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Outline

Breaking things with lattices
Yesterday's game
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The scheme we wanted to break

> Recall yesterday’s “improved” variant of vDGHV:
» Only two public key elements xo = qo - p, x1 = q1 - p + 2n1.
» Encrypt m as ¢ = m+ 2r5 + r{x; mod xo for small random rg,
r.
» Decrypt ¢ as m = (c mod p) mod 2.
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» Only two public key elements xo = qo - p, x1 = q1 - p + 2n1.
» Encrypt m as ¢ = m+ 2r5 + r{x; mod xo for small random rg,
r.
» Decrypt ¢ as m = (c mod p) mod 2.

> In particular, all ciphertexts are of the form:
c=(m+2r))+A-xo+B-xi

were A, B, C are small unknown integers (less that p bits,
say), and xp, x; are very large public constants (+y bit long,
with v > p)..
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The scheme we wanted to break

> Recall yesterday’s “improved” variant of vDGHV:
» Only two public key elements xo = qo - p, x1 = q1 - p + 2n1.
» Encrypt m as ¢ = m+ 2r§ + r{x; mod xg for small random rg,
r.
» Decrypt ¢ as m = (¢ mod p) mod 2.

> In particular, all ciphertexts are of the form:
c=(m+2r))+A-xo+B-xi

were A, B, C are small unknown integers (less that p bits,
say), and xp, x; are very large public constants (+y bit long,
with v > p)..

> This is a weighted knapsack problem: we should be able to
recover the coefficients of xp, x; and 1 with lattice reduction!
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Knapsack lattice

»c=(mM+2r))+A-x+B-x
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Knapsack lattice

»c=(mM+2r))+A-x+B-x
» Consider the integer lattice L generated by the rows of:

100 S-1
o 10 5% §
=10 01 5| °€N

000 S-c
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Knapsack lattice

»c=(mM+2r))+A-x+B-x
» Consider the integer lattice L generated by the rows of:

100 S-1
o 10 5% §
=10 01 5| °€N
000 S-c

» L clearly contains v = (m + 2r}, A, B,0) of norm

vl < v3-2.
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Knapsack lattice

v

c=(m+2r)+A-x0+B-x

» Consider the integer lattice L generated by the rows of:
100 S-1
[0 1 0 S-x "
L=lo o1 5| >V
000 S-c

v

L clearly contains v = (m+ 2r{, A, B, 0) of norm

vl < V3-2°.

Heuristic: this is considerably smaller than (det L)*/* so LLL
should find it... but not if S is too small?

v
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Knapsack lattice

»c=(mM+2r))+A-x+B-x
» Consider the integer lattice L generated by the rows of:

100 S-1
o1 0 S-x .
L=1l0 01 5. | °€N

000 S-c

» L clearly contains v = (m + 2r}, A, B,0) of norm
vl < V3-2°.

» Heuristic: this is considerably smaller than (det L)%/* so LLL
should find it... but not if S is too small?

» Provable claim: pick S large enough, say
S =5-2° > 204=1/2|jy||. With overwhelming probability on
the choice of public key elements xp, x1, ||v|]| = A1(L) and the
first vector of any LLL-reduced basis is £v.
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Breaking things with lattices

Howgrave-Graham on approximate GCDs
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Lattices against PACD

» The security of (the compact variant of) vDGHV is based on
the partial approximate GCD problem:
» Given xp =qo-p, x1 =qo-p+r, find p.
» Depends on the sizes v > 1 > p of x;, p, r.
» More samples x; possible...
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Lattices against PACD

» The security of (the compact variant of) vDGHV is based on
the partial approximate GCD problem:
» Given xp =qo-p, x1 =qo-p+r, find p.
» Depends on the sizes v > 1 > p of x;, p, r.
» More samples x; possible...

» Howgrave-Graham [HO1] proposes of Coppersmith-like
approach to solving the problem for some parameter sets.

