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Introduction to Communication Systems




@ signal Space and Coded Modulation
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The transmission problem
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The transmission problem

signals

Standard serial transmission
Transmitted signal is

x(6) =Y xph(t—kT)
k
where xj are the transmitted complex sym-

bols and {h (¢ — kT)} is a family of orthogonal
signals (i is a Nyquist root).
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The transmission problem

signals
Standard serial transmission OFDM transmission
Transmitted signal is Transmitted signal is
x() =) _xih(t—kT) N/2 ok
Xk: 5 0=y Y xkth(t—kT)e’NﬁlAﬁ
k q=—NI2

where xj are the transmitted complex sym- .
bols and {h(t— kT)};is a family of orthogonal ~  Where Xj, 4 are the transmitted complex symbols and

- . . .2
aieiall G laa a5 oot {h(t— kT) e'%Af t} is a doubly indexed family of
k.q
/‘M /W A orthogonal signals (for instance,
Al eY sY 6N 5V s 5 s A\ o\ ) e
\ \ h(t) =rectp (1)
s
with Af = £).
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Complex symbols and Signal Space

as a vector living in a m—dimensional complex space or a n—dimensional real space (n=2m).
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Complex symbols and Signal Space

as a vector living in a m—dimensional complex space or a n—dimensional real space (n=2m).

@ Complex symbols used in practice are QAM symbols, components of vector x.
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TELECOM Si e and Coded Modulation

ch

Complex symbols and Signal Space

as a vector living in a m—dimensional complex space or a n—dimensional real space (n=2m).
@ Complex symbols used in practice are QAM symbols, components of vector x.

@ We need to introduce coding — structure the QAM symbols.
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Modulation - Code

Outline of current Part

© Modulation - Code
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Modulation - Code

Modulation + Code = Lattice 2 ...
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Modulation + Code = Lattice ? ...

What a lattice element could be

IFy . Iy Modulator Lattice element?
Binary Encoder . —
Data Labeling in the signal space

Figure: Encoder and Modulator
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Modulation + Code = Lattice ? ...

What a lattice element could be

IFy . Iy Modulator Lattice element?
Binary Encoder . —
Data Labeling in the signal space

Figure: Encoder and Modulator

Requirements
@ Encoder must be linear.

@ Modulation should be QAM for instance.

@ Labeling (modulator) between binary codewords and modulated symbols has to respect
some criteria.
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An example: the D, lattice (partition)

QAM Partition a la Ungerboeck

. 7 o .
. e 7 . .
= =i +1 +3
. o 7 . .
. o 7 . .
/ \
. 7 e - .
L o . 3 e
3 1 +L +3 -3 1 +1 +3
o Te 7 .
O . . g e
A subset B subset

Figure: Labeling of subsets Aand B
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An example: the D, lattice (coding)

Binary data_ 0 ——=00 el (QAML,QAM2)
- (4,A4)U (B, B)

Binary data (uncoded) T T ..........

Figure: Dy—based encoder

J.-C. Belfiore - Lattices for Wireless Communications

10/88



TELECOM Modulation - Code

An example: the D, lattice (coding)

Binary data_ 0 ——=00 el (QAML,QAM2)
- (4,A4)U (B, B)

Binary data (uncoded) T T ..........

Figure: Dy—based encoder

@ The binary code is the (2,1) repetition code (linear)
@ Modulation is QAM, labeling is the Ungerboeck labeling
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An example: the D, lattice (coding)

Binary data_ 0 ——=00 - gl (QAML,QAM2)
- (4,A4)U (B, B)

Binary data (uncoded) T T ..........

Figure: Dy—based encoder

@ The binary code is the (2,1) repetition code (linear)
@ Modulation is QAM, labeling is the Ungerboeck labeling

Dy=(+0Zl?+@ VD, < Di/Q+0ZI* ={(0,0), (LD}

— Dyi=Q1+0Z[*u+0Z[1%+(1,1)

- Lattices for Wireless Communications
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Part II

Constructing Lattices




72 lattice

72 lattice

° Lattice Point
(v1,v2) Lattice Basis
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72 lattice

Properties
@ Generator matrix is

ol 1]

@ A QAM constellation is a finite part of Z2.

72 lattice

° Lattice Point
(v1,v2) Lattice Basis
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72 lattice

Properties
@ Generator matrix is

ol 1]

@ A QAM constellation is a finite part of Z2.

: - : :
L o L . Principal Ideal Domain

As a lattice,

72 ~701]

: : which is a PID. We will use, e.g.
72 lattice

Z[1/A+1)Z[1] =Fy.
° Lattice Point
(Uh Uz) Lattice Basis
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A, lattice

The A; lattice

. Lattice point
(v1,v2) Lattice basis
Fundamental parallelotope




Properties
@ Generator matrix is
M=

@ An HEX constellation is a finite part of Ay, the

. . . . i i i
L] L] L] . L d
$o. LA S N hexagonal lattice.
2
L3 L3 L3 L3 4). L2
L4 . . . .
. L2 .U . . .
° ° L

.
The A, lattice

Lattice point

Lattice basis
Fundamental parallelotope
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The A, lattice

Lattice point
Lattice basis
Fundamental parallelotope

® Voronoi region

Properties

@ Generator matrix is
1
M=

N‘&Nh—

@ An HEX constellation is a finite part of Ay, the
hexagonal lattice.

Principal Ideal Domain
As a lattice,
Ay = Z[w]
which is a PID. We will use, e.g.

Z[w] /J—T;Z[w] ~F3

or

Zlw] [2Z|w] =TFy.
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Outline of current Part

© Construction A
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Construction A

Construction A

Construction A using Z
Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (2" +x).
XEEC
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Construction A using Z
Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (2" +x).
XEEC

Construction of Dy
D, is obtained as

Dy =27*+(4,3,2)f, = 1+ DZ[I* +(2,1,2)F,

where (4,3, 2)|F2 is the binary parity-check code.
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Construction A using Z

Let g be an integer. Then, Z/qZ is a finite field if g is a prime and a finite ring otherwise.
For a linear code ¢ of length n defined on Z/gZ, lattice A is given by

A=qz"+¢= | (qz" +x).

XEEC
Construction of Dy Construction of Eg
D, is obtained as Eg is obtained as
Dy =27* +(4,3,2), = L+ DZ[I* + 2,1,2), B=22%+@4,95,= | [22° +x)

x€8,4)F,
where (4,3, 2)|F2 is the binary parity-check code.

where (8,4, F, is the extended binary Hamming
code (7,4, 3)F,.

J.-C. Belfiore - Lattices for Wireless Communications

16 /88



TELECOM Construction A
ParisTech

onstruction A (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

Aoy =477 +(24,12)7,

where (24,12)z, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z4.

J.-C. Belfiore - Lattices for Wireless Communications

17 /88



TELECOM Construction A
ParisTech

Construction A (quaternary)

Construction A of the Leech lattice
The Leech lattice can be obtained as

Aoy =477 +(24,12)7,

where (24,12)z, is the quaternary self-dual code obtained by extending the quaternary
cyclic Golay code over Z4.

