
Fully Homomorphic Encryption
Part II

Mehdi Tibouchi

NTT Secure Platform Laboratories

EPIT 2013, 2013–03–22

1/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

2/23 c©2013 NTT Secure Platform Laboratories

The scheme we wanted to break

I Recall yesterday’s “improved” variant of vDGHV:
I Only two public key elements x0 = q0 · p, x1 = q1 · p + 2r1.
I Encrypt m as c = m + 2r ′0 + r ′1x1 mod x0 for small random r ′0,

r ′1.
I Decrypt c as m = (c mod p) mod 2.

I In particular, all ciphertexts are of the form:

c = (m + 2r ′0) + A · x0 + B · x1

were A,B,C are small unknown integers (less that ρ bits,
say), and x0, x1 are very large public constants (γ bit long,
with γ � ρ)..

I This is a weighted knapsack problem: we should be able to
recover the coefficients of x0, x1 and 1 with lattice reduction!

3/23 c©2013 NTT Secure Platform Laboratories

The scheme we wanted to break

I Recall yesterday’s “improved” variant of vDGHV:
I Only two public key elements x0 = q0 · p, x1 = q1 · p + 2r1.
I Encrypt m as c = m + 2r ′0 + r ′1x1 mod x0 for small random r ′0,

r ′1.
I Decrypt c as m = (c mod p) mod 2.

I In particular, all ciphertexts are of the form:

c = (m + 2r ′0) + A · x0 + B · x1

were A,B,C are small unknown integers (less that ρ bits,
say), and x0, x1 are very large public constants (γ bit long,
with γ � ρ)..

I This is a weighted knapsack problem: we should be able to
recover the coefficients of x0, x1 and 1 with lattice reduction!

3/23 c©2013 NTT Secure Platform Laboratories

The scheme we wanted to break

I Recall yesterday’s “improved” variant of vDGHV:
I Only two public key elements x0 = q0 · p, x1 = q1 · p + 2r1.
I Encrypt m as c = m + 2r ′0 + r ′1x1 mod x0 for small random r ′0,

r ′1.
I Decrypt c as m = (c mod p) mod 2.

I In particular, all ciphertexts are of the form:

c = (m + 2r ′0) + A · x0 + B · x1

were A,B,C are small unknown integers (less that ρ bits,
say), and x0, x1 are very large public constants (γ bit long,
with γ � ρ)..

I This is a weighted knapsack problem: we should be able to
recover the coefficients of x0, x1 and 1 with lattice reduction!

3/23 c©2013 NTT Secure Platform Laboratories

Knapsack lattice

I c = (m + 2r ′0) + A · x0 + B · x1
I Consider the integer lattice L generated by the rows of:

L =

1 0 0 S · 1
0 1 0 S · x0
0 0 1 S · x1
0 0 0 S · c

 , S ∈ N∗

I L clearly contains v = (m + 2r ′0,A,B, 0) of norm
‖v‖ ≤

√
3 · 2ρ.

I Heuristic: this is considerably smaller than (det L)1/4 so LLL
should find it... but not if S is too small?

I Provable claim: pick S large enough, say
S = 5 · 2ρ > 2(4−1)/2‖v‖. With overwhelming probability on
the choice of public key elements x0, x1, ‖v‖ = λ1(L) and the
first vector of any LLL-reduced basis is ±v.

4/23 c©2013 NTT Secure Platform Laboratories

Knapsack lattice

I c = (m + 2r ′0) + A · x0 + B · x1
I Consider the integer lattice L generated by the rows of:

L =

1 0 0 S · 1
0 1 0 S · x0
0 0 1 S · x1
0 0 0 S · c

 , S ∈ N∗

I L clearly contains v = (m + 2r ′0,A,B, 0) of norm
‖v‖ ≤

√
3 · 2ρ.

I Heuristic: this is considerably smaller than (det L)1/4 so LLL
should find it... but not if S is too small?

I Provable claim: pick S large enough, say
S = 5 · 2ρ > 2(4−1)/2‖v‖. With overwhelming probability on
the choice of public key elements x0, x1, ‖v‖ = λ1(L) and the
first vector of any LLL-reduced basis is ±v.

