Fully Homomorphic Encryption
Part II

Mehdi Tibouchi

NTT Secure Platform Laboratories

EPIT 2013, 2013–03–22
Outline

Breaking things with lattices
 Yesterday’s game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
The scheme we wanted to break

- Recall yesterday’s “improved” variant of vDGHV:
 - Only two public key elements \(x_0 = q_0 \cdot p, \ x_1 = q_1 \cdot p + 2r_1 \).
 - Encrypt \(m \) as \(c = m + 2r'_0 + r'_1x_1 \mod x_0 \) for small random \(r'_0, r'_1 \).
 - Decrypt \(c \) as \(m = (c \mod p) \mod 2 \).

In particular, all ciphertexts are of the form:

\[
c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1
\]

were \(A, B, C \) are small unknown integers (less than \(\rho \) bits, say), and \(x_0, x_1 \) are very large public constants (\(\gamma \) bit long, with \(\gamma \gg \rho \)).

- This is a weighted knapsack problem: we should be able to recover the coefficients of \(x_0, x_1 \) and 1 with lattice reduction!
The scheme we wanted to break

- Recall yesterday’s “improved” variant of vDGHV:
 - Only two public key elements $x_0 = q_0 \cdot p$, $x_1 = q_1 \cdot p + 2r_1$.
 - Encrypt m as $c = m + 2r'_0 + r'_1 x_1 \mod x_0$ for small random r'_0, r'_1.
 - Decrypt c as $m = (c \mod p) \mod 2$.

- In particular, all ciphertexts are of the form:

$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

were A, B, C are small unknown integers (less than ρ bits, say), and x_0, x_1 are very large public constants (γ bit long, with $\gamma \gg \rho$).

- This is a weighted knapsack problem: we should be able to recover the coefficients of x_0, x_1 and 1 with lattice reduction!
The scheme we wanted to break

- Recall yesterday’s “improved” variant of vDGHV:
 - Only two public key elements $x_0 = q_0 \cdot p$, $x_1 = q_1 \cdot p + 2r_1$.
 - Encrypt m as $c = m + 2r'_0 + r'_1 x_1 \mod x_0$ for small random r'_0, r'_1.
 - Decrypt c as $m = (c \mod p) \mod 2$.
- In particular, all ciphertexts are of the form:

$$c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$$

were A, B, C are small unknown integers (less than ρ bits, say), and x_0, x_1 are very large public constants (γ bit long, with $\gamma \gg \rho$).
- This is a weighted knapsack problem: we should be able to recover the coefficients of x_0, x_1 and 1 with lattice reduction!
Knapsack lattice

- $c = (m + 2r_0') + A \cdot x_0 + B \cdot x_1$

- Consider the integer lattice L generated by the rows of:

$$L = \begin{pmatrix}
1 & 0 & 0 & S \cdot 1 \\
0 & 1 & 0 & S \cdot x_0 \\
0 & 0 & 1 & S \cdot x_1 \\
0 & 0 & 0 & S \cdot c
\end{pmatrix}, \quad S \in \mathbb{N}^*$$

- L clearly contains $v = (m + 2r_0', A, B, 0)$ of norm $\|v\| \leq \sqrt{3} \cdot 2^\rho$.

- Heuristic: this is considerably smaller than $(\det L)^{1/4}$ so LLL should find it... but not if S is too small?

- Provable claim: pick S large enough, say $S = 5 \cdot 2^\rho > 2^{(4-1)/2} \|v\|$. With overwhelming probability on the choice of public key elements x_0, x_1, $\|v\| = \lambda_1(L)$ and the first vector of any LLL-reduced basis is $\pm v$.
Knapsack lattice

- \(c = (m + 2r_0') + A \cdot x_0 + B \cdot x_1 \)
- Consider the integer lattice \(L \) generated by the rows of:

\[
L = \begin{pmatrix}
1 & 0 & 0 & S \cdot 1 \\
0 & 1 & 0 & S \cdot x_0 \\
0 & 0 & 1 & S \cdot x_1 \\
0 & 0 & 0 & S \cdot c
\end{pmatrix}, \quad S \in \mathbb{N}^*
\]

- \(L \) clearly contains \(v = (m + 2r_0', A, B, 0) \) of norm \(\|v\| \leq \sqrt{3} \cdot 2^\rho \).
- Heuristic: this is considerably smaller than \((\det L)^{1/4}\) so LLL should find it... but not if \(S \) is too small?
- Provable claim: pick \(S \) large enough, say \(S = 5 \cdot 2^\rho > 2^{(4-1)/2} \|v\| \). With overwhelming probability on the choice of public key elements \(x_0, x_1 \), \(\|v\| = \lambda_1(L) \) and the first vector of any LLL-reduced basis is \(\pm v \).
Knapsack lattice

- \(c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1 \)
- Consider the integer lattice \(L \) generated by the rows of:

\[
L = \begin{pmatrix}
1 & 0 & 0 & S \cdot 1 \\
0 & 1 & 0 & S \cdot x_0 \\
0 & 0 & 1 & S \cdot x_1 \\
0 & 0 & 0 & S \cdot c
\end{pmatrix}, \quad S \in \mathbb{N}^*
\]