Other constructions

Construction A can be generalized. Constructions B, C, D or E for instance. But one
can show that all these constructions are equivalent to construction A with a suitable
alphabet.
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Nested lattice

Outline of current Part

Q Nested lattices
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TELECOM Nested lattices

Pari

i Sublattice

Definition

Let A be a lattice, then a sublattice of A is a lattice A; = A. The number of copies of Agin
A is the index.
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TELECOM Nested lattices

Parislech
Sublattice

Definition
Let A be a lattice, then a sublattice of A is a lattice A; = A. The number of copies of Agin
A is the index.
Toy example
. [ [ . o . o . . L
. [ [ . . o ] o . .
L] L] L] L] o L] o L] Ll L]
. [ . . . o . o . .
72 lattice D,z
Figure: Dy as a sublattice of Z2. Index is 2.
Construction A

Dy =27°+(2,1,2)f,.

J.-C. Belfiore - Lattices for Wireless Communications 19788
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An example in dimension 8

Chain of nested lattices
ZgDDgDDiDLSDEgDLgDDi* DD;;DZZB.
Binary codes from construction A are respectively
8,8,1)>(8,7,2) > (4,3,2)2 > (8,5,2) > (8,4,4) > (8,3,4) o (4, 1,4)2 > (8,1,8) > (8,0,00)
We have constructed a chain of nested lattices. All relative indices are 2.

Notation: construction A

We have, here,
A =278+ (8, k, dipin)

J.-C. Belfiore - Lattices for Wireless Communications
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Construction D: Barnes-Wall Lattices

O A family of lattices of dimension 2”1, m > 2 can be constructed by construction D.

Barnes-Wall Lattices
Constructed as Z[i]— lattices,

7 m—1
BW = (1+0™Z[i?" + Y. (1+)"RM(m,n
r=0

where RM (m, ) is the binary Reed-Miiller code oflength n = 2™, dimension k = Z;:o ('7)

and minimum Hamming distance d = 2™~". BW, is a Z-lattice of dimension am+l

J.-C. Belfiore - Lattices for Wireless Communications
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Construction D: Barnes-Wall Lattices

O A family of lattices of dimension 2”1, m > 2 can be constructed by construction D.

Barnes-Wall Lattices
Constructed as Z[i]— lattices,

m m=l
BWp=0+0"Z[% + Y (1+) RM@m,1)
r=0
where RM (m, ) is the binary Reed-Miiller code oflength n = 2™, dimension k = Z;:() ('7)

and minimum Hamming distance d = 2™~". BW, is a Z-lattice of dimension am+l

Another construction of Eg
We have
By=(1+0*Z[0" + 1 +1 43,2, + 4 L4,

as Eg is also a Barnes-Wall lattice.
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Part III

Lattice Codes for the Gaussian channel




@ Coding and Shaping
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" What are Lattice Codes? An example

Toy example: the 4-QAM
A code with 4 codewords

A O Al DO A O
Fe========== [====q=m=ssgescsamaaas |
'x oix|oix O]
A O A | D A O
[ S I T
'x oix|oix O]
A O Al D A O

Figure: The 4 codewords are in red. Structure is Z2/272.
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What are Lattice Codes? Voronoi Constellations

Take a lattice A (coding) and a sublattice As c A (shaping) of finite index M. Each point
X € A¢+ ccan be written as
X=Xs+Xg+C

where x; € As and x4 is a a representative of x in A¢/As of smallest length . c¢is a constant
vector which ensures that the overall lattice code has zero mean.
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What are Lattice Codes? Voronoi Constellations

Take a lattice A (coding) and a sublattice As c A (shaping) of finite index M. Each point
X € A¢+ ccan be written as
X=Xs+Xg+C

where x; € As and x4 is a a representative of x in A¢/As of smallest length . c¢is a constant
vector which ensures that the overall lattice code has zero mean.

Lattice Codes
Lattice codewords are the representatives of A./Ag, with smallest length, shifted so that
the overall constellation has zero mean.
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What are Lattice Codes? Voronoi Constellations

Take a lattice A (coding) and a sublattice As c A (shaping) of finite index M. Each point
X € A¢+ ccan be written as

X=Xs+Xg+C
where x; € As and x4 is a a representative of x in A¢/As of smallest length . c¢is a constant
vector which ensures that the overall lattice code has zero mean.

Lattice Codes
Lattice codewords are the representatives of A./Ag, with smallest length, shifted so that
the overall constellation has zero mean.

Benchmark

Lattice codes will be compared to the uncoded 2""— QAM constellation which is
m

Z™/22 Z"™ (m even). Vector cis the all-1/2 vector.

J.-C. Belfiore - Lattices for Wireless Communications
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Coding: Minimum of A,

The Coding Lattice A

We want to characterize the performance of A.. Suppose that A is a scaled version of Z"
(separation). On the Gaussian channel, error probability is dominated by the maximal
pairwise error probability

ming secg | — ¢l

2v/ Ny

Hx—tll) (
max P(x — ) = max =
x,t€€ ¢ ! x,te%Q( 2v/Ny Q

where Q(x) is the error function

QW L %
x) = —e
x  Vem

and N is the noise variance.

J.-C. Belfiore - Lattices for Wireless Communications

26/88



TELECOM Coding and
ParisTech

Coding: Minimum of A,

The Coding Lattice A
We want to characterize the performance of A.. Suppose that A is a scaled version of Z"
(separation). On the Gaussian channel, error probability is dominated by the maximal
pairwise error probability

ming secg | — ¢l

2v/ Ny

Hx—tll) (
max P(x — ) = max =
x,t€6 { ) x,te%Q( 2v/Ny Q

where Q(x) is the error function
+00

Q) L %,
X) = — u
X \/27[

and N is the noise variance.

Minimum distance
We define the minimum of the lattice A as

dmin (A) = min |x
/min (A) xEA\{O}II I

J.-C. Belfiore - Lattices for Wireless Communications
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number of points)=aZ" with a carefully chosen a.
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Coding Gain

number of points)=aZ” with a carey chosen a.

@ Dominant term of the error probability is

(minxytecg lx—¢ll )

2y/Np

mbeing the spectral efficiency, Ej, the energy per bit and Es = mEy,, the energy per symbol.
2

d= . m
Compare 'ES‘“ of the lattice code with the one of 2/22 7",

J.-C. Belfiore - Lattices for Wireless Commur
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number of points)=aZ” with a carey chosen a.

@ Dominant term of the error probability is

ming geg lx—1l) mdfmn B
2Ny Es  No

mbeing the spectral efficiency, Ej, the energy per bit and Es = mEy,, the energy per symbol.
2

d= . m
Compare 'ES‘“ of the lattice code with the one of 2/22 7",

Fundamental Volume and Coding gain
The obtained gain (called the “Coding Gain”) is

2.
Yel) = —
Vol (A) 7

Obvious relation with the Hermite constant.

