Some Wireless Communication problems involving Lattices

Jean-Claude Belfiore Télécom ParisTech

March, 19 2013 École de Printemps d'Informatique Théorique

Autrans

- Part 1 Introduction to Communication Systems
- Part 2 Constructing Lattices
- Part 3 Lattice Codes for the Gaussian channel
- Part 4 Lattices for Fading Channels
- Part 5 Lattices for Security

Part I

Introduction to Communication Systems

Signal Space and Coded Modulation

Outline of current Part

2 Modulation - Code

• Connection between signal space and transmitted analog signal through an orthogonal basis of signals

Signal Space and Coded Modulation

The transmission problem

 Connection between signal space and transmitted analog signal through an orthogonal basis of signals

Standard serial transmission

Transmitted signal is

$$x(t) = \sum_{k} x_k h \left(t - kT \right)$$

where x_k are the transmitted complex symbols and $\{h(t - kT)\}_k$ is a family of orthogonal signals (*h* is a Nyquist root).

Signal Space and Coded Modulation

The transmission problem

 Connection between signal space and transmitted analog signal through an orthogonal basis of signals

Standard serial transmission

Transmitted signal is

 $x(t) = \sum_{k} x_k h (t - kT)$

where x_k are the transmitted complex symbols and $\{h(t - kT)\}_k$ is a family of orthogonal signals (*h* is a Nyquist root).

OFDM transmission Transmitted signal is

$$x(t) = \sum_{k} \sum_{q=-N/2}^{N/2} x_{k,q} h(t - kT) e^{i \frac{2\pi k}{N+1} \Delta f t}$$

where $x_{k,q}$ are the transmitted complex symbols and $\left\{h(t-kT)e^{i\frac{2\pi q}{N+1}\Delta ft}\right\}_{k,q}$ is a doubly indexed family of orthogonal signals (for instance,

 $h(t) = \operatorname{rect}_T(t)$

with
$$\Delta f = \frac{1}{T}$$
).

We define vector

 $\mathbf{x} = (x_1, x_2, \dots, x_m)^{\top}$

as a vector living in a *m*-dimensional complex space or a *n*-dimensional real space (n = 2m).

Signal Space and Coded Modulation

Complex symbols and Signal Space

We define vector

 $\mathbf{x} = (x_1, x_2, \dots, x_m)^{\top}$

as a vector living in a *m*-dimensional complex space or a *n*-dimensional real space (n = 2m).

• Complex symbols used in practice are QAM symbols, components of vector x.

Signal Space and Coded Modulation

Complex symbols and Signal Space

We define vector

$$\boldsymbol{x} = (x_1, x_2, \dots, x_m)$$

as a vector living in a *m*-dimensional complex space or a *n*-dimensional real space (n = 2m).

- Complex symbols used in practice are QAM symbols, components of vector *x*.
- We need to introduce coding **structure** the QAM symbols.

٠	٠	٠	٠	•	•	•	•
٠	٠	٠	٠	•	٠	٠	٠
٠	•	•	•	•	•	•	٠
٠	•	•	٠	•	•	•	٠
٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	•	٠	٠	٠
•	٠	٠	٠	•	٠	٠	٠
$x_k \in 64 \text{ QAM}$							

Figure: Symbol from a 64 QAM

Modulation - Code

Outline of current Part

TELECOM ParisTech Modulation - Code

Modulation + Code = Lattice ? ...

Modulation - Code

Modulation + Code = Lattice ? ...

Modulation - Code

Modulation + Code = Lattice ? ...

What a lattice element could be

Requirements

- Encoder must be linear.
- Modulation should be QAM for instance.
- Labeling (modulator) between binary codewords and modulated symbols has to respect some criteria.

TELECOM ParisTech Modulation - Code

An example: the D_4 lattice (partition)

QAM Partition à la Ungerboeck

Figure: Labeling of subsets A and B

- The binary code is the (2, 1) repetition code (linear)
- Modulation is QAM, labeling is the Ungerboeck labeling

- The binary code is the (2, 1) repetition code (linear)
- Modulation is QAM, labeling is the Ungerboeck labeling

$$\begin{split} D_4 &= (1+\iota)\mathbb{Z}[\iota]^2 + (2,1)_{\mathbb{F}_2} & \iff & D_4 \left/ (1+\iota)\mathbb{Z}[\iota]^2 \simeq \{(0,0),(1,1)\} \\ & \iff & D_4 = (1+\iota)\mathbb{Z}[\iota]^2 \cup (1+\iota)\mathbb{Z}[\iota]^2 + (1,1)^2 + ($$

Part II

Constructing Lattices

Lattice Point Lattice Basis

Fundamental Parallelotope

Voronoi region

$\overset{\bullet}{\bigotimes}^{(v_1, v_2)}$

Lattice Point Lattice Basis Fundamental Parallelotope Voronoi region

Properties

Generator matrix is

$$\boldsymbol{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

• A QAM constellation is a finite part of \mathbb{Z}^2 .

Lattice Point Lattice Basis Fundamental Parallelotope Voronoi region

Properties

Generator matrix is

$$\boldsymbol{M} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

• A QAM constellation is a finite part of \mathbb{Z}^2 .

Principal Ideal Domain As a lattice,

 $\mathbb{Z}^2 \simeq \mathbb{Z}[\iota]$

which is a PID. We will use, e.g.

 $\mathbb{Z}[\iota]/(1+\iota)\mathbb{Z}[\iota]\simeq \mathbb{F}_2.$

Lattice point Lattice basis Fundamental parallelotope Voronoi region

The A_2 lattice

Lattice point Lattice basis Fundamental parallelotope Voronoi region

Properties

Generator matrix is

$$\boldsymbol{M} = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} \end{bmatrix}$$

• An **HEX constellation** is a finite part of *A*₂, the hexagonal lattice.

Lattice point Lattice basis Fundamental parallelotope Voronoi region Properties

Generator matrix is

$$\mathbf{M} = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} \end{bmatrix}$$

• An **HEX constellation** is a finite part of *A*₂, the hexagonal lattice.