4/23 c©2013 NTT Secure Platform Laboratories

Knapsack lattice

I c = (m + 2r ′0) + A · x0 + B · x1
I Consider the integer lattice L generated by the rows of:

L =

1 0 0 S · 1
0 1 0 S · x0
0 0 1 S · x1
0 0 0 S · c

 , S ∈ N∗

I L clearly contains v = (m + 2r ′0,A,B, 0) of norm
‖v‖ ≤

√
3 · 2ρ.

I Heuristic: this is considerably smaller than (det L)1/4 so LLL
should find it... but not if S is too small?

I Provable claim: pick S large enough, say
S = 5 · 2ρ > 2(4−1)/2‖v‖. With overwhelming probability on
the choice of public key elements x0, x1, ‖v‖ = λ1(L) and the
first vector of any LLL-reduced basis is ±v.

4/23 c©2013 NTT Secure Platform Laboratories

Knapsack lattice

I c = (m + 2r ′0) + A · x0 + B · x1
I Consider the integer lattice L generated by the rows of:

L =

1 0 0 S · 1
0 1 0 S · x0
0 0 1 S · x1
0 0 0 S · c

 , S ∈ N∗

I L clearly contains v = (m + 2r ′0,A,B, 0) of norm
‖v‖ ≤

√
3 · 2ρ.

I Heuristic: this is considerably smaller than (det L)1/4 so LLL
should find it... but not if S is too small?

I Provable claim: pick S large enough, say
S = 5 · 2ρ > 2(4−1)/2‖v‖. With overwhelming probability on
the choice of public key elements x0, x1, ‖v‖ = λ1(L) and the
first vector of any LLL-reduced basis is ±v.

4/23 c©2013 NTT Secure Platform Laboratories

Knapsack lattice

I c = (m + 2r ′0) + A · x0 + B · x1
I Consider the integer lattice L generated by the rows of:

L =

1 0 0 S · 1
0 1 0 S · x0
0 0 1 S · x1
0 0 0 S · c

 , S ∈ N∗

I L clearly contains v = (m + 2r ′0,A,B, 0) of norm
‖v‖ ≤

√
3 · 2ρ.

I Heuristic: this is considerably smaller than (det L)1/4 so LLL
should find it... but not if S is too small?

I Provable claim: pick S large enough, say
S = 5 · 2ρ > 2(4−1)/2‖v‖. With overwhelming probability on
the choice of public key elements x0, x1, ‖v‖ = λ1(L) and the
first vector of any LLL-reduced basis is ±v.

4/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

5/23 c©2013 NTT Secure Platform Laboratories

Lattices against PACD

I The security of (the compact variant of) vDGHV is based on
the partial approximate GCD problem:

I Given x0 = q0 · p, x1 = q0 · p + r , find p.
I Depends on the sizes γ � η � ρ of xi , p, r .
I More samples xi possible...

I Howgrave-Graham [H01] proposes of Coppersmith-like
approach to solving the problem for some parameter sets.

I Polynomials of the form

Qi,j(X) = xu−i
0 · (X + x1)

iX j

satisfy pu|Qij(−r).
I Suppose we can find a linear combination Q of these with

small coefficients, such that |Q|(|r |) < pu. Then −r is a root
of Q in Z so we can find it and recover p.

6/23 c©2013 NTT Secure Platform Laboratories

Lattices against PACD

I The security of (the compact variant of) vDGHV is based on
the partial approximate GCD problem:

I Given x0 = q0 · p, x1 = q0 · p + r , find p.
I Depends on the sizes γ � η � ρ of xi , p, r .
I More samples xi possible...

I Howgrave-Graham [H01] proposes of Coppersmith-like
approach to solving the problem for some parameter sets.

I Polynomials of the form

Qi,j(X) = xu−i
0 · (X + x1)

iX j

satisfy pu|Qij(−r).
I Suppose we can find a linear combination Q of these with

small coefficients, such that |Q|(|r |) < pu. Then −r is a root
of Q in Z so we can find it and recover p.