- \(L \) clearly contains \(\mathbf{v} = (m + 2r'_0, A, B, 0) \) of norm \(\| \mathbf{v} \| \leq \sqrt{3} \cdot 2^\rho \).
- Heuristic: this is considerably smaller than \((\det L)^{1/4} \) so LLL should find it... but not if \(S \) is too small?
- Provable claim: pick \(S \) large enough, say \(S = 5 \cdot 2^\rho > 2^{(4-1)/2}\|\mathbf{v}\| \). With overwhelming probability on the choice of public key elements \(x_0, x_1 \), \(\| \mathbf{v} \| = \lambda_1(L) \) and the first vector of any LLL-reduced basis is \(\pm \mathbf{v} \).
Knapsack lattice

- $c = (m + 2r'_0) + A \cdot x_0 + B \cdot x_1$
- Consider the integer lattice L generated by the rows of:

$$L = \begin{pmatrix}
1 & 0 & 0 & S \cdot 1 \\
0 & 1 & 0 & S \cdot x_0 \\
0 & 0 & 1 & S \cdot x_1 \\
0 & 0 & 0 & S \cdot c
\end{pmatrix}, \quad S \in \mathbb{N}^*$$

- L clearly contains $v = (m + 2r'_0, A, B, 0)$ of norm $\|v\| \leq \sqrt{3} \cdot 2^\rho$.
- Heuristic: this is considerably smaller than $(\det L)^{1/4}$ so LLL should find it... but not if S is too small?
- Provable claim: pick S large enough, say $S = 5 \cdot 2^\rho > 2^{(4-1)/2}\|v\|$. With overwhelming probability on the choice of public key elements x_0, x_1, $\|v\| = \lambda_1(L)$ and the first vector of any LLL-reduced basis is $\pm v$.

©2013 NTT Secure Platform Laboratories
Knapsack lattice

- \(c = (m + 2r_0') + A \cdot x_0 + B \cdot x_1 \)
- Consider the integer lattice \(L \) generated by the rows of:

\[
L = \begin{pmatrix}
1 & 0 & 0 & S \cdot 1 \\
0 & 1 & 0 & S \cdot x_0 \\
0 & 0 & 1 & S \cdot x_1 \\
0 & 0 & 0 & S \cdot c
\end{pmatrix}, \quad S \in \mathbb{N}^*
\]

- \(L \) clearly contains \(\mathbf{v} = (m + 2r_0', A, B, 0) \) of norm \(\|\mathbf{v}\| \leq \sqrt{3} \cdot 2^\rho \).
- Heuristic: this is considerably smaller than \((\det L)^{1/4} \) so LLL should find it... but not if \(S \) is too small?
- Provable claim: pick \(S \) large enough, say \(S = 5 \cdot 2^\rho > 2^{(4-1)/2} \|\mathbf{v}\| \). With overwhelming probability on the choice of public key elements \(x_0, x_1, \|\mathbf{v}\| = \lambda_1(L) \) and the first vector of any LLL-reduced basis is \(\pm \mathbf{v} \).
Outline

Breaking things with lattices
 Yesterday’s game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
Lattices against PACD

- The security of (the compact variant of) vDGHV is based on the partial approximate GCD problem:
 - Given $x_0 = q_0 \cdot p$, $x_1 = q_0 \cdot p + r$, find p.
 - Depends on the sizes $\gamma \gg \eta \gg \rho$ of x_i, p, r.
 - More samples x_i possible...

- Howgrave-Graham [H01] proposes of Coppersmith-like approach to solving the problem for some parameter sets.
 - Polynomials of the form
 \[
 Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j
 \]
 satisfy $p^u | Q_{ij}(-r)$.
 - Suppose we can find a linear combination Q of these with small coefficients, such that $|Q|(|r|) < p^u$. Then $-r$ is a root of Q in \mathbb{Z} so we can find it and recover p.
Lattices against PACD

- The security of (the compact variant of) vDGHV is based on the partial approximate GCD problem:
 - Given \(x_0 = q_0 \cdot p, \quad x_1 = q_0 \cdot p + r \), find \(p \).
 - Depends on the sizes \(\gamma \gg \eta \gg \rho \) of \(x_i, p, r \).
 - More samples \(x_i \) possible...

- Howgrave-Graham [H01] proposes of Coppersmith-like approach to solving the problem for some parameter sets.
 - Polynomials of the form
 \[
 Q_{i,j}(X) = x_0^{u-j} \cdot (X + x_1)^i X^j
 \]
 satisfy \(p^u \mid Q_{ij}(-r) \).
 - Suppose we can find a linear combination \(Q \) of these with small coefficients, such that \(|Q|(|r|) < p^u \). Then \(-r\) is a root of \(Q \) in \(\mathbb{Z} \) so we can find it and recover \(p \).
Howgrave-Graham’s condition (1)