Principal Ideal Domain

As a lattice,

 $A_2 \simeq \mathbb{Z}[\omega]$

which is a **PID**. We will use, e.g.

$$\mathbb{Z}[\omega] \left/ \sqrt{-3} \mathbb{Z}[\omega] \simeq \mathbb{F}_3 \right.$$

or

 $\mathbb{Z}[\omega]/2\mathbb{Z}[\omega]\simeq\mathbb{F}_4.$

Construction A

Outline of current Part

Construction A using \mathbb{Z}

Let *q* be an integer. Then, $\mathbb{Z}/q\mathbb{Z}$ is a finite field if *q* is a prime and a finite ring otherwise. For a linear code \mathscr{C} of length *n* defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

$$\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$$

Construction A using \mathbb{Z}

Let *q* be an integer. Then, $\mathbb{Z}/q\mathbb{Z}$ is a finite field if *q* is a prime and a finite ring otherwise. For a linear code \mathscr{C} of length *n* defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

$$\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$$

Construction of D₄

D₄ is obtained as

 $D_4 = 2\mathbb{Z}^4 + (4,3,2)_{\mathbb{F}_2} = (1+i)\mathbb{Z}[i]^2 + (2,1,2)_{\mathbb{F}_2}$

where $(4,3,2)_{\mathbb{F}_2}$ is the binary parity-check code.

Construction A using \mathbb{Z}

Let *q* be an integer. Then, $\mathbb{Z}/q\mathbb{Z}$ is a finite field if *q* is a prime and a finite ring otherwise. For a linear code \mathscr{C} of length *n* defined on $\mathbb{Z}/q\mathbb{Z}$, lattice Λ is given by

$$\Lambda = q\mathbb{Z}^n + \mathscr{C} \triangleq \bigcup_{\mathbf{x}\in\mathscr{C}} \left(q\mathbb{Z}^n + \mathbf{x} \right).$$

Construction of D₄

D₄ is obtained as

 $D_4 = 2\mathbb{Z}^4 + (4,3,2)_{\mathbb{F}_2} = (1+i)\mathbb{Z}[i]^2 + (2,1,2)_{\mathbb{F}_2}$

where $(4,3,2)_{\mathbb{F}_2}$ is the binary parity-check code.

Construction of E_8 E_8 is obtained as

$$E_8 = 2\mathbb{Z}^8 + (8, 4, 4)_{\mathbb{F}_2} = \bigcup_{x \in (8, 4)_{\mathbb{F}_2}} \left(2\mathbb{Z}^8 + x \right)$$

where $(8, 4, 4)_{\mathbb{F}_2}$ is the extended binary Hamming code $(7, 4, 3)_{\mathbb{F}_2}$.

Construction A

Construction A (quaternary)

Construction *A* **of the Leech lattice** The **Leech lattice** can be obtained as

 $\Lambda_{24} = 4\mathbb{Z}^{24} + (24, 12)_{\mathbb{Z}_4}$

where $(24, 12)_{\mathbb{Z}_4}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over \mathbb{Z}_4 .

Construction A

Construction A (quaternary)

Construction *A* **of the Leech lattice** The **Leech lattice** can be obtained as

 $\Lambda_{24} = 4\mathbb{Z}^{24} + (24, 12)_{\mathbb{Z}_4}$

where $(24, 12)_{\mathbb{Z}_4}$ is the quaternary self-dual code obtained by extending the quaternary cyclic Golay code over \mathbb{Z}_4 .

Other constructions

Construction A can be generalized. Constructions B, C, D or E for instance. But one can show that all these constructions are equivalent to construction A with a suitable alphabet.

Nested lattices

Outline of current Part

Definition

Let Λ be a lattice, then a sublattice of Λ is a lattice $\Lambda_s \subset \Lambda$. The number of copies of Λ_s in Λ is the **index**.

Definition

Let Λ be a lattice, then a sublattice of Λ is a lattice $\Lambda_s \subset \Lambda$. The number of copies of Λ_s in Λ is the **index**.

Construction A

 $D_2 = 2\mathbb{Z}^2 + (2,1,2)_{\mathbb{F}_2}.$

Nested lattices

An example in dimension 8

Chain of nested lattices

TELECOM

三条瓢箪

ParisTech

$$\mathbb{Z}^8 \supset D_8 \supset D_4^2 \supset L_8 \supset E_8 \supset L_8^* \supset D_4^{2*} \supset D_8^* \supset 2\mathbb{Z}^8.$$

Binary codes from construction A are respectively

 $(8,8,1) \supset (8,7,2) \supset (4,3,2)^2 \supset (8,5,2) \supset (8,4,4) \supset (8,3,4) \supset (4,1,4)^2 \supset (8,1,8) \supset (8,0,\infty)$

We have constructed a chain of nested lattices. All relative indices are 2.

Notation: construction *A*

We have, here,

 $\Lambda = 2\mathbb{Z}^8 + (8, k, d_{\min})$

• A family of lattices of dimension 2^{m+1} , $m \ge 2$ can be constructed by construction *D*.

Barnes-Wall Lattices Constructed as $\mathbb{Z}[i]$ – lattices,

$$\mathsf{BW}_{m} = (1+i)^{m} \mathbb{Z}[i]^{2^{m}} + \sum_{r=0}^{m-1} (1+i)^{r} \mathsf{RM}(m,r)$$

where RM (*m*, *r*) is the binary Reed-Müller code of length $n = 2^m$, dimension $k = \sum_{l=0}^{r} {m \choose l}$ and minimum Hamming distance $d = 2^{m-r}$. BW_m is a \mathbb{Z} -lattice of dimension 2^{m+1} .

• A family of lattices of dimension 2^{m+1} , $m \ge 2$ can be constructed by construction *D*.

Barnes-Wall Lattices

Constructed as $\mathbb{Z}[i]$ – lattices,

$$\mathsf{BW}_{m} = (1+i)^{m} \mathbb{Z}[i]^{2^{m}} + \sum_{r=0}^{m-1} (1+i)^{r} \mathsf{RM}(m,r)$$

where RM (*m*, *r*) is the binary Reed-Müller code of length $n = 2^m$, dimension $k = \sum_{l=0}^{r} {m \choose l}$ and minimum Hamming distance $d = 2^{m-r}$. BW_m is a \mathbb{Z} -lattice of dimension 2^{m+1} .

Another construction of *E*₈

We have

$$E_8 = (1+i)^2 \mathbb{Z}[i]^4 + (1+i) (4,3,2)_{\mathbb{F}_2} + (4,1,4)_{\mathbb{F}_2}$$

as E_8 is also a Barnes-Wall lattice.

Part III

Lattice Codes for the Gaussian channel

Coding and Shaping

Outline of current Part

6 Capacity achieving lattice codes $n \rightarrow +\infty$

What are Lattice Codes? An example

Toy example: the 4-QAM

A code with 4 codewords

Figure: The 4 codewords are in red. Structure is $\mathbb{Z}^2/2\mathbb{Z}^2$.