J.-C. Belfiore - Lattices for Wireless Communications 27188
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oding Gain: Examples

Dimension 4
The checkerboard lattice D4 has generator matrix

-1 -1 0 0
1 -1 0 0
Mp, 0 1 -1 0
0o 0o 1 -1

with det(Mp,) =2and d2, =2.

Dy =27* + (4,3,2).

Coding gain is

J.-C. Belfiore - Lattices for Wireless Communications
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oding Gain: Examples

Dimension 8
The Gosset lattice Eg has generator matrix

=

(== e == =]
SO = OO OO
= —_0 0 0 o O
O O OO OO
S OO oo oo

/2 12 12 1/2 12 12 12 1/2

with det (Mg,) = 1and d2, =2. Fg=27%+(8,4,4).
Coding gain is

2

min =2

Ye(Eg) = T
vol (EBg) @

J.-C. Belfiore - Lattices for Wireless Communications
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Energy

Performance of Ag is related to the energy mini-
mization of the lattice code. All points of the lat-
tice code are in the Voronoi region of A;. Energy

per dimension

1 1 1
E=—E(Ix1?) = —/ Ix11% dx
n n VAX(O) Vol (AS)
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Normalized Second Order Moment

Energy

Performance of Ag is related to the energy mini-
mization of the lattice code. All points of the lat-
tice code are in the Voronoi region of A;. Energy
per dimension

1 1 1
E=—E(Ix1?) = —/ Ix11% dx
n n VAX(O) Vol (As)

Normalized Second Order Moment
The parameter

o 1 o 117 dx
A= Vol (Ag)

2
ol (As)™ 7

is called the normalized second order moment of

the lattice. It has to be minimized.

J.-C. Belfiore - Lattices for Wireless Communications
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Normalized Second Order Moment

Energy

Performance of Ag is related to the energy mini-
mization of the lattice code. All points of the lat-
tice code are in the Voronoi region of A;. Energy
per dimension

1 1 1
E=—E(Ix1?) = —/ Ix11% dx
n n VAX(O) Vol (As)

Shaping Gain
The ratio

G(z")
Ys(As) =

TGy 12

Normalized Second Order Moment
The parameter

2
B 1 fj/AS(O) [lxl1= dx 2
G(As) = (n W Vol (Ay)

is called the normalized second order moment of
the lattice. It has to be minimized.

Loyt

is called the shaping gain of A. Its value is upperbounded by the shaping gain of the

n—dimensional sphere which tends to %e (~1.5dB) when n — oo.

J.-C. Belfiore - Lattices for Wireless Communications
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oding Gain and Shaping Gain

Dominant term of the Error Probability
The error probability of a lattice code using A as the coding lattice and A as the shaping

lattice is dominated by the term

oy

3mEb
No

“Ye(Ae)-ys(Ag)

J.-C. Belfiore - Lattices for Wireless Communications
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oding Gain and Shaping Gain

Dominant term of the Error Probability
The error probability of a lattice code using A as the coding lattice and A as the shaping
lattice is dominated by the term

SmEb
Q N “Ye(Ae) - ys(As)
0

Validity
This analysis remains valid whenever the dimension is small to medium. For a high
dimension analysis, we only have, up to now a probabilistic analysis.

J.-C. Belfiore - Lattices for Wireless Communications
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Lattice Codes : an example

Voronoi Constellations
Let’s give an example of a Lattice Code (or Voronoi Constellation).

@ Connection with error-correcting codes.

@ It gives an embedding between the signal space and binary packets.

J.-C. Belfiore - Lattices for Wireless Communications
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Voronoi Constellations
Let’s give an example of a Lattice Code (or Voronoi Constellation).

@ Connection with error-correcting codes.

@ It gives an embedding between the signal space and binary packets.

Example
Choose A = Eg and Ag = 2Eg. From

By =27°+(8,4,9)5,,

we obtain
Eg/2Ey =2(8,4)f, +(8,4,4)F,

where (8,4)¥ is the quotient group of coset representatives of the extended Hamming
code. In this case, take the coset representatives with smallest Hamming weight.

J.-C. Belfiore - Lattices for Wireless Communications
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Outline of current Part

Q Capacity achieving lattice codes n — +oo
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Capa ing lattice codes n — +00

A quick digest of Erez and Zamir work

Coding/Decoding strategy
Ingredients are:
@ Use nested lattices As < A of
high dimension

@ Use MMSE coefficient at the
receiver

@ Use dithering and modulo A
decoding of the scaled received
vector

J.-C. Belfiore - Lattices for Wireless Communications
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Coding/Decoding strategy
Ingredients are:
@ Use nested lattices As < A of
high dimension
@ Use MMSE coefficient at the
receiver
@ Use dithering and modulo A
decoding of the scaled received
vector

A quick digest of Erez and Zamir work

What is achievable
Rate per real dimension for a given P, is

P/G(Ay)
K(Ac, Po) 255

=-lo
5 82

1 Vol(Ag)) 1
i)

R = 4
n 082\ Vol(Ag)

1
C= 5 logy (G(AS) i (Ac, Po))

where (1 (A¢, Pe) = Vol(A¢) / N and N, is the noise variance guar-
anteeing a probability P, that the received point does not go out-
side the Voronoi cell of the transmitted lattice point.

J.-C. Belfiore - Lattices for Wireless Communications
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TELECOM y achieving lattice codes 7 — +00

TN A quick digest of Erez and Zamir work

What is achievable
Coding/Decoding strategy Rate per real dimension for a given P is
Ingredients are:
@ Use nested lattices Ag c A of 1 Vol (Ag) 1 P/IG(Ay)
high dimension Moo= (Vol o) ) =5 logy ho P 2

@ Use MMSE coefficient at the
receiver

1
C= 5 logy (G(AS) i (Ac, Po))

@ Use dithering and modulo A
decoding of the scaled received = where (A, Pe) = Vol (A¢) /Ne and N is the noise variance guar-
VS anteeing a probability P, that the received point does not go out-
side the Voronoi cell of the transmitted lattice point.

Good lattices
We can find nested lattices such that, when n — oo,

G  —
W(Ac,Pe) —2me

for any value of P, > 0 by using construction A over big alphabets Z/pZ, p prime.

J.-C. Belfiore - Lattices for Wireless Communications
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Lattices for Fading Channels
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Outline of current Part

@ Wireless Communications
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Wireless Communications

Paths recombination
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oil

Phases dependencies

o frequency.
© antennas position (since 7; are different from one antenna to the other one).
o time (obstacles and terminals may move.

Puissance en B

Frequence

Figure: Received power as a function of the frequen

J.-C. Belfiore - Lattices for Wireless Commu
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OFDM frequency diversity

OFDM

Radio channel is frequency selective. Interleaver is used to decorrelate channel coeffi-
cients.

Interleaved frequencies

fi, fo et fu

e / N

) BY fa\ ) fof Y Y fo\fuo)fu/f

\ \

Figure: Interleaved frequencies: Here fadings on frequencies fj, fs and fi; are assumed independent.

f
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O Fast fading channel
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TELECOM Fast fading channel

Channel model

Received signal
Received signal is the vector
Transmitted vector

Y=H-X+7Z
/ —
Received vector T Noise vector (i.i.d.)
Diagonal channel matrix

with H = diag(hy, hy, ..., hp).