- Good subfamily of \(Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j \)?
- Right polynomial family to consider: \(P_k = Q_{k,0} \) for \(k \leq u \) and \(P_k = Q_{u,k-u} \) for \(u < k \leq h \).
- For \(u = 2, h = 4 \), this gives the Coppersmith lattice:

\[
L = \begin{pmatrix}
 x_0^2 & 0 & 0 & 0 & 0 & 0 \\
 x_0 x_1 & x_0 B & 0 & 0 & 0 & 0 \\
 x_1^2 & 2x_1 B & B^2 & 0 & 0 & 0 \\
 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 & 0 \\
 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \quad B = 2^\rho
\]

- Thus we get, for general \(u, h \):

\[
\det L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}
\]

and we expect to find short vectors in \(L \) of length

\[
\approx (\det L)^{1/(h+1)}.
\]
Howgrave-Graham’s condition (1)

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j$?
- Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \leq u$ and $P_k = Q_{u,k-u}$ for $u < k \leq h$.
- For $u = 2$, $h = 4$, this gives the Coppersmith lattice:

$$L = \begin{pmatrix}
x_0^2 & 0 & 0 & 0 & 0 \\
x_0 x_1 & x_0 B & 0 & 0 & 0 \\
x_1^2 & 2x_1 B & B^2 & 0 & 0 \\
0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\
0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4
\end{pmatrix}, \quad B = 2^\rho$$

- Thus we get, for general u, h:

$$\det L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}$$

and we expect to find short vectors in L of length

$$\approx (\det L)^{1/(h+1)}.$$
Good subfamily of \(Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j \)?

Right polynomial family to consider: \(P_k = Q_{k,0} \) for \(k \leq u \) and \(P_k = Q_{u,k-u} \) for \(u < k \leq h \).

For \(u = 2 \), \(h = 4 \), this gives the Coppersmith lattice:

\[
L = \begin{pmatrix}
 x_0^2 & 0 & 0 & 0 & 0 \\
x_0 x_1 & x_0 B & 0 & 0 & 0 \\
x_1^2 & 2x_1 B & B^2 & 0 & 0 \\
0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\
0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4
\end{pmatrix}, \quad B = 2^\rho
\]

Thus we get, for general \(u, h \):

\[
\det L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^{\gamma u(u+1)/2 + \rho h(h+1)/2}
\]

and we expect to find short vectors in \(L \) of length

\[
\approx (\det L)^{1/(h+1)}.
\]
Howgrave-Graham’s condition (1)

- Good subfamily of $Q_{i,j}(X) = x_0^{u-i} \cdot (X + x_1)^i X^j$?
- Right polynomial family to consider: $P_k = Q_{k,0}$ for $k \leq u$ and $P_k = Q_{u,k-u}$ for $u < k \leq h$.
- For $u = 2$, $h = 4$, this gives the Coppersmith lattice:

$$L = \begin{pmatrix}
 x_0^2 & 0 & 0 & 0 & 0 \\
 x_0 x_1 & x_0 B & 0 & 0 & 0 \\
 x_1^2 & 2x_1 B & B^2 & 0 & 0 \\
 0 & x_1^2 B & 2x_1 B^2 & B^3 & 0 \\
 0 & 0 & x_1^2 B^2 & 2x_1 B^3 & B^4
\end{pmatrix}, \quad B = 2^\rho$$

- Thus we get, for general u, h:

$$\det L = x_0^{u(u+1)/2} B^{h(h+1)/2} \approx 2^\gamma u(u+1)/2 + \rho h(h+1)/2$$

and we expect to find short vectors in L of length

$\approx (\det L)^{1/(h+1)}$.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:

\[(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}\]

- We were looking for vectors of length \(p^u \approx 2^\eta u\).
- Hence the condition to the attack to work:

\[\frac{u + 1}{h + 1} \gamma + \frac{h}{u} \rho \lesssim 2\eta\]

- LHS minimal for \(u/h \sim \sqrt{\rho/\gamma}\), which gives the asymptotic condition \(\rho \gamma \lesssim \eta^2\).
- Thus, pick \(\rho \gamma\) much larger than \(\eta^2\) to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:

\[
(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}
\]

- We were looking for vectors of length \(\lesssim p^u \approx 2^{\eta u} \).

- Hence the condition to the attack to work:

\[
\frac{u + 1}{h + 1} \gamma + \frac{h}{u} \rho \lesssim 2\eta
\]

- LHS minimal for \(u/h \sim \sqrt{\rho/\gamma} \), which gives the asymptotic condition \(\rho \gamma \lesssim \eta^2 \).

- Thus, pick \(\rho \gamma \) much larger than \(\eta^2 \) to thwart the attack.

- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:

\[(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}\]

- We were looking for vectors of length \(p^u \approx 2^{\eta u}\).
- Hence the condition to the attack to work:

\[\frac{u + 1}{h + 1} \gamma + \frac{h}{u} \rho \leq 2\eta\]

- LHS minimal for \(u/h \approx \sqrt{\rho/\gamma}\), which gives the asymptotic condition \(\rho \gamma \lesssim \eta^2\).
- Thus, pick \(\rho \gamma\) much larger than \(\eta^2\) to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:

\[
\frac{(\det L)^{1/(h+1)}}{u^2(u+1)2^{(h+1)/2} + \rho h^2} = \frac{(h+1)^2}{u^2(u+1)2^{(h+1)/2} + \rho h^2}
\]

- We were looking for vectors of length \(\leq \rho^u \approx 2^{\eta u} \).