What are Lattice Codes? Voronoi Constellations

Take a lattice Λ_c (coding) and a sublattice $\Lambda_s \subset \Lambda_c$ (shaping) of finite index *M*. Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is a a representative of x in Λ_c / Λ_s of smallest length . c is a constant vector which ensures that the overall lattice code has zero mean.

What are Lattice Codes? Voronoi Constellations

Take a lattice Λ_c (coding) and a sublattice $\Lambda_s \subset \Lambda_c$ (shaping) of finite index *M*. Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is a a representative of x in Λ_c / Λ_s of smallest length . c is a constant vector which ensures that the overall lattice code has zero mean.

Lattice Codes

Lattice codewords are the representatives of Λ_c/Λ_s , with **smallest length**, shifted so that the overall constellation has **zero mean**.

What are Lattice Codes? Voronoi Constellations

Take a lattice Λ_c (coding) and a sublattice $\Lambda_s \subset \Lambda_c$ (shaping) of finite index *M*. Each point $x \in \Lambda_c + c$ can be written as

 $x = x_S + x_Q + c$

where $x_s \in \Lambda_s$ and x_q is a a representative of x in Λ_c / Λ_s of smallest length . c is a constant vector which ensures that the overall lattice code has zero mean.

Lattice Codes

Lattice codewords are the representatives of Λ_c/Λ_s , with **smallest length**, shifted so that the overall constellation has **zero mean**.

Benchmark

Lattice codes will be compared to the uncoded 2^m – QAM constellation which is $\mathbb{Z}^n/2^{\frac{m}{2}}\mathbb{Z}^n$ (*m* even). Vector *c* is the all-1/2 vector.

Coding: Minimum of Λ_c

The Coding Lattice Λ_c

We want to characterize the performance of Λ_c . Suppose that Λ_s is a scaled version of \mathbb{Z}^n (separation). On the Gaussian channel, error probability is dominated by the maximal pairwise error probability

$$\max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} P(\mathbf{x} \to \mathbf{t}) = \max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} Q\left(\frac{\|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right) = Q\left(\frac{\min_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} \|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right)$$

where Q(x) is the error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

and N is the noise variance.

Coding: Minimum of Λ_c

The Coding Lattice Λ_c

TELECOM ParisTech

We want to characterize the performance of Λ_c . Suppose that Λ_s is a scaled version of \mathbb{Z}^n (separation). On the Gaussian channel, error probability is dominated by the maximal pairwise error probability

$$\max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} P(\mathbf{x} \to \mathbf{t}) = \max_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} Q\left(\frac{\|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right) = Q\left(\frac{\min_{\mathbf{x}, \mathbf{t} \in \mathcal{C}} \|\mathbf{x} - \mathbf{t}\|}{2\sqrt{N_0}}\right)$$

where Q(x) is the error function

$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

and N is the noise variance.

Minimum distance

We define the minimum of the lattice Λ as

$$d_{\min}(\Lambda) = \min_{\boldsymbol{x} \in \Lambda \setminus \{0\}} \|\boldsymbol{x}\|$$

Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points)⇒αZⁿ with a carefully chosen α.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points)⇒αZⁿ with a carefully chosen α.
- Dominant term of the error probability is

$$Q\left(\frac{\min_{\boldsymbol{x},\boldsymbol{t}\in\mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2\sqrt{N_0}}\right) = Q\left(\sqrt{m\frac{d_{\min}^2}{E_s}\cdot\frac{E_b}{N_0}}\right)$$

m being the **spectral efficiency**, E_b the energy per bit and $E_s = mE_b$, the energy per symbol. Compare $\frac{d_{E_s}^2}{E_s}$ of the lattice code with the one of $\mathbb{Z}^n/2^{\frac{m}{2}}\mathbb{Z}^n$.

- Compare lattice codes (cubic shaping) with uncoded QAM with same spectral efficiency (same number of points)⇒αZⁿ with a carefully chosen α.
- Dominant term of the error probability is

$$Q\left(\frac{\min_{\boldsymbol{x},\boldsymbol{t}\in\mathscr{C}}\|\boldsymbol{x}-\boldsymbol{t}\|}{2\sqrt{N_0}}\right) = Q\left(\sqrt{m\frac{d_{\min}^2}{E_s}\cdot\frac{E_b}{N_0}}\right)$$

m being the **spectral efficiency**, E_b the energy per bit and $E_s = mE_b$, the energy per symbol. Compare $\frac{d_{E_s}^2}{E_s}$ of the lattice code with the one of $\mathbb{Z}^n/2^{\frac{m}{2}}\mathbb{Z}^n$.

Fundamental Volume and Coding gain The obtained gain (called the "Coding Gain") is

$$\gamma_c(\Lambda) = \frac{d_{\min}^2}{\operatorname{Vol}(\Lambda)^{\frac{2}{n}}}.$$

Obvious relation with the Hermite constant.

Coding Gain: Examples

Dimension 4

The checkerboard lattice D_4 has generator matrix

$$\mathbf{M}_{D_4} = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

with det
$$(M_{D_4}) = 2$$
 and $d_{\min}^2 = 2$

 $D_4 = 2\mathbb{Z}^4 + (4, 3, 2).$

Coding gain is

$$\gamma_c(D_4) = \frac{d_{\min}^2}{\operatorname{vol}(D_4)^{\frac{1}{2}}} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Coding and Shaping

Coding Gain: Examples

Dimension 8

The Gosset lattice E₈ has generator matrix

with det $(M_{E_8}) = 1$ and $d_{\min}^2 = 2$. $E_8 = 2\mathbb{Z}^8 + (8, 4, 4)$. Coding gain is

$$\gamma_c(E_8) = \frac{d_{\min}^2}{\operatorname{vol}(E_8)^{\frac{1}{4}}} = 2.$$

Coding and Shaping

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the **energy minimization** of the lattice code. All points of the lattice code are in the **Voronoï region** of Λ_s . Energy per dimension

$$E = \frac{1}{n} \mathbb{E} \left(\| \boldsymbol{x} \|^2 \right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_s}(\boldsymbol{0})} \frac{1}{\operatorname{Vol}(\Lambda_s)} \| \boldsymbol{x} \|^2 \, d\boldsymbol{x}$$

Coding and Shaping

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the **energy minimization** of the lattice code. All points of the lattice code are in the **Voronoï region** of Λ_s . Energy per dimension

$$E = \frac{1}{n} \mathbb{E} \left(\| \boldsymbol{x} \|^2 \right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_s}(\boldsymbol{0})} \frac{1}{\operatorname{Vol}(\Lambda_s)} \| \boldsymbol{x} \|^2 \, d\boldsymbol{x}$$

Normalized Second Order Moment The parameter

$$G(\Lambda_{s}) = \left(\frac{1}{n} \frac{\int_{\mathcal{V}_{\Lambda_{s}}(\mathbf{0})} \|\boldsymbol{x}\|^{2} d\boldsymbol{x}}{\operatorname{Vol}(\Lambda_{s})}\right) \operatorname{Vol}(\Lambda_{s})^{-\frac{2}{n}}$$

is called the normalized second order moment of the lattice. It has to be minimized.