» Polynomials of the form
Qij(X) = x5~ (X +x)' X!
satisfy p"|Qii(—r).
» Suppose we can find a linear combination @ of these with

small coefficients, such that |Q|(]r]) < p“. Then —r is a root
of @ in Z so we can find it and recover p.
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Howgrave-Graham’s condition (1)

» Good subfamily of Q;;(X) = x¢™" - (X +x1)'X/?
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Howgrave-Graham’s condition (1)

» Good subfamily of Q;;(X) = x¢™" - (X +x1)'X/?
» Right polynomial family to consider: Py = Qo for k < u and
Py = Qu,k—u for u < k < h.
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Howgrave-Graham’s condition (1)

> Good subfamily of Q;;(X) = x¢~" - (X 4+ x1) X/?

» Right polynomial family to consider: Py = Qo for k < u and
Py = Qu,k—u for u < k < h.

» For u =2, h =4, this gives the Coppersmith lattice:

xX 0 0 0 0
xox1  xoB 0 0 0
L=]| x2 2B B? 0 0|, B=2

0 xB 2xB*> B® 0
0 0 X1232 2xB3 B*
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Howgrave-Graham’s condition (1)

> Good subfamily of Q;;(X) = x¢~" - (X 4+ x1) X/?

» Right polynomial family to consider: Py = Qo for k < u and
Pi = Qui—u for u < k < h.

» For u =2, h =4, this gives the Coppersmith lattice:

xX 0 0 0 0
xox1  xoB 0 0 0
L=]| x2 2B B? 0 0|, B=2

0 xB 2xB*> B® 0
0 0 X1232 2xB3 B*

» Thus we get, for general u, h:

det L = xé'(“Jrl)/zB”(’”rl)/2 ~ pvu(u+1)/2+ph(h+1)/2

and we expect to find short vectors in L of length
~ (det L)/(H+1)
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Howgrave-Graham’s condition (2)

» Norms of the short vectors we expect to find:

u(u+1) h
(det L)V/(HD) ~ 272 12

8/23 (©2013 NTT Secure Platform Laboratories



Howgrave-Graham’s condition (2)

» Norms of the short vectors we expect to find:

u(u+1) h
(det L)V/(HD) ~ 272 12

» We were looking for vectors of length < pY ~ 2"V,
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Howgrave-Graham’s condition (2)

» Norms of the short vectors we expect to find:

u(u+1) h
(det L)Y/ (h+1) ~ 272thin) T02

» We were looking for vectors of length < pY ~ 2"V,
» Hence the condition to the attack to work:

u+1
h+1

h
YE PSS
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Howgrave-Graham’s condition (2)

v

Norms of the short vectors we expect to find:

u(u+1) h
(det L)Y/ (hH1) ~ 272D T2

v

We were looking for vectors of length < pY ~ 2"V,

Hence the condition to the attack to work:

v

u+1
h+1

h
YE PSS

v

LHS minimal for u/h ~ \/p/~, which gives the asymptotic
condition py < n?.
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Howgrave-Graham’s condition (2)

v

Norms of the short vectors we expect to find:

u(u+1) h
(det L)Y/ (hH1) ~ 272D T2

v

We were looking for vectors of length < pY ~ 2"V,

Hence the condition to the attack to work:

v

u+1
h+1

h
YE PSS

v

LHS minimal for u/h ~ \/p/~, which gives the asymptotic
condition py < n?.
Thus, pick py much larger than n? to thwart the attack.

v
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Howgrave-Graham’s condition (2)

» Norms of the short vectors we expect to find:

u(u+1) h
(det L)Y/ (hH1) ~ 272D T2

» We were looking for vectors of length < pY ~ 2"V,
» Hence the condition to the attack to work:

u+1
h+1

h
YE PSS

» LHS minimal for u/h ~ \/p/~, which gives the asymptotic
condition py < n?.
» Thus, pick py much larger than n? to thwart the attack.

» Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.
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Outline

Fully homomorphic encryption from LWE
Recap on LWE
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The LWOE problem

> | have a secret vector s € Zg (q = poly(n)).
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The LWOE problem

> | have a secret vector s € Zg (q = poly(n)).

> | give you access to an oracle that reveals the projection of s
along some random vector a € Z7, i.e. outputs (a, (s, a)).
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The LWOE problem

> | have a secret vector s € Zg (q = poly(n)).

> | give you access to an oracle that reveals the projection of s
along some random vector a € Z7, i.e. outputs (a, (s, a)).