J.-C. Belfiore - Lattices for Wireless Communications 40/88
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TELECOM Fast fading channel

Channel model

Received signal
Received signal is the vector
Transmitted vector

Y=H X+7Z
/ —
Received vector T Noise vector (i.i.d.)
Diagonal channel matrix

with H = diag(hy, hy, ..., hp).

Assumptions

@ Channel coefficients 7; are assumed decorrelated

@ Each h; is the channel complex attenuation on a subcarrier

J.-C. Belfiore - Lattices for Wireless Commur ons
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Channel model

Received signal
Received signal is the vector

Transmitted vector

Y=H X+7Z
/ —
Received vector T Noise vector (i.i.d.)
Diagonal channel matrix

with H = diag(hy, hy, ..., hp).

Assumptions

@ Channel coefficients 7; are assumed decorrelated

@ Each h; is the channel complex attenuation on a subcarrier

Detection
All h; are assumed perfectly known at the receiver.
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Fast fading channel

Product distance

O der a
channels is

aNg 1 (ang)
2 l-uff 24P xm2

1
pX—-T=- []

where d)(,,l) (X, T) is the I-product distance produit evaluated when points X and T differ in / symbols
(or components).
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Product distance

@ Consider a pair of points (X, T) of the constellation. Pairwise Error Probability for fast fading
channels is

1

1 4Ny 1 (4No)
pX=D=7 2 20 g2
X2t |Xi— i d, X,T)

where dg) (X, T) is the I-product distance produit evaluated when points X and T differ in / symbols
(or components).

Product distance
The [-product distance is

J.-C. Belfiore - Lattices for Wireless Communications 41 58
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TELECOM Fast fading channel

Product distance

O Consider a pair of points (X, T) o
channels is

e constellation. Pairwise Error Probability for fast fading

l
1 4Ny 1 (4No)

pX—-T=- [] =
2 l-uff 24P xm2

where d)(,,l) (X, T) is the I-product distance produit evaluated when points X and T differ in / symbols
(or components).

Product distance
The [-product distance is

Dominant term
In the global error probability expression, dominant term is dp, min = min d;,L) where L=
min(J) is the diversity order of the constellation (also named “modulation diversity”).
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Construction by optimisation

Aim and methodology
Construct the optimal constellation (in the sense of the product distance), in a 2-
dimensional space, with a diversity order equal to 2.
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TELECOM Fast fadi
ParisTech

Construction by optimisation

Aim and methodology
Construct the optimal constellation (in the sense of the product distance), in a 2-
dimensional space, with a diversity order equal to 2.

@ Choose a constellation such that the product distance dg) (X,T) = 1 for all X # T in the constellation.

@ Start with point 0, then construct a point X) respecting constraint dg) (X1,0) = 1 such that the
average energy of the constellation is minimized. Then construct X such that d;,z) (X2,0) = 1 and

d;,Z) (X1,X2) = 1 and such that the average energy of the constellation is minimized, ...

© Weget

J.-C. Belfiore - Lattices for Wireless Communications
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TELECOM Fast fadi
ParisTech

[ a+b—2—1+f )
1-v5
a+b—==>

with aand bin Z.

Generator matrix
The points of the infinite constellation may be written as

1 HT‘/E | a
= b
2
with a, b€ Z. This infinite constellation is a lattice and

1 1+2\/5
M:( L ) M
2

is its generator matrix.
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Number Fields

Outline of current Part

©Q Number Fields
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Number Fields

Extension and algebraic integers

Definitions
Golden ratio ¢ is in the number field @ (v/5).

@ Q(v/5) is the set of all numbers p+ gv/5 with p,g € Q.
@ Minimal polynomial of ¢ is X2 — X — 1

Algebraic integer
An algebraic integer is an algebraic number whose minimal polynomial has its coeffi-
cientsin Z.

Examples

Q o=
Q Vsisan algebraic integer: 1 /= (X) = X* 5

lS an algebraic integer: (1 (X) = R =x=1

1
Q 8= 1s not an algebraic integer: p5(X) = X“ - X - 1

J.-C. Belfiore - Lattices for Wireless Communications
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TELECO M Number Fields

ParisTech . . . .
Ring of integers and integer basis

Definitions
Integers of Q (v/5) are a+ by with a,be Z.
@ (1,¢) is an integer basis of Q (V/5)
@ The norm is the product of an algebraic number with its conjugate. Conjugate of ¢ is @.
Conjugate of 1 is 1.

Discriminant
We define matrix

which is the generator matrix of lattice (1). Discriminant of Q (\/5) is

do(v3) = (det@)? =5

Q

@ Discriminant is related to the energy of a constellation carved from the infinite lattice. 5 is the

J.-C. Belfiore - Lattices for Wireless Communications 47188
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Lattices from Number Fields

Outline of current Part

@ Lattices from Number Fields
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We consider 3 base fields F in what follows,
Q F=0Q.6;=7
Q F=Q() with Q@) = {x+ iy, x,y€ Q}; O = Z[l.
© F=0Q() with Q) = {x+wy, x,y€Q}; O = Z[w]. w is a primitive third root of unity.
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We consider 3 base fields F in what follows,

o F=Q.0F =2.
Q F=Q() with Q@) = {x+ iy, x,y€ Q}; O = Z[l.
© F=0Q() with Q) = {x+wy, x,y€Q}; O = Z[w]. w is a primitive third root of unity.

i=0
where 0 is some algebraic number of degree n on F, that is, admitting a minimal polynomial of
degree nwith coefficients in [F.

@ We define .
n- .
K :F(H):{ Z a6’ tll‘EfF}

J.-C. Belfiore - Lattices for Wireless Communications
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from Number Fields

Number fields

We consider 3 base fields F in what follows,
Q F=0Q.6;=7
Q F=Q() with Q@) = {x+ iy, x,y€ Q}; O = Z[l.
© F=0Q() with Q) = {x+wy, x,y€Q}; O = Z[w]. w is a primitive third root of unity.

@ We define .
n- .
K=F(@©)= { Z a6’ tll‘EfF}
i=0
where 0 is some algebraic number of degree n on F, that is, admitting a minimal polynomial of
degree nwith coefficients in [F.

Example: Q (v/5)
Minimal polynomial of v/5 is X — 5. So,

@(\/§)={ao+a1\/§, ao,ale@}.

J.-C. Belfiore - Lattices for Wireless Communications
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T E LE C 0 M Lattices from Number Fields

Algebraic Integers

of numbers in K whose minimal polynomial is X" + ;:01 a; X" with a; € 6. We denote this ring O .

Basis
(wg,w1,...,wy—1) is a basis of O iff any element ¢ of Ok can be written as
n-1

b= Z a;wj, a; € Of.
k=0

J.-C. Belfiore - Lattices for Wireless Commur
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Algebraic Integers

of numbers in K whose minimal polynomial is X" + ;‘;01 a;X' i with a; € Of. We denote this ring G .