Coding and Shaping

Normalized Second Order Moment

Energy

Performance of Λ_s is related to the **energy minimization** of the lattice code. All points of the lattice code are in the **Voronoï region** of Λ_s . Energy per dimension

$$E = \frac{1}{n} \mathbb{E} \left(\| \boldsymbol{x} \|^2 \right) = \frac{1}{n} \int_{\mathcal{V}_{\Lambda_{\mathcal{S}}}(\boldsymbol{0})} \frac{1}{\operatorname{Vol}(\Lambda_{\mathcal{S}})} \| \boldsymbol{x} \|^2 \, d\boldsymbol{x}$$

Normalized Second Order Moment The parameter

$$G(\Lambda_{\mathcal{S}}) = \left(\frac{1}{n} \frac{\int_{\mathcal{V}_{\Lambda_{\mathcal{S}}}(\mathbf{0})} \|\mathbf{x}\|^2 \, d\mathbf{x}}{\operatorname{Vol}(\Lambda_{\mathcal{S}})}\right) \operatorname{Vol}(\Lambda_{\mathcal{S}})^{-\frac{2}{n}}$$

is called the normalized second order moment of the lattice. It has to be minimized.

Shaping Gain

The ratio

$$\gamma_{\mathcal{S}}(\Lambda_{\mathcal{S}}) = \frac{G(\mathbb{Z}^n)}{G(\Lambda_{\mathcal{S}})} = \frac{1}{12} G(\Lambda_{\mathcal{S}})^{-1}$$

is called the **shaping gain** of Λ . Its value is upperbounded by the shaping gain of the *n*-dimensional sphere which tends to $\frac{\pi e}{6}$ (≈ 1.5 dB) when $n \rightarrow \infty$.

Coding Gain and Shaping Gain

Dominant term of the Error Probability

The error probability of a lattice code using Λ_c as the coding lattice and Λ_s as the shaping lattice is dominated by the term

$$Q\left(\sqrt{\frac{3mE_b}{N_0}\cdot\gamma_c\left(\Lambda_c\right)\cdot\gamma_s\left(\Lambda_s\right)}\right)$$

Coding Gain and Shaping Gain

Dominant term of the Error Probability

The error probability of a lattice code using Λ_c as the coding lattice and Λ_s as the shaping lattice is dominated by the term

$$Q\left(\sqrt{\frac{3mE_b}{N_0}\cdot\gamma_c\left(\Lambda_c\right)\cdot\gamma_s\left(\Lambda_s\right)}\right)$$

Validity

This analysis remains valid whenever the dimension is **small to medium**. For a high dimension analysis, we only have, up to now a probabilistic analysis.

Coding and Shaping

Lattice Codes : an example

Voronoi Constellations

Let's give an example of a Lattice Code (or Voronoi Constellation).

- Connection with error-correcting codes.
- It gives an embedding between the signal space and binary packets.

Coding and Shaping

Lattice Codes : an example

Voronoi Constellations

Let's give an example of a Lattice Code (or Voronoi Constellation).

- Connection with error-correcting codes.
- It gives an embedding between the signal space and binary packets.

Example

Choose $\Lambda_c = E_8$ and $\Lambda_s = 2E_8$. From

$$E_8 = 2\mathbb{Z}^8 + (8, 4, 4)_{\mathbb{F}_2},$$

we obtain

$$E_8/2E_8 = 2(8,4)_{\mathbb{F}_2}^{\nabla} + (8,4,4)_{\mathbb{F}_2}$$

where $(8, 4)_{\mathbb{F}_2}^{\mathbb{V}}$ is the quotient group of coset representatives of the extended Hamming code. In this case, take the coset representatives with **smallest Hamming weight**.

Capacity achieving lattice codes $n \to +\infty$

Outline of current Part

6 Capacity achieving lattice codes $n \rightarrow +\infty$

Capacity achieving lattice codes $n \rightarrow +\infty$

A quick digest of Erez and Zamir work

Coding/Decoding strategy

Ingredients are:

- Use **nested lattices** $\Lambda_s \subset \Lambda_c$ of high dimension
- Use MMSE coefficient at the receiver
- Use dithering and modulo Λ decoding of the scaled received vector

Capacity achieving lattice codes $n \rightarrow +\infty$

A quick digest of Erez and Zamir work

Coding/Decoding strategy Ingredients are:

- Use **nested lattices** $\Lambda_s \subset \Lambda_c$ of high dimension
- Use MMSE coefficient at the receiver
- Use dithering and modulo Λ decoding of the scaled received vector

What is achievable

Rate per real dimension for a given P_e is

$$R = \frac{1}{n} \log_2 \left(\frac{\operatorname{Vol}(\Lambda_s)}{\operatorname{Vol}(\Lambda_c)} \right) = \frac{1}{2} \log_2 \left(\frac{P/G(\Lambda_s)}{\mu(\Lambda_c, P_e) \frac{P.N}{P+N}} \right)$$
$$= C - \frac{1}{2} \log_2 \left(G(\Lambda_s) \, \mu(\Lambda_c, P_e) \right)$$

where $\mu(\Lambda_c, P_e) = \text{Vol}(\Lambda_c) / N_e$ and N_e is the noise variance guaranteeing a probability P_e that the received point does not go outside the Voronoi cell of the transmitted lattice point.

Capacity achieving lattice codes $n \rightarrow +\infty$

A quick digest of Erez and Zamir work

Coding/Decoding strategy Ingredients are:

- Use **nested lattices** $\Lambda_s \subset \Lambda_c$ of high dimension
- Use MMSE coefficient at the receiver
- Use dithering and modulo Λ decoding of the scaled received vector

What is achievable

Rate per real dimension for a given P_e is

$$R = \frac{1}{n} \log_2 \left(\frac{\operatorname{Vol}(\Lambda_s)}{\operatorname{Vol}(\Lambda_c)} \right) = \frac{1}{2} \log_2 \left(\frac{P/G(\Lambda_s)}{\mu(\Lambda_c, P_e) \frac{P.N}{P+N}} \right)$$
$$= C - \frac{1}{2} \log_2 \left(G(\Lambda_s) \, \mu(\Lambda_c, P_e) \right)$$

where $\mu(\Lambda_c, P_e) = \text{Vol}(\Lambda_c) / N_e$ and N_e is the noise variance guaranteeing a probability P_e that the received point does not go outside the Voronoi cell of the transmitted lattice point.