» Can you recover s in polynomial time?
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The LWOE problem

v

| have a secret vector s € Zg (q = poly(n)).

| give you access to an oracle that reveals the projection of s
along some random vector a € Z7, i.e. outputs (a, (s, a)).

v

» Can you recover s in polynomial time?

v

Of course: after O(n) queries, the queries gives vectors
ai,...,a, forming a basis of Zg and the corresponding
projections, so recovering s is simple linear algebra.
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The (search) LWE problem

> | have a secret vector s € Zg (q = poly(n)).
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The (search) LWE problem

> | have a secret vector s € Zg (q = poly(n)).

> | give you access to an oracle that reveals the projection of s
along some random vector a € Zg with some random small
error e, i.e. outputs (a, (s,a) + e).
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The (search) LWE problem

> | have a secret vector s € Zg (q = poly(n)).

> | give you access to an oracle that reveals the projection of s
along some random vector a € Zg with some random small
error e, i.e. outputs (a, (s,a) + e).

» Can you recover s in polynomial time?
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The (search) LWE problem

v

| have a secret vector s € Zg (q = poly(n)).

| give you access to an oracle that reveals the projection of s
along some random vector a € Zg with some random small
error e, i.e. outputs (a, (s,a) + e).

v

» Can you recover s in polynomial time?

v

Probably not: for an appropriate distribution of the noise
values e, this is as hard as solving worst-case lattice problems
(Regev, Peikert).
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The decision LWE problem

» Previous slide: it is hard to find s given polynomially many
samples (a, (s,a) + e).
» Equivalently, it is hard to find s given a random matrix
A € Zg*™ and the vector s - A + e for some random short
vector e € Zg'.
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The decision LWE problem

» Previous slide: it is hard to find s given polynomially many
samples (a, (s,a) + e).
» Equivalently, it is hard to find s given a random matrix
A € Zg*™ and the vector s - A + e for some random short
vector e € Zg'.

» Decision problem: distinguish between (A,s- A + e) and
(A,u), u € Z7 uniformly random.
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The decision LWE problem

» Previous slide: it is hard to find s given polynomially many
samples (a, (s,a) + e).
» Equivalently, it is hard to find s given a random matrix
A € Zg*™ and the vector s - A + e for some random short
vector e € Zg'.

» Decision problem: distinguish between (A,s- A + e) and
(A,u), u € Z7 uniformly random.

» There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim's talk).
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The decision LWE problem

» Previous slide: it is hard to find s given polynomially many
samples (a, (s,a) + e).
» Equivalently, it is hard to find s given a random matrix
A € Zg*™ and the vector s - A + e for some random short
vector e € Zg'.

» Decision problem: distinguish between (A,s- A + e) and
(A,u), u € Z7 uniformly random.

» There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim'’s talk).

» Very convenient assumption to construct lattice-based
schemes: encryption, (H)IBE, signatures, group signatures,
oblivious transfer... and fully homomorphic encryption.
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Drawbacks of yesterday’s schemes

» Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

13/23 (©2013 NTT Secure Platform Laboratories



Drawbacks of yesterday’s schemes

» Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.
» Security is not easy to obtain.

» Gentry's scheme: need to sample ideal lattices with both a
really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

» vDGHV: hardness of approximate GCDs not well understood.
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Drawbacks of yesterday’s schemes

» Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.
» Security is not easy to obtain.
» Gentry's scheme: need to sample ideal lattices with both a
really good basis (for correct decryption) and a really bad basis

(for BDD to be hard).
» vDGHV: hardness of approximate GCDs not well understood.

> Noise grows very fast.
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Drawbacks of yesterday’s schemes

v

Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

v

Security is not easy to obtain.

» Gentry's scheme: need to sample ideal lattices with both a
really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

» vDGHYV: hardness of approximate GCDs not well understood.

v

Noise grows very fast.

v

Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).
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» Gentry's scheme: need to sample ideal lattices with both a
really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).
» vDGHYV: hardness of approximate GCDs not well understood.
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» Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).
» Bootstrapping is brilliant, but has high overhead and requires
circular security.
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Drawbacks of yesterday’s schemes

» Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.
» Security is not easy to obtain.
» Gentry's scheme: need to sample ideal lattices with both a
really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).
» vDGHYV: hardness of approximate GCDs not well understood.
> Noise grows very fast.
» Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).
» Bootstrapping is brilliant, but has high overhead and requires
circular security.

» LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 (©2013 NTT Secure Platform Laboratories



Outline

Fully homomorphic encryption from LWE

A secret key homomorphic scheme
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A secret key scheme

» First imagine we're trying to construct a secret-key
homomorphic encryption scheme based on LWE.
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A secret key scheme

» First imagine we're trying to construct a secret-key
homomorphic encryption scheme based on LWE.
> Here's a first attempt:
> Shared secret key: sk =s = (1, —so) € Z]*!, where s € Z] is
uniformly random.
> Eg(b) = c = ({so,a) +2e + b,a) for uniformly random a € Zj
and a small e € Z,.
» Dy (c) = [(s,c)]q mod 2.
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A secret key scheme

> First imagine we're trying to construct a secret-key
homomorphic encryption scheme based on LWE.
> Here's a first attempt:
> Shared secret key: sk =s = (1, —so) € Z]*!, where s € Z] is
uniformly random.
> Eg(b) = c = ({so,a) +2e + b,a) for uniformly random a € Zj
and a small e € Z,.
» Dy (c) = [(s,c)]q mod 2.
» Clearly, under LWE, this is secure: Eg(0) = Eg(1) since both
are indistinguishable from a uniformly random vector in ZZ‘H.
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A secret key scheme

> First imagine we're trying to construct a secret-key
homomorphic encryption scheme based on LWE.
> Here's a first attempt:
> Shared secret key: sk =s = (1, —so) € Z]*!, where s € Z] is
uniformly random.
> Ew(b) = ¢ = ({so,a) + 2e + b, a) for uniformly random a € Zj
and a small e € Z,.
» Dy (c) = [(s,c)]q mod 2.
» Clearly, under LWE, this is secure: Eg(0) = Eg(1) since both
are indistinguishable from a uniformly random vector in ZZH.

» Additively homomorphic (somewhat): Eq(b1) + Esk(b2)
decrypts to by & bs.
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A secret key scheme

» First imagine we're trying to construct a secret-key
homomorphic encryption scheme based on LWE.
> Here's a first attempt:
> Shared secret key: sk =s = (1, —so) € Z]*!, where s € Z] is
uniformly random.
> Ew(b) = ¢ = ({so,a) + 2e + b, a) for uniformly random a € Zj
and a small e € Z,.
» Dy (c) = [(s,c)]q mod 2.
» Clearly, under LWE, this is secure: Eg(0) = Eg(1) since both
are indistinguishable from a uniformly random vector in ZZH.
» Additively homomorphic (somewhat): Eq(b1) + Esk(b2)
decrypts to by & bs.
» How about multiplication? Encryptions are vectors, we cannot
multiply them!
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Outline

Fully homomorphic encryption from LWE

Achieving homomorphic multiplication

16/23 (©2013 NTT Secure Platform Laboratories



Multiplication: basic idea

» Remark:

> In most previous FHE schemes, obtaining homomorphic
operations was easy (ciphertexts were ring elements) and the
hard part was to prove security.

» Here, security is easy; the hard part is to come up with a way
to multiply ciphertexts.
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Multiplication: basic idea

» Remark:

> In most previous FHE schemes, obtaining homomorphic
operations was easy (ciphertexts were ring elements) and the
hard part was to prove security.

» Here, security is easy; the hard part is to come up with a way
to multiply ciphertexts.

» One way to multiply vectors is tensor product:
» To homomorphically multiply ¢ and ¢(®, publish:
_ ® ..
¢ =cVgc? = (g e )1§i,j§n
» We have (s ®s,c*) = (s,cM) - (s,c®), so we can decrypt (as
long as the noise doesn't get too large).