Basis
(wg,w1,...,wy—1) is a basis of O iff any element ¢ of Ok can be written as

n-1
b= Z a;wj, a; € Of.
k=0

Example (cont.) Q (/5)

V/5 is an integer (minimal polynomial X2 — 5) but 1_+%§ is also an integer (minimal poly-
nomial X2 — X —1). In fact, the ring of integers of Q (V5) is

1++v5
@’K={ao+a17\[.ao.al€z}

is a basis of O .
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The Galois group

Definition

The group of the field morphisms (o(x+y) = 0(x) + o(y) and o(xy) = o(x)o(y)) which
associates to an element of KK its conjugates is called the Galois group of K and denoted
Galy /p (K). If |GalK /[F([K)| = n (the order of K), then the extension is Galois.
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T E LE C 0 M Lattices from Number Fields

ParisTech

The Galois group

Definition
The group of the field morphisms (o(x+y) = 0(x) + o(y) and o(xy) = o(x)o(y)) which
associates to an element of KK its conjugates is called the Galois group of K and denoted
Galy /p (K). If |GalK /[F([K)| = n (the order of K), then the extension is Galois.

Definition
The norm of an element of K is the product of all its conjugates. It is also the constant
term of its minimal polynomial.
n-1
Ng/F@® =[] oi(x) eF.
i=0

If x is integer, then N /f (%) € Of and N /(%) =0 iff x=0.
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T E LE C 0 M Lattices from Number Fields

ParisTech

The Galois group

Definition
The group of the field morphisms (o(x+y) = 0(x) + o(y) and o(xy) = o(x)o(y)) which
associates to an element of KK its conjugates is called the Galois group of K and denoted
Galy /p (K). If |GalK /[F([K)| = n (the order of K), then the extension is Galois.

Definition
The norm of an element of K is the product of all its conjugates. It is also the constant
term of its minimal polynomial.
n-1
Ng/F@® =[] oi(x) eF.
i=0

If x is integer, then N /f (%) € Of and N /(%) =0 iff x=0.

Product Distance

Suppose that K is a totally real extension on Q. x = (o¢(x),01 (x),...,an_l(x))—r where
Xx € Ok. Then,

n

dp(x,0) =[] x| = [N /o] 2 1.

i=1
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The canonical embedding (real case)

Canonical Embedding (real case)
We define the canonical embedding which maps an element of K onto a vector of R”. We
have
oo(x)
01(%)
Y:xeK—x= . eR”

opn-1)

The product of all components of x is the algebraic norm of x. Y transforms O into a
lattice Ag, -
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The canonical embedding (real case)

Canonical Embedding (real case)
We define the canonical embedding which maps an element of K onto a vector of R”. We
have
oo(x)
01(%)
Y:xeK—x= . eR”

opn-1)

The product of all components of x is the algebraic norm of x. Y transforms O into a
lattice Ag, -

The case K = Q (v/2)

An element x = a+ byv/2 is mapped onto the vector

a+bv2
a-bv2 )

J.-C. Belfiore - Lattices for Wireless Communications
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T E LE C O M Lattices from Number Fields

If F = Q(?) or F = Q(w) (or any quadratic complex field), the same definition applies. But
the considered Galois group is the group

Galy /() = Galy /o (K)/ < T >

where 7 is the complex conjugation. Vector x lies in C™.
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T E LE C O M Lattices from Number Fields

The canonical embedding (totally complex case)

If F = Q(?) or F = Q(w) (or any quadratic complex field), the same definition applies. But
the considered Galois group is the group

Galy /() = Galy /o (K)/ < T >

where 7 is the complex conjugation. Vector x lies in C™.

Example

Let F = Q(i) and K = Q ({g) where (g is some gth
primitive root of unity (e.g. {g = exp iT” ). Then
the canonical embedding maps x = a+ b{g, with
a, be Q(i), onto the vector

=)

since the minimal polynomial of {g is X2 — i.

J.-C. Belfiore - Lattices for Wireless Communications
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— The canonical embedding (totally complex case)

‘—‘3: 'l \l

If F = Q(?) or F = Q(w) (or any quadratic complex field), the same definition applies. But
the considered Galois group is the group

Galy /f (K) = Galy /g (K)/ <7 >

where 7 is the complex conjugation. Vector x lies in C™.

Example Product distance
Let F = Q(i) and K = Q ({g) where (g is some gth Forx#0,
primitive root of unity (e.g. {g = exp| 4 |). Then

n
the canonical embedding maps x = a+ b(g, with dp (x,0) = [T |xi] = |Nic/r )] = \/Nic /() = 1.
a,be Q(i), onto the vector i=1

=)

since the minimal polynomial of {g is X2 — i.
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Rotations

Outline of current Part

Q Rotations
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Rotations

Finite constellation: rotate it

J.-C. Belfiore - Lattices for Wireless Communications




Rotations

Finite constellation: rotate it

@ Same performance on the Gaussian channel as the non rotated QAM constellation. Rotation must
be chosen to maximize the product distance.
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TELECOM Rotations
ParisTech

Finite constellation: rotate it

o Solution: Rotated QAM constellations.

@ Same performance on the Gaussian channel as the non rotated QAM constellation. Rotation must
be chosen to maximize the product distance.

Rotated QPSK
arsic
9= 15 dogrees
QPSK wifh fading Rotated QPSKC with fading

Figure: Effect of a fading on a QPSK and a rotated QPSK
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Rotations

Rotation in Q (v/5)

So,

H
T
S

=
I
S
<
i
NTN
:
<
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Rotations

Rotation in Q (v/5) (I)

So, 2 >
1+V5 o
_ _ 2
x=M-p= 1-v5 [P -
2 2
-4
4 2 o 2 4
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So, 2 > i .
1415 ot Ly
x=M p= [ ]72\/3 l P - . .
2 . .
Problem

M is not a rotation! We can have problems of shaping ...

J.-C. Belfiore - Lattices for Wireless Communications .
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Rotations

Rotation in Q (v/5) (I)

Gram matrix
Gram matrix of M is G= M* - M. If M would have been a scaled rotation, we would have

G=c-1

where c is some integer.

J.-C. Belfiore - Lattices for Wireless Communications
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Gram matrix
Gram matrix of M is G= M* - M. If M would have been a scaled rotation, we would have

G=c-1
where c is some integer.

Condition on the determinant
Determinant of the Gram matrix must be

detG=c*
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Rotation in Q (v/5) (I)

Gram matrix
Gram matrix of M is G= M* - M. If M would have been a scaled rotation, we would have

G=c-1
where c is some integer.