6/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (1)

I Good subfamily of Qi ,j(X) = xu−i
0 · (X + x1)

iX j?
I Right polynomial family to consider: Pk = Qk,0 for k ≤ u and

Pk = Qu,k−u for u < k ≤ h.
I For u = 2, h = 4, this gives the Coppersmith lattice:

L =

x20 0 0 0 0
x0x1 x0B 0 0 0
x21 2x1B B2 0 0
0 x21B 2x1B

2 B3 0
0 0 x21B

2 2x1B
3 B4

 , B = 2ρ

I Thus we get, for general u, h:

det L = x
u(u+1)/2
0 Bh(h+1)/2 ≈ 2γu(u+1)/2+ρh(h+1)/2

and we expect to find short vectors in L of length
≈ (det L)1/(h+1).

7/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (1)

I Good subfamily of Qi ,j(X) = xu−i
0 · (X + x1)

iX j?
I Right polynomial family to consider: Pk = Qk,0 for k ≤ u and

Pk = Qu,k−u for u < k ≤ h.
I For u = 2, h = 4, this gives the Coppersmith lattice:

L =

x20 0 0 0 0
x0x1 x0B 0 0 0
x21 2x1B B2 0 0
0 x21B 2x1B

2 B3 0
0 0 x21B

2 2x1B
3 B4

 , B = 2ρ

I Thus we get, for general u, h:

det L = x
u(u+1)/2
0 Bh(h+1)/2 ≈ 2γu(u+1)/2+ρh(h+1)/2

and we expect to find short vectors in L of length
≈ (det L)1/(h+1).

7/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (1)

I Good subfamily of Qi ,j(X) = xu−i
0 · (X + x1)

iX j?
I Right polynomial family to consider: Pk = Qk,0 for k ≤ u and

Pk = Qu,k−u for u < k ≤ h.
I For u = 2, h = 4, this gives the Coppersmith lattice:

L =

x20 0 0 0 0
x0x1 x0B 0 0 0
x21 2x1B B2 0 0
0 x21B 2x1B

2 B3 0
0 0 x21B

2 2x1B
3 B4

 , B = 2ρ

I Thus we get, for general u, h:

det L = x
u(u+1)/2
0 Bh(h+1)/2 ≈ 2γu(u+1)/2+ρh(h+1)/2

and we expect to find short vectors in L of length
≈ (det L)1/(h+1).

7/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (1)

I Good subfamily of Qi ,j(X) = xu−i
0 · (X + x1)

iX j?
I Right polynomial family to consider: Pk = Qk,0 for k ≤ u and

Pk = Qu,k−u for u < k ≤ h.
I For u = 2, h = 4, this gives the Coppersmith lattice:

L =

x20 0 0 0 0
x0x1 x0B 0 0 0
x21 2x1B B2 0 0
0 x21B 2x1B

2 B3 0
0 0 x21B

2 2x1B
3 B4

 , B = 2ρ

I Thus we get, for general u, h:

det L = x
u(u+1)/2
0 Bh(h+1)/2 ≈ 2γu(u+1)/2+ρh(h+1)/2

and we expect to find short vectors in L of length
≈ (det L)1/(h+1).

7/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Howgrave-Graham’s condition (2)

I Norms of the short vectors we expect to find:

(det L)1/(h+1) ≈ 2
γ

u(u+1)
2(h+1)

+ρ h
2

I We were looking for vectors of length . pu ≈ 2ηu.

I Hence the condition to the attack to work:

u + 1

h + 1
γ +

h

u
ρ . 2η

I LHS minimal for u/h ∼
√

ρ/γ, which gives the asymptotic
condition ργ . η2.

I Thus, pick ργ much larger than η2 to thwart the attack.

I Generalization to many samples by Cohn and Heninger;
proposed parameters remain safe, however.

8/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

9/23 c©2013 NTT Secure Platform Laboratories

The LWOE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q, i.e. outputs (a, 〈s, a〉).
I Can you recover s in polynomial time?

I Of course: after O(n) queries, the queries gives vectors
a1, . . . , an forming a basis of Zn

q and the corresponding
projections, so recovering s is simple linear algebra.

10/23 c©2013 NTT Secure Platform Laboratories

The LWOE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q, i.e. outputs (a, 〈s, a〉).
I Can you recover s in polynomial time?

I Of course: after O(n) queries, the queries gives vectors
a1, . . . , an forming a basis of Zn

q and the corresponding
projections, so recovering s is simple linear algebra.

10/23 c©2013 NTT Secure Platform Laboratories

The LWOE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q, i.e. outputs (a, 〈s, a〉).
I Can you recover s in polynomial time?