- Hence the condition to the attack to work:

\[
\frac{u+1}{h+1} + \frac{h}{u^2(u+1)2^{(h+1)/2} + \rho h^2} \leq 2\eta
\]

- LHS minimal for \(u/h \approx \sqrt{\rho/\gamma} \), which gives the asymptotic condition \(\rho \gamma \leq \eta^2 \).

- Thus, pick \(\rho \gamma \) much larger than \(\eta^2 \) to thwart the attack.

- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:
 \[
 (\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}
 \]

- We were looking for vectors of length \(\leq \rho u \approx 2^{\eta u} \).
- Hence the condition to the attack to work:
 \[
 \frac{u + 1}{h + 1} \gamma + \frac{h}{u} \rho \leq 2\eta
 \]

- LHS minimal for \(u/h \leq \sqrt{\rho/\gamma} \), which gives the asymptotic condition \(\rho \gamma \leq \eta^2 \).
- Thus, pick \(\rho \gamma \) much larger than \(\eta^2 \) to thwart the attack.
- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Howgrave-Graham’s condition (2)

- Norms of the short vectors we expect to find:
 \[(\det L)^{1/(h+1)} \approx 2^{\gamma \frac{u(u+1)}{2(h+1)} + \rho \frac{h}{2}}\]

- We were looking for vectors of length \(\lesssim p^u \approx 2^{\eta u}\).

- Hence the condition to the attack to work:
 \[\frac{u + 1}{h + 1} \gamma + \frac{h}{u} \rho \lesssim 2\eta\]

- LHS minimal for \(u/h \sim \sqrt{\rho/\gamma}\), which gives the asymptotic condition \(\rho \gamma \lesssim \eta^2\).

- Thus, pick \(\rho \gamma\) much larger than \(\eta^2\) to thwart the attack.

- Generalization to many samples by Cohn and Heninger; proposed parameters remain safe, however.
Outline

Breaking things with lattices
 Yesterday’s game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
The LWOE problem

- I have a secret vector $s \in \mathbb{Z}_q^n (q = \text{poly}(n))$.
- I give you access to an oracle that reveals the projection of s along some random vector $a \in \mathbb{Z}_q^n$, i.e. outputs $(a, \langle s, a \rangle)$.
- Can you recover s in polynomial time?
- Of course: after $O(n)$ queries, the queries gives vectors a_1, \ldots, a_n forming a basis of \mathbb{Z}_q^n and the corresponding projections, so recovering s is simple linear algebra.
The LWOE problem

- I have a secret vector \(s \in \mathbb{Z}_q^n \) (\(q = \text{poly}(n) \)).
- I give you access to an oracle that reveals the projection of \(s \) along some random vector \(a \in \mathbb{Z}_q^n \), i.e. outputs \((a, \langle s, a \rangle) \).
- Can you recover \(s \) in polynomial time?
- Of course: after \(O(n) \) queries, the queries gives vectors \(a_1, \ldots, a_n \) forming a basis of \(\mathbb{Z}_q^n \) and the corresponding projections, so recovering \(s \) is simple linear algebra.
The LWOE problem

- I have a secret vector \(\mathbf{s} \in \mathbb{Z}_q^n \) \((q = \text{poly}(n))\).
- I give you access to an oracle that reveals the projection of \(\mathbf{s} \) along some random vector \(\mathbf{a} \in \mathbb{Z}_q^n \), i.e. outputs \((\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle)\).
- Can you recover \(\mathbf{s} \) in polynomial time?
- Of course: after \(O(n) \) queries, the queries gives vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_n \) forming a basis of \(\mathbb{Z}_q^n \) and the corresponding projections, so recovering \(\mathbf{s} \) is simple linear algebra.
The LWOE problem

- I have a secret vector $s \in \mathbb{Z}_q^n$ ($q = \text{poly}(n)$).
- I give you access to an oracle that reveals the projection of s along some random vector $a \in \mathbb{Z}_q^n$, i.e. outputs $(a, \langle s, a \rangle)$.
- Can you recover s in polynomial time?
- Of course: after $O(n)$ queries, the queries gives vectors a_1, \ldots, a_n forming a basis of \mathbb{Z}_q^n and the corresponding projections, so recovering s is simple linear algebra.
The (search) LWE problem

- I have a secret vector $s \in \mathbb{Z}_q^n$ ($q = \text{poly}(n)$).
- I give you access to an oracle that reveals the projection of s along some random vector $a \in \mathbb{Z}_q^n$ with some random small error e, i.e. outputs $(a, \langle s, a \rangle + e)$.
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values e, this is as hard as solving worst-case lattice problems (Regev, Peikert).
The (search) LWE problem

- I have a secret vector $s \in \mathbb{Z}_q^n$ ($q = \text{poly}(n)$).
- I give you access to an oracle that reveals the projection of s along some random vector $a \in \mathbb{Z}_q^n$ with some random small error e, i.e. outputs $(a, \langle s, a \rangle + e)$.
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values e, this is as hard as solving worst-case lattice problems (Regev, Peikert).
The (search) LWE problem