Condition on the determinant
Determinant of the Gram matrix must be

detG=c*

Reality
Determinant of M is —v/5, so,
detG=5

which is not a square.
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TELECU M Rotations
A rotation

N(ﬁ)=(2+ 1_2‘/5).(2+ 1+T‘/§)=5
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Rotations

A rotation

@ Consider matrix

[ VB 0

0 \/E
whose determinant is det (4) = \/N(B) = v/5. Equivalent to consider lattices for trace form
(5,3) = Tr (Bxy).
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Rotations

A rotation

@ Consider matrix

[ VB 0

0 \/E
whose determinant is det (4) = \/N(B) = v/5. Equivalent to consider lattices for trace form
(5,3) = Tr (Bxy).

© Construct P=A- M whose Gram matrix has determinant 52,
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Rotations

A rotation

@ Consider matrix

= \/B 0
o V5

whose determinant is det (4) = \/N(B) = v/5. Equivalent to consider lattices for trace form
(5,3) = Tr (Bxy).

© Construct P=A- M whose Gram matrix has determinant 52,

© We can check that P!- P=5.I. The rotation matrix is

reLp_ L[ V216 oV2+§
Vs V5 2+ p\2+¢

Minimum product distance of the constellation is dp, min = % which is the best known minimum
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’ A Unitary Transform

@ Same considerations apply when instead of F = Q@ we consider F = Q(z). Here a and b will be in Z[1].
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Rotations

A Unitary Transform

@ Same considerations apply when instead of F = Q@ we consider F = Q(z). Here a and b will be in Z[1].

@ The unitary matrix now is
1

G
where a =1+1—1pand @& =1+ 1—1¢. It is the key transform in the construction of the Golden Code
for MIMO communication.

a  ap

a  ag @
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@ Same considerations apply when instead of F = Q@ we consider F = Q(z). Here a and b will be in Z[1].

@ The unitary matrix now is
1

G
where a =1+1—1pand @& =1+ 1—1¢. It is the key transform in the construction of the Golden Code
for MIMO communication.

a  ap

a  ag @

@ This transform gives the best product distance among all unitary transforms in dimension 2.
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Paris

General case: Get a lattice with given determinant

Norm of an ideal
The norm of an ideal .# of O is defined as

Nk/q (#) = Card (O /.9).

Moreover, if I is principal, generated by a, then Ni g (%) = | N /g (@)] .
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ParisTech

- General case: Get a lattice with given determinant

Norm of an ideal
The norm of an ideal .# of O is defined as

Nk/q (#) = Card (O /.9).
Moreover, if ] is principal, generated by a, then Ny /g (4) = | Nk /@ (a)| .

Determinant
Suppose that we consider the canonical embedding of an ideal .# of absolute norm
N /@ (#). Then the lattice obtained by canonical embedding has determinant,

det(/\y) =Nk/Q (])2 -dk
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- General case: Get a lattice with given determinant

‘—‘3: 'l \l

Norm of an ideal
The norm of an ideal .# of O is defined as

Nk/q (#) = Card (O /.9).
Moreover, if ] is principal, generated by a, then Ny /g (4) = | Vi Q (@)].

Determinant
Suppose that we consider the canonical embedding of an ideal .# of absolute norm
N /@ (#). Then the lattice obtained by canonical embedding has determinant,

det(/\y) = NK/@ (.])2 - di

Rotation
If we want to have a chance of generating a lattice equivalent to Z", then det(A ) = g"
for some integer ¢. If it is impossible, then try to use the trace form (x,y) g = Tr (Bxy).
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Lattices for Security




Introduction

Outline of current Part

Q Introduction
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The Gaussian Wiretap Channel

Figure: The Gaussian Wiretap Channel model
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TELECOM Introduction
The Gaussian Wiretap Channel

ParisTech

Figure: The Gaussian Wiretap Channel model

The secrecy capacity is given by

’ Cs=1[Ca~p—Ca-pgl" ‘

where C4_.p =log, (1 + ﬁ%) and Cy—.g = log, (1 + 7{-71-] can be achieved by doing lattice
coding.
Of course, Cs > 0 if Ny < N.
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits
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Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2

with probability 1/2 and x with same probability. The symbol error probability is 1/2.
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TELECOM Introduction
ParisTech

Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2
with probability 1/2 and x with same probability. The symbol error probability is 1/2.
Symbol to Bits Labelling

s=2by + by

Bit by experiences error probability 1/2 while bit by experiences error probability 0.
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TELECOM Introduction
ParisTech

Encoder Design

@ The problem of Wiretap is a problem of labelling transmitted symbols with data bits

+2 mod (4) Channel
We suppose the alphabet Z4 and a channel Alice—Eve that outputs

y=x+2
with probability 1/2 and x with same probability. The symbol error probability is 1/2.

Symbol to Bits Labelling

s=2by + by

Bit by experiences error probability 1/2 while bit by experiences error probability 0.

Confidential data must be encoded through b;. On by, put random bits.
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Coset Coding

Outline of current Part

@ Coset Coding
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Assume that Alice — Eve channel is corrupted by an additive uniform noise
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TELECOM Coset Coding

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point

Figure: Constellation corrupted by uniform noise
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Coset Coding

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with pseudo—random bits

—— 0 ——— 06— & 0 —

/4

Transmitted point

Figure: Points can be decoded error free: label with pseudo-random symbols
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Coset Coding

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

/4

Transmitted point

Figure: Points are not distinguishable: label with data
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TELECOM fing

ch . .
Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Label points with data

Transmitted point
Label points with pseudo—random bits

———& —— & ———— @& & —

/4
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TELECOM C Coding

Uniform Noise

Assume that Alice — Eve channel is corrupted by an additive uniform noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will
be high.

@ unfortunately not valid for Gaussian noise.

Label points with data

Transmitted point
Label points with pseudo—random bits

———& — & ———— @& & —

/4
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Coset Coding

Coset Coding with Integers

Label points with data + pseudo—random bits

—0—0 0 0 0 0 06 o o o o o o

/4

Transmitted point
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TELECOM, CosetCoding

ParisTe
" Coset Coding with Integers

Example

@ Suppose that points x are in Z.

@ Euclidean division
x=3q+r

@ g carries the pseudo-random symbols while r carries the data or “pseudo-random symbols
label points in 3Z while data label elements of Z/37”.

Label points with data + pseudo—random bits

—0—0 0 0 0 0 0 o o o o o o

/4

Transmitted point
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Gaussian noise is not bounded: it needs a n—dimensional approach (then let n — oo for

sphere hardening).
1-dimensional n—dimensional
Transmitted lattice z Fine lattice Aj,
Pseudo-random symbols mZcZ Coarse lattice Ap c Ay,
Data ZlmZ Cosets Ap/Ae

Table: From the example to the general scheme
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TELECOM| Coset Coding

Lattice Coset Coding

1O
4-QAM / .