I Of course: after O(n) queries, the queries gives vectors
a1, . . . , an forming a basis of Zn

q and the corresponding
projections, so recovering s is simple linear algebra.

10/23 c©2013 NTT Secure Platform Laboratories

The LWOE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q, i.e. outputs (a, 〈s, a〉).
I Can you recover s in polynomial time?

I Of course: after O(n) queries, the queries gives vectors
a1, . . . , an forming a basis of Zn

q and the corresponding
projections, so recovering s is simple linear algebra.

10/23 c©2013 NTT Secure Platform Laboratories

The (search) LWE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q with some random small
error e, i.e. outputs (a, 〈s, a〉+ e).

I Can you recover s in polynomial time?

I Probably not: for an appropriate distribution of the noise
values e, this is as hard as solving worst-case lattice problems
(Regev, Peikert).

11/23 c©2013 NTT Secure Platform Laboratories

The (search) LWE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q with some random small
error e, i.e. outputs (a, 〈s, a〉+ e).

I Can you recover s in polynomial time?

I Probably not: for an appropriate distribution of the noise
values e, this is as hard as solving worst-case lattice problems
(Regev, Peikert).

11/23 c©2013 NTT Secure Platform Laboratories

The (search) LWE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q with some random small
error e, i.e. outputs (a, 〈s, a〉+ e).

I Can you recover s in polynomial time?

I Probably not: for an appropriate distribution of the noise
values e, this is as hard as solving worst-case lattice problems
(Regev, Peikert).

11/23 c©2013 NTT Secure Platform Laboratories

The (search) LWE problem

I I have a secret vector s ∈ Zn
q (q = poly(n)).

I I give you access to an oracle that reveals the projection of s
along some random vector a ∈ Zn

q with some random small
error e, i.e. outputs (a, 〈s, a〉+ e).

I Can you recover s in polynomial time?

I Probably not: for an appropriate distribution of the noise
values e, this is as hard as solving worst-case lattice problems
(Regev, Peikert).

11/23 c©2013 NTT Secure Platform Laboratories

The decision LWE problem

I Previous slide: it is hard to find s given polynomially many
samples (a, 〈s, a〉+ e).

I Equivalently, it is hard to find s given a random matrix
A ∈ Zn×m

q and the vector s · A+ e for some random short
vector e ∈ Zm

q .

I Decision problem: distinguish between (A, s · A+ e) and
(A,u), u ∈ Zm

q uniformly random.

I There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim’s talk).

I Very convenient assumption to construct lattice-based
schemes: encryption, (H)IBE, signatures, group signatures,
oblivious transfer. . . and fully homomorphic encryption.

12/23 c©2013 NTT Secure Platform Laboratories

The decision LWE problem

I Previous slide: it is hard to find s given polynomially many
samples (a, 〈s, a〉+ e).

I Equivalently, it is hard to find s given a random matrix
A ∈ Zn×m

q and the vector s · A+ e for some random short
vector e ∈ Zm

q .

I Decision problem: distinguish between (A, s · A+ e) and
(A,u), u ∈ Zm

q uniformly random.

I There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim’s talk).

I Very convenient assumption to construct lattice-based
schemes: encryption, (H)IBE, signatures, group signatures,
oblivious transfer. . . and fully homomorphic encryption.

12/23 c©2013 NTT Secure Platform Laboratories

The decision LWE problem

I Previous slide: it is hard to find s given polynomially many
samples (a, 〈s, a〉+ e).

I Equivalently, it is hard to find s given a random matrix
A ∈ Zn×m

q and the vector s · A+ e for some random short
vector e ∈ Zm

q .

I Decision problem: distinguish between (A, s · A+ e) and
(A,u), u ∈ Zm

q uniformly random.

I There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim’s talk).

I Very convenient assumption to construct lattice-based
schemes: encryption, (H)IBE, signatures, group signatures,
oblivious transfer. . . and fully homomorphic encryption.

12/23 c©2013 NTT Secure Platform Laboratories

The decision LWE problem

I Previous slide: it is hard to find s given polynomially many
samples (a, 〈s, a〉+ e).