Good lattices

We can find nested lattices such that, when $n \rightarrow \infty$,

$$\begin{cases} G(\Lambda_s) & \to \frac{1}{2\pi e} \\ \mu(\Lambda_c, P_e) & \to 2\pi e \end{cases}$$

for any value of $P_e > 0$ by using construction A over big alphabets $\mathbb{Z}/p\mathbb{Z}$, p prime.

Part IV

Lattices for Fading Channels

Wireless Communications

Wireless Communications

• Each path is characterized by its magnitude α_i , its phase θ_i and its delay, τ_i .

Figure: Destructive recombination due to phases \rightarrow fadings (here, x(t) is the transmitted signal)

Wireless Communications

Phases dependencies

- Fadings vary as a function of
 - frequency.
 - antennas position (since τ_i are different from one antenna to the other one).
 - time (obstacles and terminals may move.

Figure: Received power as a function of the frequency

Wireless Communications

OFDM

Radio channel is frequency selective. Interleaver is used to decorrelate channel coefficients.

Figure: Interleaved frequencies: Here fadings on frequencies f_1 , f_6 and f_{11} are assumed independent.

ast fading channel

Outline of current Part

Wireless Communication:

B Fast fading channel

Number Fields

Lattices from Number Fields

1 Data

Assumptions

- Channel coefficients h_i are assumed decorrelated
- 2 Each h_i is the channel complex attenuation on a subcarrier

Assumptions

- Channel coefficients h_i are assumed decorrelated
- 2 Each h_i is the channel complex attenuation on a subcarrier

Detection

All h_i are assumed perfectly known at the receiver.

• Consider a pair of points (X, T) of the constellation. Pairwise Error Probability for fast fading channels is

$$p(\mathbf{X} \to \mathbf{T}) \le \frac{1}{2} \prod_{x_i \ne t_i} \frac{4N_0}{|x_i - t_i|^2} = \frac{1}{2} \frac{(4N_0)^l}{d_p^{(l)}(\mathbf{X}, \mathbf{T})^2}$$

where $d_p^{(l)}(\mathbf{X}, \mathbf{T})$ is the *l*-product distance produit evaluated when points **X** and **T** differ in *l* symbols (or components).

• Consider a pair of points (X, T) of the constellation. Pairwise Error Probability for fast fading channels is

$$p(\mathbf{X} \to \mathbf{T}) \le \frac{1}{2} \prod_{x_i \ne t_i} \frac{4N_0}{|x_i - t_i|^2} = \frac{1}{2} \frac{(4N_0)^l}{d_p^{(l)}(\mathbf{X}, \mathbf{T})^2}$$

where $d_p^{(l)}(\mathbf{X}, \mathbf{T})$ is the *l*-product distance produit evaluated when points **X** and **T** differ in *l* symbols (or components).

Product distance

The *l*-product distance is

$$d_p^{(l)}\left(\mathbf{X},\mathbf{T}\right) = \prod_{x_i \neq t_i} \left| x_i - t_i \right|$$

• Consider a pair of points (X, T) of the constellation. Pairwise Error Probability for fast fading channels is

$$p(\mathbf{X} \to \mathbf{T}) \le \frac{1}{2} \prod_{x_i \ne t_i} \frac{4N_0}{|x_i - t_i|^2} = \frac{1}{2} \frac{(4N_0)^l}{d_p^{(l)}(\mathbf{X}, \mathbf{T})^2}$$

where $d_p^{(l)}(\mathbf{X}, \mathbf{T})$ is the *l*-product distance produit evaluated when points **X** and **T** differ in *l* symbols (or components).

Product distance

The *l*-product distance is

$$d_p^{(l)}\left(\mathbf{X},\mathbf{T}\right) = \prod_{x_i \neq t_i} \left| x_i - t_i \right|$$

Dominant term

In the global error probability expression, dominant term is $d_{p,\min} = \min d_p^{(L)}$ where $L = \min(l)$ is the diversity order of the constellation (also named "modulation diversity").

ast fading channel

Construction by optimisation

Aim and methodology

Construct the optimal constellation (in the sense of the product distance), in a 2dimensional space, with a diversity order equal to 2.

Fast fading channel

Construction by optimisation

Aim and methodology

Construct the optimal constellation (in the sense of the product distance), in a 2dimensional space, with a diversity order equal to 2.

- O Choose a constellation such that the product distance $d_p^{(2)}(\mathbf{X}, \mathbf{T}) \ge 1$ for all $\mathbf{X} \neq \mathbf{T}$ in the constellation.
- Start with point 0, then construct a point \mathbf{X}_1 respecting constraint $d_p^{(2)}(\mathbf{X}_1, 0) \ge 1$ such that the average energy of the constellation is minimized. Then construct \mathbf{X}_2 such that $d_p^{(2)}(\mathbf{X}_2, 0) \ge 1$ and $d_p^{(2)}(\mathbf{X}_1, \mathbf{X}_2) \ge 1$ and such that the average energy of the constellation is minimized, ...

We get

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 0)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 1)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 2)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 3)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 4)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 5)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 6)

ast fading channel

Optimized constellation

Figure: Construction of the constellation by iterating (iteration 36)

Fast fading channel

Lattice from an algebraic number field

• By iterating the optimization process, we obtain all points

$$a+b\frac{1+\sqrt{5}}{2}$$
$$a+b\frac{1-\sqrt{5}}{2}$$

with *a* and *b* in \mathbb{Z} .

Generator matrix

The points of the infinite constellation may be written as

$$\left(\begin{array}{cc}1&\frac{1+\sqrt{5}}{2}\\1&\frac{1-\sqrt{5}}{2}\end{array}\right)\cdot\left(\begin{array}{c}a\\b\end{array}\right)$$

with $a, b \in \mathbb{Z}$. This infinite constellation is a lattice and

$$M = \begin{pmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{pmatrix}$$
(1)

is its generator matrix.

• Number $\varphi = \frac{1+\sqrt{5}}{2}$ is the **Golden Ratio** and $\bar{\varphi} = \frac{1-\sqrt{5}}{2}$ is its conjugate.

Number Fields

Outline of current Part

7 Wireless Communication

Fast fading channel

Number Fields

Lattices from Number Fields

1 Data

Number Fields

Extension and algebraic integers

Definitions

Golden ratio φ is in the number field $\mathbb{Q}(\sqrt{5})$.