- I have a secret vector $s \in \mathbb{Z}_q^n$ ($q = \text{poly}(n)$).
- I give you access to an oracle that reveals the projection of s along some random vector $a \in \mathbb{Z}_q^n$ with some random small error e, i.e. outputs $(a, \langle s, a \rangle + e)$.
- Can you recover s in polynomial time?
- Probably not: for an appropriate distribution of the noise values e, this is as hard as solving worst-case lattice problems (Regev, Peikert).
The (search) LWE problem

- I have a secret vector \(\mathbf{s} \in \mathbb{Z}_q^n \) (\(q = \text{poly}(n) \)).
- I give you access to an oracle that reveals the projection of \(\mathbf{s} \) along some random vector \(\mathbf{a} \in \mathbb{Z}_q^n \) with some random small error \(e \), i.e. outputs \((\mathbf{a}, \langle \mathbf{s}, \mathbf{a} \rangle + e)\).
- Can you recover \(\mathbf{s} \) in polynomial time?
- **Probably not:** for an appropriate distribution of the noise values \(e \), this is as hard as solving worst-case lattice problems (Regev, Peikert).
Previous slide: it is hard to find s given polynomially many samples $(a, \langle s, a \rangle + e)$.

Equivalently, it is hard to find s given a random matrix $A \in \mathbb{Z}_q^{n \times m}$ and the vector $s \cdot A + e$ for some random short vector $e \in \mathbb{Z}_q^m$.

Decision problem: distinguish between $(A, s \cdot A + e)$ and (A, u), $u \in \mathbb{Z}_q^m$ uniformly random.

There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim’s talk).

Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.
The decision LWE problem

- Previous slide: it is hard to find s given polynomially many samples $(a, \langle s, a \rangle + e)$.
 - Equivalently, it is hard to find s given a random matrix $A \in \mathbb{Z}_q^{n \times m}$ and the vector $s \cdot A + e$ for some random short vector $e \in \mathbb{Z}_q^m$.

- Decision problem: distinguish between $(A, s \cdot A + e)$ and (A, u), $u \in \mathbb{Z}_q^m$ uniformly random.
 - There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim’s talk).
 - Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.
The decision LWE problem

- Previous slide: it is hard to find s given polynomially many samples $(a, \langle s, a \rangle + e)$.
 - Equivalently, it is hard to find s given a random matrix $A \in \mathbb{Z}_q^{n \times m}$ and the vector $s \cdot A + e$ for some random short vector $e \in \mathbb{Z}_q^m$.

- Decision problem: distinguish between $(A, s \cdot A + e)$ and (A, u), $u \in \mathbb{Z}_q^m$ uniformly random.

- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim’s talk).

- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.
The decision LWE problem

- Previous slide: it is hard to find \(s \) given polynomially many samples \((a, \langle s, a \rangle + e) \).
 - Equivalently, it is hard to find \(s \) given a random matrix \(A \in \mathbb{Z}_q^{n \times m} \) and the vector \(s \cdot A + e \) for some random short vector \(e \in \mathbb{Z}_q^m \).

- Decision problem: distinguish between \((A, s \cdot A + e) \) and \((A, u), u \in \mathbb{Z}_q^m \) uniformly random.

- There is a search-to-decision reduction: the decision problem is as hard as the search version (as proved in Vadim’s talk).

- Very convenient assumption to construct lattice-based schemes: encryption, (H)IBE, signatures, group signatures, oblivious transfer... and fully homomorphic encryption.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
 - Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
 - Noise grows very fast.
 - Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
 - Bootstrapping is brilliant, but has high overhead and requires circular security.
 - LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
 - Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
 - Bootstrapping is brilliant, but has high overhead and requires circular security.
 - LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
 - Bootstrapping is brilliant, but has high overhead and requires circular security.
 - LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Drawbacks of yesterday’s schemes

- Both of the schemes presented yesterday (Gentry, vDGHV) suffer from a number of problems.
- Security is not easy to obtain.
 - Gentry’s scheme: need to sample ideal lattices with both a really good basis (for correct decryption) and a really bad basis (for BDD to be hard).
 - vDGHV: hardness of approximate GCDs not well understood.
- Noise grows very fast.
- Squashing is difficult, messy, and requires additional assumption (hardness of sparse subset sums).
- Bootstrapping is brilliant, but has high overhead and requires circular security.
- LWE schemes by Brakerski et al. offer elegant solutions to most of these problems.
Outline

Breaking things with lattices
 Yesterday’s game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
First imagine we’re trying to construct a secret-key homomorphic encryption scheme based on LWE.

Here’s a first attempt:

- Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
- $E_{sk}(b) = c = (\langle s_0, a \rangle + 2e + b, a)$ for uniformly random $a \in \mathbb{Z}_q^n$ and a small $e \in \mathbb{Z}_q$.
- $D_{sk}(c) = [\langle s, c \rangle]_q \mod 2$.