I Equivalently, it is hard to find s given a random matrix
A ∈ Zn×m

q and the vector s · A+ e for some random short
vector e ∈ Zm

q .

I Decision problem: distinguish between (A, s · A+ e) and
(A,u), u ∈ Zm

q uniformly random.

I There is a search-to-decision reduction: the decision problem
is as hard as the search version (as proved in Vadim’s talk).

I Very convenient assumption to construct lattice-based
schemes: encryption, (H)IBE, signatures, group signatures,
oblivious transfer. . . and fully homomorphic encryption.

12/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Drawbacks of yesterday’s schemes

I Both of the schemes presented yesterday (Gentry, vDGHV)
suffer from a number of problems.

I Security is not easy to obtain.
I Gentry’s scheme: need to sample ideal lattices with both a

really good basis (for correct decryption) and a really bad basis
(for BDD to be hard).

I vDGHV: hardness of approximate GCDs not well understood.

I Noise grows very fast.

I Squashing is difficult, messy, and requires additional
assumption (hardness of sparse subset sums).

I Bootstrapping is brilliant, but has high overhead and requires
circular security.

I LWE schemes by Brakerski et al. offer elegant solutions to
most of these problems.

13/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

14/23 c©2013 NTT Secure Platform Laboratories

A secret key scheme

I First imagine we’re trying to construct a secret-key
homomorphic encryption scheme based on LWE.

I Here’s a first attempt:
I Shared secret key: sk = s = (1,−s0) ∈ Zn+1

q , where s0 ∈ Zn
q is

uniformly random.
I Esk(b) = c = (〈s0, a〉+ 2e+ b, a) for uniformly random a ∈ Zn

q

and a small e ∈ Zq.
I Dsk(c) = [〈s, c〉]q mod 2.

I Clearly, under LWE, this is secure: Esk(0) ∼= Esk(1) since both
are indistinguishable from a uniformly random vector in Zn+1

q .

I Additively homomorphic (somewhat): Esk(b1) + Esk(b2)
decrypts to b1 ⊕ b2.

I How about multiplication? Encryptions are vectors, we cannot
multiply them!

15/23 c©2013 NTT Secure Platform Laboratories

A secret key scheme

I First imagine we’re trying to construct a secret-key
homomorphic encryption scheme based on LWE.

I Here’s a first attempt:
I Shared secret key: sk = s = (1,−s0) ∈ Zn+1

q , where s0 ∈ Zn
q is

uniformly random.
I Esk(b) = c = (〈s0, a〉+ 2e+ b, a) for uniformly random a ∈ Zn

q

and a small e ∈ Zq.
I Dsk(c) = [〈s, c〉]q mod 2.

I Clearly, under LWE, this is secure: Esk(0) ∼= Esk(1) since both
are indistinguishable from a uniformly random vector in Zn+1

q .

I Additively homomorphic (somewhat): Esk(b1) + Esk(b2)
decrypts to b1 ⊕ b2.

I How about multiplication? Encryptions are vectors, we cannot
multiply them!

15/23 c©2013 NTT Secure Platform Laboratories

A secret key scheme

I First imagine we’re trying to construct a secret-key
homomorphic encryption scheme based on LWE.

I Here’s a first attempt:
I Shared secret key: sk = s = (1,−s0) ∈ Zn+1

q , where s0 ∈ Zn
q is

uniformly random.
I Esk(b) = c = (〈s0, a〉+ 2e+ b, a) for uniformly random a ∈ Zn

q

and a small e ∈ Zq.
I Dsk(c) = [〈s, c〉]q mod 2.

I Clearly, under LWE, this is secure: Esk(0) ∼= Esk(1) since both
are indistinguishable from a uniformly random vector in Zn+1

q .

I Additively homomorphic (somewhat): Esk(b1) + Esk(b2)
decrypts to b1 ⊕ b2.

I How about multiplication? Encryptions are vectors, we cannot
multiply them!

15/23 c©2013 NTT Secure Platform Laboratories

A secret key scheme

I First imagine we’re trying to construct a secret-key
homomorphic encryption scheme based on LWE.

I Here’s a first attempt:
I Shared secret key: sk = s = (1,−s0) ∈ Zn+1

q , where s0 ∈ Zn
q is

uniformly random.
I Esk(b) = c = (〈s0, a〉+ 2e+ b, a) for uniformly random a ∈ Zn

q

and a small e ∈ Zq.
I Dsk(c) = [〈s, c〉]q mod 2.