04 Coset Code

-15 -10 -5 0 5 10 15
Ey/No (dB)

Figure: Probability of correct decoding for coset coding compared to QPSK

Probability of correct decoding is given by
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@ The Secrecy Gain
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Eve’s Probability of Correct Decision (data)
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding
another coset representative
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Eve’s Probability of Correct Decision (data)

Can Eve decode the data? Eve’s Probability of correct decision
1 n i
[ e I e e L e o e Pc,e < VOl(Ab) Z e 2Np
siaiain|aininin|nininin|ninin;n V2102 rehe
winiwie|nininin|n win|wininin 1 1
AR - () o ]
", ® @, N | E N 5|58 N 5 8 |®8 ® ®N.®N 27[02 2]-[0-
SRR TR e .
P ) [ e oAm =Y. ¢ g=e,y>0
mimimim el e el m [ EElw XeA

. . 2 _
Figure: Eve correctly decodes when finding i Ee (s st ol Al o = 1)

another coset representative
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Can Eve decode the data?

Figure: Eve correctly decodes when finding
another coset representative

Eve’s Probability of Correct Decision (data)

Eve’s Probability of correct decision

() v £
Pee = Vol (A e =M

o 2m0? relhe
= ! nVOl(A)@ ( ! )
Voro? b= e ona?

where i
oAm =Y. ¢ g=e,y>0

XeA

is the theta series of A and 02 = Nj.

Problem
Find A minimizing

for some y.
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ParisTech .
Secrecy function

Definition

Let A be a n—dimensional lattice with fundamental volume A”. Its secrecy function is

defined as,
—vV/A
2 Oazn(y) _ b3 (e mﬁy)

A

CINGY) 0r()

where 93(¢) = X122 o q"z and y> 0.
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Secrecy function

Definition
Let A be a n—dimensional lattice with fundamental volume A”. Its secrecy function is
defined as,
—mVA;
Ea L Oy %3 (e " y)
- OAY) OAY)
where 93(¢) = X122 o q"z and y> 0.
Examples
' ; \
: /1A
;. 3 i
. z AR
i IR R T I N

-6 -4 = [ 2 4 6 -6 4 = [ 2 4 [3
¥ (B) ¥ (@B)

Figure: Secrecy functions of Eg and Ay
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Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>
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Definition
The strong secrecy gain of a lattice A is

oA S sug EAW)
y>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at d(A)™ 7
(Poisson-Jacobi’s formula),
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72188



Definition

The strong secrecy gain of a lattice A is

oA S sug EAW)
y>

1
@ Alattice equivalent to its dual has a theta series with a multiplicative symmetry point at d(A)™ 7

(Poisson-Jacobi’s formula),

Definition

1
=N (d(/\)iﬁy) :EA(

d(A)

1
n

y

|

For a lattice A equivalent to its dual and of determinant (volume) d(A), we define the

weak secrecy gain,

ta 224 ()

- Lattices for Wireless Communications
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Conjecture

If A is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary

The strong secrecy gain of a unimodular lattice A is x5, A = EA Q) (unimodular means that
the Gram matrix has integer-valued entries and determinant equal to 1).

J.-C. Belfiore - Lattices for Wireless Communications



Conjecture
If A is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary
The strong secrecy gain of a unimodular lattice A is xj\ £ =7 (1) (unimodular means that
the Gram matrix has integer-valued entries and determinant equal to 1).

Calculation of E3 secrecy gain
From Eg theta series,

1 5 (020e B+ 036 B+ 04(e7 )
Ep@ 93(e )8
92 (™) 9s(e™
_ 3 incef2(€) _fale®) 1
4 O3(e™) B3 {2

4
soweget| yg, =Zg, (1) = 3l
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Even Unimodular Lattices

Outline of current Part

@ Even Unimodular Lattices
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Even Unimodular Lattices

Definition
An even unimodular lattice is a lattice whose squared length of all its vectors is always
an even integer). For instance, Eg or the Leech lattice A4 are even unimodular.

J.-C. Belfiore - Lattices for Wireless Communications
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Even Unimodular Lattices

Definition
An even unimodular lattice is a lattice whose squared length of all its vectors is always
an even integer). For instance, Eg or the Leech lattice A4 are even unimodular.

Properties
An even unimodular lattice A only exists when 7 is a multiple of 8. The minimum squared
length of any non zero vector is upperbounded

5% <2(m+1)

where n=24m+8k, k=0,1,2. Alattice achieving this upperbound is called extremal.
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T E LE C 0 M Even Unimodular Lattices

Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80

200

()

— |
—
Z0,0)
— |

¥ (dB) ¥ (@B)

Figure: Secrecy functions of extremal lattices (n = 72,80)
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T E LE C 0 M Even Unimodular Lattices

Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80

200

()

9

¥ (dB) ¥ (@B)

Figure: Secrecy functions of extremal lattices (n = 72,80)

Secrecy gains of extremal lattices (all rational numbers !!!)
| Dimension | 8 [ 24 [ 32 [ 48 | 72 | 80
T | 256 524288 T34217728 _ g5, | 536870912 _ 4,

Secrecy gain

J.-C. Belfiore - Lattices for Wireless Communications
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Even Unimodular Lattices

Secrecy Gain of Extremal Even Unimodular Lattices

Theorem
The secrecy gain of an even unimodular lattice is a rational number.

J.-C. Belfiore - Lattices for Wireless Communications
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ParisTech
= Secrecy Gain of Extremal Even Unimodular Lattices

Theorem
The secrecy gain of an even unimodular lattice is a rational number.

Proof.
Theta series of an even unimodular lattice A (n=24m+ 8k),

m o
= Z bjﬁi(m_j)-'—kA‘]
j=0

with E4 = % (193 +19§ + 192), A= ﬁ (929394)® and bj € Q. For an extremal lattice, the
annihilation of the first terms give integer b;. As

we obtain

giving the rationality of 4 (1).
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Even Unimodular Lattices

Asymptotic behavior (I)

Question
How does the optimal secrecy gain behaves when 7 — oo ?
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symptotic behavior (I)

Question
How does the optimal secrecy gain behaves when 7 — oo ?

First answer
Apply the Siegel-Weil formula,

Orlg)
A&D, Aut(A)] ~ et (qz)

where
1

My = —_—
" AGG, AUt

and Ey is the Eisenstein series with weight k = 4. Q, is the set of all inequivalent

n—dimensional, even unimodular lattices. We get

@n,opt (ein) < Ek (6727[)
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Even Unimodular Lattices

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension »n, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

ﬁg’(e’”) 1
An= ——= =
Ex(e?7) 2

J.-C. Belfiore - Lattices for Wireless Communications
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ymptotic behavior (II)
=Tt

Maximal Secrecy gain

For a given dimension »n, multiple of 8,
there exists an even unimodular lattice
whose secrecy gain is

_ 1
_9%5(e™) 1 w1 | _ 1L086"
= Elen) 2 r(%) S22
Behavior of Eisenstein Series
We have
+00 k—1
Ek(e’z”):u—ﬂ m

By being the Bernoulli numbers. For k a mul-
tiple of 4, then Ey (e~27) fastly converges to 2
(k— 00).