Clearly, under LWE, this is secure: $E_{sk}(0) \cong E_{sk}(1)$ since both are indistinguishable from a uniformly random vector in \mathbb{Z}_q^{n+1}.

Additively homomorphically (somewhat): $E_{sk}(b_1) + E_{sk}(b_2)$ decrypts to $b_1 \oplus b_2$.

How about multiplication? Encryptions are vectors, we cannot multiply them!
A secret key scheme

- First imagine we’re trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here’s a first attempt:
 - Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_{q+1}^{n}$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - $E_{sk}(b) = c = (\langle s_0, a \rangle + 2e + b, a)$ for uniformly random $a \in \mathbb{Z}_q^n$ and a small $e \in \mathbb{Z}_q$.
 - $D_{sk}(c) = [\langle s, c \rangle]_q \mod 2$.

- Clearly, under LWE, this is secure: $E_{sk}(0) \cong E_{sk}(1)$ since both are indistinguishable from a uniformly random vector in \mathbb{Z}_q^{n+1}.
- Additively homomorphically (somewhat): $E_{sk}(b_1) + E_{sk}(b_2)$ decrypts to $b_1 \oplus b_2$.
- How about multiplication? Encryptions are vectors, we cannot multiply them!
First imagine we’re trying to construct a secret-key homomorphic encryption scheme based on LWE.

Here’s a first attempt:

- Shared secret key: \(sk = s = (1, -s_0) \in \mathbb{Z}_q^{n+1} \), where \(s_0 \in \mathbb{Z}_q^n \) is uniformly random.
- \(E_{sk}(b) = c = (\langle s_0, a \rangle + 2e + b, a) \) for uniformly random \(a \in \mathbb{Z}_q^n \) and a small \(e \in \mathbb{Z}_q \).
- \(D_{sk}(c) = [\langle s, c \rangle]_q \mod 2. \)

Clearly, under LWE, this is secure: \(E_{sk}(0) \cong E_{sk}(1) \) since both are indistinguishable from a uniformly random vector in \(\mathbb{Z}_q^{n+1} \).

Additively homomorphically (somewhat): \(E_{sk}(b_1) + E_{sk}(b_2) \) decrypts to \(b_1 \oplus b_2 \).

How about multiplication? Encryptions are vectors, we cannot multiply them!
A secret key scheme

- First imagine we’re trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here’s a first attempt:
 - Shared secret key: $sk = s = (1, -s_0) \in \mathbb{Z}_{q+1}^n$, where $s_0 \in \mathbb{Z}_q^n$ is uniformly random.
 - $E_{sk}(b) = c = (\langle s_0, a \rangle + 2e + b, a)$ for uniformly random $a \in \mathbb{Z}_q^n$ and a small $e \in \mathbb{Z}_q$.
 - $D_{sk}(c) = [\langle s, c \rangle]_q \mod 2$.

- Clearly, under LWE, this is secure: $E_{sk}(0) \cong E_{sk}(1)$ since both are indistinguishable from a uniformly random vector in \mathbb{Z}_q^{n+1}.
- Additively homomorphically (somewhat): $E_{sk}(b_1) + E_{sk}(b_2)$ decrypts to $b_1 \oplus b_2$.
- How about multiplication? Encryptions are vectors, we cannot multiply them!
A secret key scheme

- First imagine we’re trying to construct a secret-key homomorphic encryption scheme based on LWE.
- Here’s a first attempt:
 - Shared secret key: \(sk = s = (1, -s_0) \in \mathbb{Z}_{q+1} \), where \(s_0 \in \mathbb{Z}_q \) is uniformly random.
 - \(E_{sk}(b) = c = (\langle s_0, a \rangle + 2e + b, a) \) for uniformly random \(a \in \mathbb{Z}_q^n \) and a small \(e \in \mathbb{Z}_q \).
 - \(D_{sk}(c) = [\langle s, c \rangle]_q \mod 2 \).
- Clearly, under LWE, this is secure: \(E_{sk}(0) \cong E_{sk}(1) \) since both are indistinguishable from a uniformly random vector in \(\mathbb{Z}_{q+1}^n \).
- Additively homomorphically (somewhat): \(E_{sk}(b_1) + E_{sk}(b_2) \) decrypts to \(b_1 \oplus b_2 \).
- How about multiplication? Encryptions are vectors, we cannot multiply them!
Outline

Breaking things with lattices
 Yesterday's game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
Remark:

- In most previous FHE schemes, obtaining homomorphic operations was easy (ciphertexts were ring elements) and the hard part was to prove security.
- Here, security is easy; the hard part is to come up with a way to multiply ciphertexts.

One way to multiply vectors is tensor product:

To homomorphically multiply $c^{(1)}$ and $c^{(2)}$, publish:

$$c^* = c^{(1)} \otimes c^{(2)} = \left(c^{(1)}_i \cdot c^{(2)}_j \right)_{1 \leq i, j \leq n}$$

- We have $\langle s \otimes s, c^* \rangle = \langle s, c^{(1)} \rangle \cdot \langle s, c^{(2)} \rangle$, so we can decrypt (as long as the noise doesn’t get too large).
- Fine, but the new ciphertext c^* is much larger (dimension $(n + 1)^2$) than the ones we started with!
Remark:

- In most previous FHE schemes, obtaining homomorphic operations was easy (ciphertexts were ring elements) and the hard part was to prove security.
- Here, security is easy; the hard part is to come up with a way to multiply ciphertexts.