I Clearly, under LWE, this is secure: Esk(0) ∼= Esk(1) since both
are indistinguishable from a uniformly random vector in Zn+1

q .

I Additively homomorphic (somewhat): Esk(b1) + Esk(b2)
decrypts to b1 ⊕ b2.

I How about multiplication? Encryptions are vectors, we cannot
multiply them!

15/23 c©2013 NTT Secure Platform Laboratories

A secret key scheme

I First imagine we’re trying to construct a secret-key
homomorphic encryption scheme based on LWE.

I Here’s a first attempt:
I Shared secret key: sk = s = (1,−s0) ∈ Zn+1

q , where s0 ∈ Zn
q is

uniformly random.
I Esk(b) = c = (〈s0, a〉+ 2e+ b, a) for uniformly random a ∈ Zn

q

and a small e ∈ Zq.
I Dsk(c) = [〈s, c〉]q mod 2.

I Clearly, under LWE, this is secure: Esk(0) ∼= Esk(1) since both
are indistinguishable from a uniformly random vector in Zn+1

q .

I Additively homomorphic (somewhat): Esk(b1) + Esk(b2)
decrypts to b1 ⊕ b2.

I How about multiplication? Encryptions are vectors, we cannot
multiply them!

15/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

16/23 c©2013 NTT Secure Platform Laboratories

Multiplication: basic idea

I Remark:
I In most previous FHE schemes, obtaining homomorphic

operations was easy (ciphertexts were ring elements) and the
hard part was to prove security.

I Here, security is easy; the hard part is to come up with a way
to multiply ciphertexts.

I One way to multiply vectors is tensor product:
I To homomorphically multiply c(1) and c(2), publish:

c∗ = c(1) ⊗ c(2) =
(
c
(1)
i · c(2)j

)
1≤i,j≤n

I We have 〈s⊗ s, c∗〉 = 〈s, c(1)〉 · 〈s, c(2)〉, so we can decrypt (as
long as the noise doesn’t get too large).

I Fine, but the new ciphertext c∗ is much larger (dimension
(n + 1)2) than the ones we started with!

17/23 c©2013 NTT Secure Platform Laboratories

Multiplication: basic idea

I Remark:
I In most previous FHE schemes, obtaining homomorphic

operations was easy (ciphertexts were ring elements) and the
hard part was to prove security.

I Here, security is easy; the hard part is to come up with a way
to multiply ciphertexts.

I One way to multiply vectors is tensor product:
I To homomorphically multiply c(1) and c(2), publish:

c∗ = c(1) ⊗ c(2) =
(
c
(1)
i · c(2)j

)
1≤i,j≤n

I We have 〈s⊗ s, c∗〉 = 〈s, c(1)〉 · 〈s, c(2)〉, so we can decrypt (as
long as the noise doesn’t get too large).

I Fine, but the new ciphertext c∗ is much larger (dimension
(n + 1)2) than the ones we started with!

17/23 c©2013 NTT Secure Platform Laboratories

Multiplication: reducing the size

I How do we convert c∗ to a ciphertext of the same length as
what we started from?

I The idea is key switching:
I Publish “encryptions” σ∗

ij of the components si · sj of s⊗ s
under a new key t, i.e. vectors σ∗

ij such that:

〈t,σ∗
i,j〉 = si · sj + 2eij

I Let c′ =
∑

ij c
∗
ijσ

∗
ij ∈ Zn+1

q .
I We easily obtain:

〈s, c(1)〉 · 〈s, c(2)〉 = 〈s⊗ s, c∗〉 = 〈t, c′〉 − 2
∑
i,j

c∗ij eij

I So under c′ decrypts under t to the product Ds(c(1)) ·Ds(c(2)),
provided that the blue sum is small. But it is not small!

I Solution (rough idea): first decompose c∗ into bits, and apply
the trick to the bit-decomposed extended ciphertext c∗∗. Since
the c∗∗ij ’s are bits, the corresponding blue sum is small and
we’re done.

18/23 c©2013 NTT Secure Platform Laboratories

Multiplication: reducing the size

I How do we convert c∗ to a ciphertext of the same length as
what we started from?

