, \mathbf{c}' \rangle - 2 \sum_{i,j} c_{ij}^* e_{ij}$$

- So under c' decrypts under t to the product D_s(c⁽¹⁾) · D_s(c⁽²⁾), provided that the blue sum is small. But it is not small!
- Solution (rough idea): first decompose c* into bits, and apply the trick to the bit-decomposed extended ciphertext c**. Since the c^{**}_{ij}'s are bits, the corresponding blue sum is small and we're done.

- We can publish vectors σ^{*}_{ijk} that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key t ∈ Zⁿ⁺¹_a.
- This gives (somewhat) homomorphic multiplication:

$$D_{\mathbf{t}}(\mathbf{c}') = D_{\mathbf{s}}(\mathbf{c}^{(1)}) \cdot D_{\mathbf{s}}(\mathbf{c}^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ^{*}_{iik} are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.

- ▶ We can publish vectors σ^*_{ijk} that let you convert a bit-decomposed extended ciphertext \mathbf{c}^{**} to a ciphertext \mathbf{c}' of normal length under a new, independent key $\mathbf{t} \in \mathbb{Z}_q^{n+1}$.
- This gives (somewhat) homomorphic multiplication:

$$\textit{D}_{t}(\textbf{c}') = \textit{D}_{s}(\textbf{c}^{(1)}) \cdot \textit{D}_{s}(\textbf{c}^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ^{*}_{iik} are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.

- ▶ We can publish vectors σ^*_{ijk} that let you convert a bit-decomposed extended ciphertext \mathbf{c}^{**} to a ciphertext \mathbf{c}' of normal length under a new, independent key $\mathbf{t} \in \mathbb{Z}_q^{n+1}$.
- This gives (somewhat) homomorphic multiplication:

$$D_{\mathbf{t}}(\mathbf{c}') = D_{\mathbf{s}}(\mathbf{c}^{(1)}) \cdot D_{\mathbf{s}}(\mathbf{c}^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ^{*}_{iik} are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.

- ▶ We can publish vectors σ^*_{ijk} that let you convert a bit-decomposed extended ciphertext \mathbf{c}^{**} to a ciphertext \mathbf{c}' of normal length under a new, independent key $\mathbf{t} \in \mathbb{Z}_q^{n+1}$.
- This gives (somewhat) homomorphic multiplication:

$$D_{\mathbf{t}}(\mathbf{c}') = D_{\mathbf{s}}(\mathbf{c}^{(1)}) \cdot D_{\mathbf{s}}(\mathbf{c}^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ^{*}_{iik} are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.

- ▶ We can publish vectors σ^*_{ijk} that let you convert a bit-decomposed extended ciphertext \mathbf{c}^{**} to a ciphertext \mathbf{c}' of normal length under a new, independent key $\mathbf{t} \in \mathbb{Z}_q^{n+1}$.
- This gives (somewhat) homomorphic multiplication:

$$D_{\mathbf{t}}(\mathbf{c}') = D_{\mathbf{s}}(\mathbf{c}^{(1)}) \cdot D_{\mathbf{s}}(\mathbf{c}^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ^{*}_{iik} are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.

Outline

Breaking things with lattices

- Yesterday's game
- Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE

Recap on LWE A secret key homomorphic scheme Achieving homomorphic multiplication Obtaining fully homomorphic encryption

FHE without squashing

- We discussed a technique (key switching) to convert a ciphertext under a long key s ∈ Z^N_q to an equivalent ciphertext under a short key t ∈ Zⁿ_a, n ≪ N.
- A similar trick (modulus switching) lets you convert a ciphertext in Zⁿ_q to an equivalent ciphertext under a new key in Zⁿ_p, p ≪ q.
- Application by Brakerski and Vaikuntanathan:
 - Apply homomorphic operations over \mathbb{Z}_q .
 - At the end, convert to Z_p, p ≪ q to make the decryption circuit very shallow, and make Gentry's bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as "squashing", and without subset-sum assumptions.

FHE without squashing

- We discussed a technique (key switching) to convert a ciphertext under a long key s ∈ Z^N_q to an equivalent ciphertext under a short key t ∈ Zⁿ_a, n ≪ N.
- A similar trick (modulus switching) lets you convert a ciphertext in Zⁿ_q to an equivalent ciphertext under a new key in Zⁿ_p, p ≪ q.
- Application by Brakerski and Vaikuntanathan:
 - Apply homomorphic operations over \mathbb{Z}_q .
 - At the end, convert to Z_p, p ≪ q to make the decryption circuit very shallow, and make Gentry's bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as "squashing", and without subset-sum assumptions.

FHE without squashing

- We discussed a technique (key switching) to convert a ciphertext under a long key s ∈ Z^N_q to an equivalent ciphertext under a short key t ∈ Zⁿ_a, n ≪ N.
- A similar trick (modulus switching) lets you convert a ciphertext in Zⁿ_q to an equivalent ciphertext under a new key in Zⁿ_p, p ≪ q.
- Application by Brakerski and Vaikuntanathan:
 - Apply homomorphic operations over \mathbb{Z}_q .
 - At the end, convert to Z_p, p ≪ q to make the decryption circuit very shallow, and make Gentry's bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as "squashing", and without subset-sum assumptions.

Leveled FHE without bootstrapping

- Alternate approach by Brakerski, Gentry and Vaikuntanathan:
 - Start from an initially large prime modulus, and apply modulus switching after each multiplication.
 - This makes noise size grow linearly instead of exponentially with circuit depth.
 - Hence, we can handle circuits of arbitrary (predetermined) polynomial size without bootstrapping.
 - Even with bootstrapping, we get much better performance than earlier.
- Yet another approach: leveled FHE without modulus switching.
 - Reduce ciphertext noise while still keeping the same modulus.
 - Possible if you put the message in the top bit of the ciphertext rather than the bottom bit ("scale-invariant scheme"), as in Vadim's talk.

Leveled FHE without bootstrapping

- Alternate approach by Brakerski, Gentry and Vaikuntanathan:
 - Start from an initially large prime modulus, and apply modulus switching after each multiplication.
 - This makes noise size grow linearly instead of exponentially with circuit depth.
 - Hence, we can handle circuits of arbitrary (predetermined) polynomial size without bootstrapping.
 - Even with bootstrapping, we get much better performance than earlier.
- Yet another approach: leveled FHE without modulus switching.
 - Reduce ciphertext noise while still keeping the same modulus.
 - Possible if you put the message in the top bit of the ciphertext rather than the bottom bit ("scale-invariant scheme"), as in Vadim's talk.

Thank you!