One way to multiply vectors is tensor product:

- To homomorphically multiply $c^{(1)}$ and $c^{(2)}$, publish:

\[
\mathbf{c}^* = \mathbf{c}^{(1)} \otimes \mathbf{c}^{(2)} = \left(c_i^{(1)} \cdot c_j^{(2)} \right)_{1 \leq i,j \leq n}
\]

- We have $\langle s \otimes s, \mathbf{c}^* \rangle = \langle s, \mathbf{c}^{(1)} \rangle \cdot \langle s, \mathbf{c}^{(2)} \rangle$, so we can decrypt (as long as the noise doesn’t get too large).
- Fine, but the new ciphertext \mathbf{c}^* is much larger (dimension $(n + 1)^2$) than the ones we started with!
Multiplication: reducing the size

- How do we convert c^* to a ciphertext of the same length as what we started from?
 - The idea is key switching:
 - Publish "encryptions" σ^*_{ij} of the components $s_i \cdot s_j$ of $s \otimes s$ under a new key t, i.e. vectors σ^*_{ij} such that:
 $$\langle t, \sigma^*_{ij} \rangle = s_i \cdot s_j + 2e_{ij}$$
 - Let $c' = \sum_{ij} c^*_{ij} \sigma^*_{ij} \in \mathbb{Z}_q^{n+1}$.
 - We easily obtain:
 $$\langle s, c^{(1)} \rangle \cdot \langle s, c^{(2)} \rangle = \langle s \otimes s, c^* \rangle = \langle t, c' \rangle - 2 \sum_{i,j} c^*_{ij} e_{ij}$$
 - So under c' decrypts under t to the product $D_s(c^{(1)}) \cdot D_s(c^{(2)})$, provided that the blue sum is small. But it is not small!
 - Solution (rough idea): first decompose c^* into bits, and apply the trick to the bit-decomposed extended ciphertext c^{**}. Since the c^*_{ij}’s are bits, the corresponding blue sum is small and we’re done.
Multiplication: reducing the size

- How do we convert c^* to a ciphertext of the same length as what we started from?
- The idea is key switching:
 - Publish “encryptions” σ_{ij}^* of the components $s_i \cdot s_j$ of $s \otimes s$ under a new key t, i.e. vectors σ_{ij}^* such that:
 \[
 \langle t, \sigma_{i,j}^* \rangle = s_i \cdot s_j + 2e_{ij}
 \]
 - Let $c' = \sum_{ij} c_{ij}^* \sigma_{ij}^* \in \mathbb{Z}_q^{n+1}$.
 - We easily obtain:
 \[
 \langle s, c^{(1)} \rangle \cdot \langle s, c^{(2)} \rangle = \langle s \otimes s, c^* \rangle = \langle t, c' \rangle - 2 \sum_{i,j} c_{ij}^* e_{ij}
 \]
- So under c' decrypts under t to the product $D_s(c^{(1)}) \cdot D_s(c^{(2)})$, provided that the blue sum is small. But it is not small!
- Solution (rough idea): first decompose c^* into bits, and apply the trick to the bit-decomposed extended ciphertext c^{**}. Since the c_{ij}^{**}’s are bits, the corresponding blue sum is small and we’re done.
Summing up

- We can publish vectors σ_{ijk}^* that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key $t \in \mathbb{Z}_q^{n+1}$.

- This gives (somewhat) homomorphic multiplication:

$$D_t(c') = D_s(c^{(1)}) \cdot D_s(c^{(2)})$$

- Publishing that information doesn’t affect security, since under LWE, the vectors σ_{ijk}^* are indistinguishable from random.

- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the “null” key 0 to s turns the scheme to a public key scheme!

- This yields a leveled, somewhat homomorphic encryption scheme from LWE.
Summing up

- We can publish vectors σ_{ijk}^* that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key $t \in \mathbb{Z}_{q}^{n+1}$.
- This gives (somewhat) homomorphic multiplication:
 $$D_t(c') = D_s(c^{(1)}) \cdot D_s(c^{(2)})$$
- Publishing that information doesn’t affect security, since under LWE, the vectors σ_{ijk}^* are indistinguishable from random.
- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the “null” key 0 to s turns the scheme to a public key scheme!
- This yields a leveled, somewhat homomorphic encryption scheme from LWE.
We can publish vectors σ_{ijk}^* that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key $t \in \mathbb{Z}_q^{n+1}$.

This gives (somewhat) homomorphic multiplication:

$$D_t(c') = D_s(c^{(1)}) \cdot D_s(c^{(2)})$$

Publishing that information doesn’t affect security, since under LWE, the vectors σ_{ijk}^* are indistinguishable from random.

Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the “null” key 0 to s turns the scheme to a public key scheme!

This yields a leveled, somewhat homomorphic encryption scheme from LWE.
Summing up

- We can publish vectors σ_{ijk}^* that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key $t \in \mathbb{Z}_q^{n+1}$.