» Fine, but the new ciphertext c¢* is much larger (dimension
(n+ 1)?) than the ones we started with!
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Multiplication: reducing the size

» How do we convert c* to a ciphertext of the same length as
what we started from?
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Multiplication: reducing the size

» How do we convert c* to a ciphertext of the same length as
what we started from?
> The idea is key switching'
> Publish “encryptions” o7 of the components si-sjofs®s
under a new key t, i.e. vectors a' such that:

(t,o7;) =si-sj+2ej;

> Letc/ =3, ¢ioj € 25
» We easily obtain:

(s,cV) - (s,c@) = (s@s,c’) = (£,¢) — 23 cie

» So under ¢’ decrypts under t to the product Ds(c™)) - Dy(c(?),
provided that the blue sum is small. But it is not small!

» Solution (rough idea): first decompose c* into bits, and apply
the trick to the bit-decomposed extended ciphertext c**. Since
the c;*'s are bits, the corresponding blue sum is small and
we're done.
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Summing up

» We can publish vectors a';-"jk that let you convert a
bit-decomposed extended ciphertext ¢** to a ciphertext ¢’ of
normal length under a new, independent key t € Zg*l.
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Summing up

» We can publish vectors a';-"jk that let you convert a
bit-decomposed extended ciphertext ¢** to a ciphertext ¢’ of
normal length under a new, independent key t € Zg*l.

» This gives (somewhat) homomorphic multiplication:

De(c') = Ds(cM) - Dg(c®)
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» Publishing that information doesn't affect security, since under
LWE, the vectors a;*jk are indistinguishable from random.
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» Publishing that information doesn't affect security, since under
LWE, the vectors a;*jk are indistinguishable from random.

» Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!
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Summing up

» We can publish vectors a}“jk that let you convert a
bit-decomposed extended ciphertext ¢** to a ciphertext ¢’ of
normal length under a new, independent key t € Zg*l.

» This gives (somewhat) homomorphic multiplication:
Dy(c') = Ds(cM) - Ds(c?)

» Publishing that information doesn't affect security, since under
LWE, the vectors a;*jk are indistinguishable from random.

» Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

» This yields a leveled, somewhat homomorphic encryption
scheme from LWE.
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Outline

Fully homomorphic encryption from LWE

Obtaining fully homomorphic encryption
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FHE without squashing

» We discussed a technique (key switching) to convert a
ciphertext under a long key s € ZQ’ to an equivalent
ciphertext under a short key t € Z7, n < N.
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FHE without squashing

» We discussed a technique (key switching) to convert a
ciphertext under a long key s € ZQ’ to an equivalent
ciphertext under a short key t € Z7, n < N.

» A similar trick (modulus switching) lets you convert a
ciphertext in Zg to an equivalent ciphertext under a new key
inZp, p<q.
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FHE without squashing

» We discussed a technique (key switching) to convert a
ciphertext under a long key s € ZQ’ to an equivalent
ciphertext under a short key t € Z7, n < N.

» A similar trick (modulus switching) lets you convert a
ciphertext in Zg to an equivalent ciphertext under a new key
in Zg, p<Kq.

» Application by Brakerski and Vaikuntanathan:

» Apply homomorphic operations over Z,.

» At the end, convert to Z,, p < q to make the decryption
circuit very shallow, and make Gentry's bootstrapping
technique (homomorphic evaluation of the decryption circuit)
possible directly, without the former trick known as
“squashing”, and without subset-sum assumptions.
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Leveled FHE without bootstrapping

» Alternate approach by Brakerski, Gentry and Vaikuntanathan:

» Start from an initially large prime modulus, and apply modulus
switching after each multiplication.

» This makes noise size grow linearly instead of exponentially
with circuit depth.

» Hence, we can handle circuits of arbitrary (predetermined)
polynomial size without bootstrapping.

» Even with bootstrapping, we get much better performance
than earlier.
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Leveled FHE without bootstrapping

» Alternate approach by Brakerski, Gentry and Vaikuntanathan:

» Start from an initially large prime modulus, and apply modulus
switching after each multiplication.

» This makes noise size grow linearly instead of exponentially
with circuit depth.

» Hence, we can handle circuits of arbitrary (predetermined)
polynomial size without bootstrapping.

» Even with bootstrapping, we get much better performance
than earlier.

> Yet another approach: leveled FHE without modulus
switching.
» Reduce ciphertext noise while still keeping the same modulus.
» Possible if you put the message in the top bit of the ciphertext

rather than the bottom bit ( “scale-invariant scheme”), as in
Vadim's talk.
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Thank you!
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