I The idea is key switching:
I Publish “encryptions” σ∗

ij of the components si · sj of s⊗ s
under a new key t, i.e. vectors σ∗

ij such that:

〈t,σ∗
i,j〉 = si · sj + 2eij

I Let c′ =
∑

ij c
∗
ijσ

∗
ij ∈ Zn+1

q .
I We easily obtain:

〈s, c(1)〉 · 〈s, c(2)〉 = 〈s⊗ s, c∗〉 = 〈t, c′〉 − 2
∑
i,j

c∗ij eij

I So under c′ decrypts under t to the product Ds(c(1)) ·Ds(c(2)),
provided that the blue sum is small. But it is not small!

I Solution (rough idea): first decompose c∗ into bits, and apply
the trick to the bit-decomposed extended ciphertext c∗∗. Since
the c∗∗ij ’s are bits, the corresponding blue sum is small and
we’re done.

18/23 c©2013 NTT Secure Platform Laboratories

Summing up

I We can publish vectors σ∗
ijk that let you convert a

bit-decomposed extended ciphertext c∗∗ to a ciphertext c′ of
normal length under a new, independent key t ∈ Zn+1

q .

I This gives (somewhat) homomorphic multiplication:

Dt(c
′) = Ds(c

(1)) · Ds(c
(2))

I Publishing that information doesn’t affect security, since under
LWE, the vectors σ∗

ijk are indistinguishable from random.

I Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

I This yields a leveled, somewhat homomorphic encryption
scheme from LWE.

19/23 c©2013 NTT Secure Platform Laboratories

Summing up

I We can publish vectors σ∗
ijk that let you convert a

bit-decomposed extended ciphertext c∗∗ to a ciphertext c′ of
normal length under a new, independent key t ∈ Zn+1

q .

I This gives (somewhat) homomorphic multiplication:

Dt(c
′) = Ds(c

(1)) · Ds(c
(2))

I Publishing that information doesn’t affect security, since under
LWE, the vectors σ∗

ijk are indistinguishable from random.

I Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

I This yields a leveled, somewhat homomorphic encryption
scheme from LWE.

19/23 c©2013 NTT Secure Platform Laboratories

Summing up

I We can publish vectors σ∗
ijk that let you convert a

bit-decomposed extended ciphertext c∗∗ to a ciphertext c′ of
normal length under a new, independent key t ∈ Zn+1

q .

I This gives (somewhat) homomorphic multiplication:

Dt(c
′) = Ds(c

(1)) · Ds(c
(2))

I Publishing that information doesn’t affect security, since under
LWE, the vectors σ∗

ijk are indistinguishable from random.

I Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

I This yields a leveled, somewhat homomorphic encryption
scheme from LWE.

19/23 c©2013 NTT Secure Platform Laboratories

Summing up

I We can publish vectors σ∗
ijk that let you convert a

bit-decomposed extended ciphertext c∗∗ to a ciphertext c′ of
normal length under a new, independent key t ∈ Zn+1

q .

I This gives (somewhat) homomorphic multiplication:

Dt(c
′) = Ds(c

(1)) · Ds(c
(2))

I Publishing that information doesn’t affect security, since under
LWE, the vectors σ∗

ijk are indistinguishable from random.

I Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

I This yields a leveled, somewhat homomorphic encryption
scheme from LWE.

19/23 c©2013 NTT Secure Platform Laboratories

Summing up

I We can publish vectors σ∗
ijk that let you convert a

bit-decomposed extended ciphertext c∗∗ to a ciphertext c′ of
normal length under a new, independent key t ∈ Zn+1

q .

I This gives (somewhat) homomorphic multiplication:

Dt(c
′) = Ds(c

(1)) · Ds(c
(2))

I Publishing that information doesn’t affect security, since under
LWE, the vectors σ∗

ijk are indistinguishable from random.

I Key switching works for any two keys, not just for
multiplication: so publishing the vectors converting from the
“null” key 0 to s turns the scheme to a public key scheme!

I This yields a leveled, somewhat homomorphic encryption
scheme from LWE.