- This gives (somewhat) homomorphic multiplication:

$$D_t(c') = D_s(c^{(1)}) \cdot D_s(c^{(2)})$$

- Publishing that information doesn’t affect security, since under LWE, the vectors σ_{ijk}^* are indistinguishable from random.

- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the “null” key 0 to s turns the scheme to a public key scheme!

- This yields a leveled, somewhat homomorphic encryption scheme from LWE.
Summing up

- We can publish vectors σ_{ijk}^* that let you convert a bit-decomposed extended ciphertext c^{**} to a ciphertext c' of normal length under a new, independent key $t \in \mathbb{Z}_q^{n+1}$.

- This gives (somewhat) homomorphic multiplication:

$$D_t(c') = D_s(c^{(1)}) \cdot D_s(c^{(2)})$$

- Publishing that information doesn't affect security, since under LWE, the vectors σ_{ijk}^* are indistinguishable from random.

- Key switching works for any two keys, not just for multiplication: so publishing the vectors converting from the "null" key 0 to s turns the scheme to a public key scheme!

- This yields a leveled, somewhat homomorphic encryption scheme from LWE.
Outline

Breaking things with lattices
 Yesterday’s game
 Howgrave-Graham on approximate GCDs

Fully homomorphic encryption from LWE
 Recap on LWE
 A secret key homomorphic scheme
 Achieving homomorphic multiplication
 Obtaining fully homomorphic encryption
We discussed a technique (key switching) to convert a ciphertext under a long key $s \in \mathbb{Z}_q^N$ to an equivalent ciphertext under a short key $t \in \mathbb{Z}_q^n$, $n \ll N$.

A similar trick (modulus switching) lets you convert a ciphertext in \mathbb{Z}_q^n to an equivalent ciphertext under a new key in \mathbb{Z}_p^n, $p \ll q$.

Application by Brakerski and Vaikuntanathan:

- Apply homomorphic operations over \mathbb{Z}_q.
- At the end, convert to \mathbb{Z}_p, $p \ll q$ to make the decryption circuit very shallow, and make Gentry’s bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as “squashing”, and without subset-sum assumptions.
FHE without squashing

- We discussed a technique (key switching) to convert a ciphertext under a long key $s \in \mathbb{Z}_q^N$ to an equivalent ciphertext under a short key $t \in \mathbb{Z}_q^n$, $n \ll N$.

- A similar trick (modulus switching) lets you convert a ciphertext in \mathbb{Z}_q^n to an equivalent ciphertext under a new key in \mathbb{Z}_p^n, $p \ll q$.

- Application by Brakerski and Vaikuntanathan:
 - Apply homomorphic operations over \mathbb{Z}_q.
 - At the end, convert to \mathbb{Z}_p, $p \ll q$ to make the decryption circuit very shallow, and make Gentry’s bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as “squashing”, and without subset-sum assumptions.
FHE without squashing

We discussed a technique (key switching) to convert a ciphertext under a long key \(s \in \mathbb{Z}_q^N \) to an equivalent ciphertext under a short key \(t \in \mathbb{Z}_q^n, n \ll N \).

A similar trick (modulus switching) lets you convert a ciphertext in \(\mathbb{Z}_q^n \) to an equivalent ciphertext under a new key in \(\mathbb{Z}_p^n, p \ll q \).

Application by Brakerski and Vaikuntanathan:

- Apply homomorphic operations over \(\mathbb{Z}_q \).
- At the end, convert to \(\mathbb{Z}_p, p \ll q \) to make the decryption circuit very shallow, and make Gentry’s bootstrapping technique (homomorphic evaluation of the decryption circuit) possible directly, without the former trick known as “squashing”, and without subset-sum assumptions.
Leveled FHE without bootstrapping

- Alternate approach by Brakerski, Gentry and Vaikuntanathan:
 - Start from an initially large prime modulus, and apply modulus switching after each multiplication.
 - This makes noise size grow linearly instead of exponentially with circuit depth.
 - Hence, we can handle circuits of arbitrary (predetermined) polynomial size without bootstrapping.
 - Even with bootstrapping, we get much better performance than earlier.

- Yet another approach: leveled FHE without modulus switching.
 - Reduce ciphertext noise while still keeping the same modulus.
 - Possible if you put the message in the top bit of the ciphertext rather than the bottom bit (“scale-invariant scheme”), as in Vadim’s talk.
Leveled FHE without bootstrapping

- Alternate approach by Brakerski, Gentry and Vaikuntanathan:
 - Start from an initially large prime modulus, and apply modulus switching after each multiplication.
 - This makes noise size grow linearly instead of exponentially with circuit depth.
 - Hence, we can handle circuits of arbitrary (predetermined) polynomial size without bootstrapping.
 - Even with bootstrapping, we get much better performance than earlier.

- Yet another approach: leveled FHE without modulus switching.
 - Reduce ciphertext noise while still keeping the same modulus.
 - Possible if you put the message in the top bit of the ciphertext rather than the bottom bit ("scale-invariant scheme"), as in Vadim’s talk.
Thank you!