J.-C. Belfiore - Lattices for Wireless Communications
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ymptotic behavior (II)

Maximal Secrecy gain Bound from Siegel-Weil Formula vs. Extremal lattices
For a given dimension »n, multiple of 8, i
there exists an even unimodular lattice /
whose secrecy gain is 400 /‘
- 1 300
(e 1| nt 1.086" )
An=g letm) "2 - .
Eg(e?™) 2\r (%) 2 200 /
100
Behavior of Eisenstein Series ok —0——0——0——0”/./ ]

We have 0 20 40 60 80
Dimension n

2k *oo mk*l
|Bi| =1 e2Tm—1 Figure: Lower bound of the minimal secrecy gain as a function of
n from Siegel-Weil formula. Points correspond to extremal
lattices.

Ek(e’z”) =1+

By being the Bernoulli numbers. For k a mul-
tiple of 4, then Ey (e~27) fastly converges to 2
(k— 00).
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Even Unimodular Lattices

Another way of analyzing the asymptotic behavior

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

) )
O = EtD+ Sz N) = Y r(m, ) E7ME
m=0

where S (z,A) is a cusp form.
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ParisTech

Expression of the theta series
For a 2k—dimensional even unimodular lattice, the
Fourier decomposition gives

) )
O = EtD+ Sz N) = Y r(m, ) E7ME
m=0

where S (z,A) is a cusp form.

Fourier coefficients
If Si (2, N)=X5°_alm, A) 2MZ then,

r(m A)—ﬂa (m)+a(m, )
RNV NT R
Sk
Eg

Another way of analyzing the asymptotic behavior
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Another way of analyzing the asymptotic behavior

Expression of the theta series Asymptotics
For a 2k—dimensional even unimodular lattice, the Asymptotic analysis gives
Fourier decomposition gives
— k-1
o ‘ O j—1(m) —O(mk J
OA(@ = E@+Sp(zN) = Y. rim A) &7 amp) = O(mg)
m=0

where S (z,A) is a cusp form.

Fourier coefficients
If Si (2, N)=X5°_alm, A) 2MZ then,

r(m A)—ﬂa (m)+a(m, )
RNV NT R
Sk
Eg
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Another way of analyzing the asymptotic behavior

Expression of the theta series Asymptotics
For a 2k—dimensional even unimodular lattice, the Asymptotic analysis gives
Fourier decomposition gives

Op_1(m) = O(mk_IJ

00 .
O = B+ Sz M) = 3, r(m ) Gimme e o(m§)
m=

where S (z,A) is a cusp form.

Conclusion

Coefficients of Ej are asymptotic esti-
mates of the coefficients of ®,. The se-
crecy gain of any even unimodular lattice

Fourier coefficients
If Si (2, N)=X5°_alm, A) 2MZ then,

r(m,A) = ﬂﬂk_l(mHu(m,A) behaves like
C(OT (k) —
Ej Sk 19%16 (efn)

Ey(e7?7)
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The Flatness Factor [Ling, Luzzi, B. and Stehlé-12]

Outline of current Part

@ The Flatness Factor [Ling, Luzzi, B. and Stehlé-12]
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Maximum Likelihood Decoding

Best Strategy for the eavesdropper
Signal transmitted by Alice is

x=d+r, r€Ae,de AplAe.
Eve maximizes over all possible d,
_llye—a-r|?
Y pyeldr)c Y e 202

rele rele

where y, is the signal received by Eve.
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The 272 example

_ ly=x/?
e 202

xe272

Figure: Sum of Gaussian Measures on the 272 lattice with 02=03ando? =06
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Definition

Let
1 _lx=c?
fa,v(x) = e 202
o
and
> 1 _ Hx—Azu2
fa,A (%) = fo,A (%) = e 2o
AeA V270 pepn

Then, the flatness factor for lattice A and parameter o is

MaXyeg(A) ’fU,A ) - ﬁ‘
ep(0) = T

which means that f;; A (x) is within 1+£4 (0) from the uni-
form distribution over the Voronoi cell.
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Definition Connection with smoothing parameter

Let ) Let n¢(A) = v2mo be the smoothing pa-
Fre@® 1 - ”"2’702" rameter, then solve
X) = e o
7 o
d eplo) =e.
an
1 _la=ag?

(x) = (x) = e 202
a2 A%\f[m V210 jen

Then, the flatness factor for lattice A and parameter o is

MaXyeg(A) ’fU,A ) - ﬁ‘
ep(0) = T

which means that f;; A (x) is within 1+£4 (0) from the uni-
form distribution over the Voronoi cell.
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Flatness Factor

Definition Connection with smoothing parameter
Let ) Let n¢(A) = v2mo be the smoothing pa-
Fre@® 1 - ""2’702" rameter, then solve
X) = e o
7 o
d eplo) =e.
an
1 _ Hx—A2||2
A (x) = (x) = e 20 . .
fs AgAfU'A V270 pep Expression

We have
Then, the flatness factor for lattice A and parameter o is

n 1
EA(U):YA(U)ZG)A( )—1

MaXye gz(A) ’fU,A ™ - iy ‘ 2102
eplo) = i )
V(R where yx (0) = V;;\;Zﬁ is the GSNR (Gen-
which means that f;;, o (x) is within 1+¢ 4 (o) from the uni- eralized Signal to Noise Ratio).

form distribution over the Voronoi cell.
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The Flatness Factor [Ling, Luzzi, B. and Stehlé-12]

Mutual Information

Theorem
Let €, be the flatness factor of A, on Eve's channel. M is the message transmitted by Alice

and Z" is what is received by Eve. Then,

I(M; Z") < 2nRe;, — 26, log (2€5)

where R is the rate per dimension.

J.-C. Belfiore - Lattices for Wireless Communications
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Mutual Information

Theorem

Let €, be the flatness factor of A, on Eve's channel. M is the message transmitted by Alice
and Z" is what is received by Eve. Then,

I(M; Z") < 2nRe;, — 26, log (2€5)
where R is the rate per dimension.

Corollary

Ifep, — 0 when n— oo, then
lim I(M;Z") =0
n—oo

which guarantees the strong secrecy property of the system.

J.-C. Belfiore - Lattices for Wireless Communications
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Theorem

Let €, be the flatness factor of A, on Eve's channel. M is the message transmitted by Alice
and Z" is what is received by Eve. Then,

I(M; Z") < 2nRe;, — 26, log (2€5)
where R is the rate per dimension.

Corollary

Ifep, — 0 when n— oo, then
lim I(M;Z") =0
n—oo

which guarantees the strong secrecy property of the system.

Average behavior

By using the Minkowski-Hlawka theorem, we see that, on average, when nbecomes large
n

enough, £, behaves like y 5 ,(0) 2 which tends to 0 exponentially when y, ,(0) < 1.

J.-C. Belfiore - Lattices for Wireless Communications
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Hlustration I

S ]
§ 3 1
2 .

1 ]
/// L ]

L T e NS R R
-30 -25 —20 -15 -1.0 ~0.5 0.0

GSNR y (dB)

Figure: Flatness Factors in dimension 24
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or [Ling, Luzzi, B. and St

i Hlustration II

400

)

200

GSNR y (dB)

Figure: Some Flatness Factors in dimension 80

J.-C. Belfiore - Lattices for Wireless Communications

87/88



Thank You !!
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