- $\mathbb{Q}(\sqrt{5})$ is the set of all numbers $p + q\sqrt{5}$ with $p, q \in \mathbb{Q}$.
- Minimal polynomial of φ is $X^2 X 1$

Algebraic integer

An algebraic integer is an algebraic number whose minimal polynomial has its coefficients in $\mathbb Z.$

Examples

•
$$\varphi = \frac{1+\sqrt{5}}{2}$$
 is an algebraic **integer**: $\mu_{\varphi}(X) = X^2 - X - 1$

2 $\sqrt{5}$ is an algebraic integer: $\mu_{\sqrt{5}}(X) = X^2 - 5$

3
$$\beta = \frac{1+\sqrt{2}}{2}$$
 is not an algebraic **integer**: $\mu_{\beta}(X) = X^2 - X - \frac{1}{4}$

Number Fields

Ring of integers and integer basis

Definitions

Integers of $\mathbb{Q}(\sqrt{5})$ are $a + b\varphi$ with $a, b \in \mathbb{Z}$.

- $(1, \varphi)$ is an integer basis of $\mathbb{Q}(\sqrt{5})$
- The norm is the product of an algebraic number with its conjugate. Conjugate of φ is φ̄. Conjugate of 1 is 1.

Discriminant

We define matrix

$$\mathbf{\Omega} = \left[\begin{array}{cc} 1 & \varphi \\ 1 & \bar{\varphi} \end{array} \right]$$

which is the generator matrix of lattice (1). Discriminant of $\mathbb{Q}(\sqrt{5})$ is

$$d_{\mathbb{Q}(\sqrt{5})} = (\det \mathbf{\Omega})^2 = 5$$

Discriminant is related to the energy of a constellation carved from the infinite lattice. 5 is the smallest discriminant that a real number field can have. That is why the best constellation for the fast fading channel is related to the Golden Ratio. Lattices from Number Fields

Number Fields

10 Lattices from Number Fields

Base field

We consider 3 base fields F in what follows,

- $\bigcirc \mathbb{F} = \mathbb{Q}. \ \mathcal{O}_{\mathbb{F}} = \mathbb{Z}.$
- 2 $\mathbb{F} = \mathbb{Q}(i)$ with $\mathbb{Q}(i) = \{x + iy, x, y \in \mathbb{Q}\}; \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[i].$
- 3 $\mathbb{F} = \mathbb{Q}(\omega)$ with $\mathbb{Q}(\omega) = \{x + \omega y, x, y \in \mathbb{Q}\}; \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[\omega]. \omega$ is a primitive third root of unity.

Base field

We consider 3 base fields F in what follows,

- $\bigcirc \mathbb{F} = \mathbb{Q}. \ \mathcal{O}_{\mathbb{F}} = \mathbb{Z}.$
- 2 $\mathbb{F} = \mathbb{Q}(i)$ with $\mathbb{Q}(i) = \{x + iy, x, y \in \mathbb{Q}\}; \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[i].$
- $\label{eq:states} \boxed{\begin{subarray}{lll} \blacksquare \end{subarray}} \end{subarray} \mathbb{F} = \mathbb{Q}(\omega) \text{ with } \mathbb{Q}(\omega) = \left\{ x + \omega y, \, x, y \in \mathbb{Q} \right\}; \end{subarray} \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[\omega]. \ \omega \text{ is a primitive third root of unity}.$

We define

$$\mathbb{K} = \mathbb{F}(\theta) = \left\{ \sum_{i=0}^{n-1} a_i \theta^i, \ a_i \in \mathbb{F} \right\}$$

where θ is some algebraic number of degree n on \mathbb{F} , that is, admitting a minimal polynomial of degree n with coefficients in \mathbb{F} .

Base field

We consider 3 base fields F in what follows,

- 2 $\mathbb{F} = \mathbb{Q}(i)$ with $\mathbb{Q}(i) = \{x + iy, x, y \in \mathbb{Q}\}; \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[i].$

 $\label{eq:states} \boxed{\begin{subarray}{lll} \blacksquare \end{subarray}} \end{subarray} \mathbb{F} = \mathbb{Q}(\omega) \text{ with } \mathbb{Q}(\omega) = \left\{ x + \omega y, \, x, y \in \mathbb{Q} \right\}; \end{subarray} \mathcal{O}_{\mathbb{F}} = \mathbb{Z}[\omega]. \ \omega \text{ is a primitive third root of unity}.$

We define

$$\mathbb{K} = \mathbb{F}(\theta) = \left\{ \sum_{i=0}^{n-1} a_i \theta^i, \ a_i \in \mathbb{F} \right\}$$

where θ is some algebraic number of degree *n* on \mathbb{F} , that is, admitting a minimal polynomial of degree *n* with coefficients in \mathbb{F} .

Example: $\mathbb{Q}(\sqrt{5})$ Minimal polynomial of $\sqrt{5}$ is $X^2 - 5$. So,

$$\mathbb{Q}(\sqrt{5}) = \left\{ a_0 + a_1\sqrt{5}, a_0, a_1 \in \mathbb{Q} \right\}.$$

• In a number field \mathbb{K} on \mathbb{F} of degree *n*, integers are of particular interest. The ring of integers is the ring of numbers in \mathbb{K} whose minimal polynomial is $X^n + \sum_{i=0}^{n-1} a_i X^i$ with $a_i \in \mathcal{O}_{\mathbb{F}}$. We denote this ring $\mathcal{O}_{\mathbb{K}}$.

• In a number field \mathbb{K} on \mathbb{F} of degree *n*, integers are of particular interest. The ring of integers is the ring of numbers in \mathbb{K} whose minimal polynomial is $X^n + \sum_{i=0}^{n-1} a_i X^i$ with $a_i \in \mathcal{O}_{\mathbb{F}}$. We denote this ring $\mathcal{O}_{\mathbb{K}}$.

Basis

 $(\omega_0, \omega_1, \dots, \omega_{n-1})$ is a basis of $\mathcal{O}_{\mathbb{K}}$ iff any element ϕ of $\mathcal{O}_{\mathbb{K}}$ can be written as

$$\phi = \sum_{k=0}^{n-1} a_i \omega_i, \ a_i \in \mathcal{O}_{\mathbb{F}}$$

• In a number field \mathbb{K} on \mathbb{F} of degree *n*, integers are of particular interest. The ring of integers is the ring of numbers in \mathbb{K} whose minimal polynomial is $X^n + \sum_{i=0}^{n-1} a_i X^i$ with $a_i \in \mathcal{O}_{\mathbb{F}}$. We denote this ring $\mathcal{O}_{\mathbb{K}}$.