19/23 c©2013 NTT Secure Platform Laboratories

Outline

Breaking things with lattices
Yesterday’s game
Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
Recap on LWE
A secret key homomorphic scheme
Achieving homomorphic multiplication
Obtaining fully homomorphic encryption

20/23 c©2013 NTT Secure Platform Laboratories

FHE without squashing

I We discussed a technique (key switching) to convert a
ciphertext under a long key s ∈ ZN

q to an equivalent
ciphertext under a short key t ∈ Zn

q, n � N.

I A similar trick (modulus switching) lets you convert a
ciphertext in Zn

q to an equivalent ciphertext under a new key
in Zn

p, p � q.
I Application by Brakerski and Vaikuntanathan:

I Apply homomorphic operations over Zq.
I At the end, convert to Zp, p � q to make the decryption

circuit very shallow, and make Gentry’s bootstrapping
technique (homomorphic evaluation of the decryption circuit)
possible directly, without the former trick known as
“squashing”, and without subset-sum assumptions.

21/23 c©2013 NTT Secure Platform Laboratories

FHE without squashing

I We discussed a technique (key switching) to convert a
ciphertext under a long key s ∈ ZN

q to an equivalent
ciphertext under a short key t ∈ Zn

q, n � N.

I A similar trick (modulus switching) lets you convert a
ciphertext in Zn

q to an equivalent ciphertext under a new key
in Zn

p, p � q.
I Application by Brakerski and Vaikuntanathan:

I Apply homomorphic operations over Zq.
I At the end, convert to Zp, p � q to make the decryption

circuit very shallow, and make Gentry’s bootstrapping
technique (homomorphic evaluation of the decryption circuit)
possible directly, without the former trick known as
“squashing”, and without subset-sum assumptions.

21/23 c©2013 NTT Secure Platform Laboratories

FHE without squashing

I We discussed a technique (key switching) to convert a
ciphertext under a long key s ∈ ZN

q to an equivalent
ciphertext under a short key t ∈ Zn

q, n � N.

I A similar trick (modulus switching) lets you convert a
ciphertext in Zn

q to an equivalent ciphertext under a new key
in Zn

p, p � q.
I Application by Brakerski and Vaikuntanathan:

I Apply homomorphic operations over Zq.
I At the end, convert to Zp, p � q to make the decryption

circuit very shallow, and make Gentry’s bootstrapping
technique (homomorphic evaluation of the decryption circuit)
possible directly, without the former trick known as
“squashing”, and without subset-sum assumptions.

21/23 c©2013 NTT Secure Platform Laboratories

Leveled FHE without bootstrapping

I Alternate approach by Brakerski, Gentry and Vaikuntanathan:

I Start from an initially large prime modulus, and apply modulus
switching after each multiplication.

I This makes noise size grow linearly instead of exponentially
with circuit depth.

I Hence, we can handle circuits of arbitrary (predetermined)
polynomial size without bootstrapping.

I Even with bootstrapping, we get much better performance
than earlier.

I Yet another approach: leveled FHE without modulus
switching.

I Reduce ciphertext noise while still keeping the same modulus.
I Possible if you put the message in the top bit of the ciphertext

rather than the bottom bit (“scale-invariant scheme”), as in
Vadim’s talk.

22/23 c©2013 NTT Secure Platform Laboratories

Leveled FHE without bootstrapping

I Alternate approach by Brakerski, Gentry and Vaikuntanathan:

I Start from an initially large prime modulus, and apply modulus
switching after each multiplication.

I This makes noise size grow linearly instead of exponentially
with circuit depth.

I Hence, we can handle circuits of arbitrary (predetermined)
polynomial size without bootstrapping.

I Even with bootstrapping, we get much better performance
than earlier.

I Yet another approach: leveled FHE without modulus
switching.

I Reduce ciphertext noise while still keeping the same modulus.
I Possible if you put the message in the top bit of the ciphertext

rather than the bottom bit (“scale-invariant scheme”), as in
Vadim’s talk.

22/23 c©2013 NTT Secure Platform Laboratories

Thank you!

23/23 c©2013 NTT Secure Platform Laboratories

	Breaking things with lattices
	Yesterday's game
	Howgrave-Graham on approximate GCDs

	Fully homomorphic encryption from LWE
	Recap on LWE
	A secret key homomorphic scheme
	Achieving homomorphic multiplication
	Obtaining fully homomorphic encryption