Basis

 $(\omega_0, \omega_1, \dots, \omega_{n-1})$ is a basis of $\mathcal{O}_{\mathbb{K}}$ iff any element ϕ of $\mathcal{O}_{\mathbb{K}}$ can be written as

$$\phi = \sum_{k=0}^{n-1} a_i \omega_i, \ a_i \in \mathcal{O}_{\mathbb{F}}.$$

Example (cont.) $\mathbb{Q}(\sqrt{5})$

 $\sqrt{5}$ is an integer (minimal polynomial $X^2 - 5$) but $\frac{1+\sqrt{5}}{2}$ is also an integer (minimal polynomial $X^2 - X - 1$). In fact, the ring of integers of $\mathbb{Q}(\sqrt{5})$ is

$$\mathcal{O}_{\mathbb{K}} = \left\{ a_0 + a_1 \frac{1 + \sqrt{5}}{2}, a_0, a_1 \in \mathbb{Z} \right\}$$

and $\left(1, \frac{1+\sqrt{5}}{2}\right)$ is a basis of $\mathcal{O}_{\mathbb{K}}$.

Definition

The group of the field morphisms $(\sigma(x + y) = \sigma(x) + \sigma(y) \text{ and } \sigma(xy) = \sigma(x)\sigma(y))$ which associates to an element of K its conjugates is called the Galois group of K and denoted $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})$. If $|\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})| = n$ (the order of K), then the extension is Galois.

Definition

The group of the field morphisms $(\sigma(x + y) = \sigma(x) + \sigma(y) \text{ and } \sigma(xy) = \sigma(x)\sigma(y))$ which associates to an element of K its conjugates is called the Galois group of K and denoted $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})$. If $|\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})| = n$ (the order of K), then the extension is Galois.

Definition

The norm of an element of \mathbb{K} is the product of all its conjugates. It is also the constant term of its minimal polynomial.

$$N_{\mathbb{K}/\mathbb{F}}(x) = \prod_{i=0}^{n-1} \sigma_i(x) \in \mathbb{F}$$

If *x* is integer, then $N_{\mathbb{K}/\mathbb{F}}(x) \in \mathcal{O}_{\mathbb{F}}$ and $N_{\mathbb{K}/\mathbb{F}}(x) = 0$ iff x = 0.

Definition

The group of the field morphisms $(\sigma(x + y) = \sigma(x) + \sigma(y) \text{ and } \sigma(xy) = \sigma(x)\sigma(y))$ which associates to an element of K its conjugates is called the Galois group of K and denoted $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})$. If $|\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K})| = n$ (the order of K), then the extension is Galois.

Definition

The norm of an element of \mathbb{K} is the product of all its conjugates. It is also the constant term of its minimal polynomial.

$$N_{\mathbb{K}/\mathbb{F}}(x) = \prod_{i=0}^{n-1} \sigma_i(x) \in \mathbb{F}$$

If *x* is integer, then $N_{\mathbb{K}/\mathbb{F}}(x) \in \mathcal{O}_{\mathbb{F}}$ and $N_{\mathbb{K}/\mathbb{F}}(x) = 0$ iff x = 0.

Product Distance

Suppose that \mathbb{K} is a totally real extension on \mathbb{Q} . $\mathbf{x} = (\sigma_0(x), \sigma_1(x), \dots, \sigma_{n-1}(x))^\top$ where $x \in \mathcal{O}_{\mathbb{K}}$. Then,

$$d_p(\mathbf{x}, \mathbf{0}) = \prod_{i=1}^n |x_i| = |N_{\mathbb{K}/\mathbb{Q}}(\mathbf{x})| \ge 1.$$

The canonical embedding (real case)

Canonical Embedding (real case)

Lattices from Number Fields

We define the canonical embedding which maps an element of $\mathbb K$ onto a vector of $\mathbb R^n.$ We have

$$\Upsilon: x \in \mathbb{K} \mapsto \mathbf{x} = \begin{pmatrix} \sigma_0(x) \\ \sigma_1(x) \\ \vdots \\ \sigma_{n-1}(x) \end{pmatrix} \in \mathbb{R}^n$$

The product of all components of x is the algebraic norm of x. Y transforms $\mathcal{O}_{\mathbb{K}}$ into a lattice $\Lambda_{\mathcal{O}_{\mathbb{K}}}$.

Lattices from Number Fields

The canonical embedding (real case)

Canonical Embedding (real case)

We define the canonical embedding which maps an element of $\mathbb K$ onto a vector of $\mathbb R^n.$ We have

$$\Upsilon: x \in \mathbb{K} \mapsto \mathbf{x} = \begin{pmatrix} \sigma_0(x) \\ \sigma_1(x) \\ \vdots \\ \sigma_{n-1}(x) \end{pmatrix} \in \mathbb{R}^n$$

The product of all components of *x* is the algebraic norm of *x*. Y transforms $\mathcal{O}_{\mathbb{K}}$ into a lattice $\Lambda_{\mathcal{O}_{\mathbb{K}}}$.

The case $\mathbb{K} = \mathbb{Q}(\sqrt{2})$

TELECOM ParisTech

An element $x = a + b\sqrt{2}$ is mapped onto the vector

$$\vec{\mathbf{x}} = \left(\begin{array}{c} a + b\sqrt{2} \\ a - b\sqrt{2} \end{array}\right)$$

Lattices from Number Fields

The canonical embedding (totally complex case)

If $\mathbb{F} = \mathbb{Q}(i)$ or $\mathbb{F} = \mathbb{Q}(\omega)$ (or any **quadratic complex** field), the same definition applies. But the considered Galois group is the group

 $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K}) = \operatorname{Gal}_{\mathbb{K}/\mathbb{Q}}(\mathbb{K})/ < \tau >$

where τ is the complex conjugation. Vector \mathbf{x} lies in \mathbb{C}^n .

Lattices from Number Fields

The canonical embedding (totally complex case)

If $\mathbb{F} = \mathbb{Q}(i)$ or $\mathbb{F} = \mathbb{Q}(\omega)$ (or any **quadratic complex** field), the same definition applies. But the considered Galois group is the group

 $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K}) = \operatorname{Gal}_{\mathbb{K}/\mathbb{Q}}(\mathbb{K}) / < \tau >$

where τ is the complex conjugation. Vector \mathbf{x} lies in \mathbb{C}^n .

Example

Let $\mathbb{F} = \mathbb{Q}(i)$ and $\mathbb{K} = \mathbb{Q}(\zeta_8)$ where ζ_8 is some 8th primitive root of unity (e.g. $\zeta_8 = \exp\left(\frac{i\pi}{4}\right)$). Then the canonical embedding maps $x = a + b\zeta_8$, with $a, b \in \mathbb{Q}(i)$, onto the vector

$$\mathbf{x} = \begin{pmatrix} a + b\zeta_8 \\ a - b\zeta_8 \end{pmatrix}$$

since the minimal polynomial of ζ_8 is $X^2 - i$.

TELECOM Lattices from Number Fields

ParisTech

If $\mathbb{F} = \mathbb{Q}(i)$ or $\mathbb{F} = \mathbb{Q}(\omega)$ (or any **quadratic complex** field), the same definition applies. But the considered Galois group is the group

 $\operatorname{Gal}_{\mathbb{K}/\mathbb{F}}(\mathbb{K}) = \operatorname{Gal}_{\mathbb{K}/\mathbb{Q}}(\mathbb{K}) / < \tau >$

where τ is the complex conjugation. Vector \mathbf{x} lies in \mathbb{C}^n .

Example

Let $\mathbb{F} = \mathbb{Q}(i)$ and $\mathbb{K} = \mathbb{Q}(\zeta_8)$ where ζ_8 is some 8th primitive root of unity (e.g. $\zeta_8 = \exp\left(\frac{i\pi}{4}\right)$). Then the canonical embedding maps $x = a + b\zeta_8$, with $a, b \in \mathbb{Q}(i)$, onto the vector

$$\mathbf{x} = \begin{pmatrix} a + b\zeta_8 \\ a - b\zeta_8 \end{pmatrix}$$

since the minimal polynomial of ζ_8 is $X^2 - i$.

Product distance For $\mathbf{x} \neq \mathbf{0}$, $d_p(\mathbf{x}, \mathbf{0}) = \prod_{i=1}^n |x_i| = |N_{\mathbb{K}/\mathbb{F}}(x)| = \sqrt{N_{\mathbb{K}/\mathbb{Q}}(x)} \ge 1.$

7 Wireless Communications

Fast fading channel

Number Fields

Lattices from Number Fields

- We are looking for finite constellations: shaping problems.
 - Solution: Rotated QAM constellations.

- We are looking for finite constellations: shaping problems.
 - Solution: Rotated QAM constellations.
- Same performance on the Gaussian channel as the non rotated QAM constellation. Rotation must be chosen to maximize the **product distance**.

- We are looking for finite constellations: shaping problems.
 - Solution: Rotated QAM constellations.
- Same performance on the Gaussian channel as the non rotated QAM constellation. Rotation must be chosen to maximize the **product distance**.

Figure: Effect of a fading on a QPSK and a rotated QPSK

• Construct a rotation with 2 PAM symbols. We consider the Golden field $\mathbb{Q}(\sqrt{5})$. A PAM symbol is an integer. Let *a* and *b* in \mathbb{Z} . The lattice on the Golden field is defined by the application

$$\Upsilon: \boldsymbol{p} = \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \boldsymbol{x} = \begin{pmatrix} a+b\frac{1+\sqrt{5}}{2} \\ a+b\frac{1-\sqrt{5}}{2} \end{pmatrix}$$

• Construct a rotation with 2 PAM symbols. We consider the Golden field $\mathbb{Q}(\sqrt{5})$. A PAM symbol is an integer. Let *a* and *b* in \mathbb{Z} . The lattice on the Golden field is defined by the application

$$\Upsilon: \boldsymbol{p} = \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \boldsymbol{x} = \begin{pmatrix} a+b\frac{1+\sqrt{5}}{2} \\ a+b\frac{1-\sqrt{5}}{2} \end{pmatrix}$$

So,

$$\boldsymbol{x} = \boldsymbol{M} \cdot \boldsymbol{p} = \begin{bmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \cdot \boldsymbol{p}$$

• Construct a rotation with 2 PAM symbols. We consider the Golden field $\mathbb{Q}(\sqrt{5})$. A PAM symbol is an integer. Let *a* and *b* in \mathbb{Z} . The lattice on the Golden field is defined by the application

$$\Upsilon: \boldsymbol{p} = \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \boldsymbol{x} = \begin{pmatrix} a+b\frac{1+\sqrt{5}}{2} \\ a+b\frac{1-\sqrt{5}}{2} \end{pmatrix}$$

So,

$$\boldsymbol{x} = \boldsymbol{M} \cdot \boldsymbol{p} = \begin{bmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \cdot \boldsymbol{p}$$

• Construct a rotation with 2 PAM symbols. We consider the Golden field $\mathbb{Q}(\sqrt{5})$. A PAM symbol is an integer. Let *a* and *b* in \mathbb{Z} . The lattice on the Golden field is defined by the application

$$\Upsilon: \boldsymbol{p} = \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \boldsymbol{x} = \begin{pmatrix} a+b\frac{1+\sqrt{5}}{2} \\ a+b\frac{1-\sqrt{5}}{2} \end{pmatrix}$$

So,

$$\boldsymbol{x} = \boldsymbol{M} \cdot \boldsymbol{p} = \begin{bmatrix} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \cdot \boldsymbol{p}$$

Problem

M is not a rotation! We can have problems of shaping ...

Gram matrix

Gram matrix of *M* is $G \triangleq M^t \cdot M$. If *M* would have been a scaled rotation, we would have

 $G = c \cdot I$

where *c* is some integer.

Gram matrix

Gram matrix of **M** is $G \triangleq M^t \cdot M$. If **M** would have been a scaled rotation, we would have

 $G = c \cdot I$

where *c* is some integer.

Condition on the determinant

Determinant of the Gram matrix must be

 $\det \boldsymbol{G} = c^2$

Gram matrix

Gram matrix of **M** is $G \triangleq M^t \cdot M$. If **M** would have been a scaled rotation, we would have

 $G = c \cdot I$

where *c* is some integer.

Condition on the determinant

Determinant of the Gram matrix must be

 $\det \boldsymbol{G} = c^2$

Reality Determinant of M is $-\sqrt{5}$, so,

 $\det G = 5$

which is not a square.

1 Take
$$\beta = 2 + \frac{1-\sqrt{5}}{2}$$
. Its norm is

$$N(\beta) = \left(2 + \frac{1 - \sqrt{5}}{2}\right) \cdot \left(2 + \frac{1 + \sqrt{5}}{2}\right) = 5$$

D Take
$$\beta = 2 + \frac{1-\sqrt{5}}{2}$$
. Its norm is

$$N(\beta) = \left(2 + \frac{1 - \sqrt{5}}{2}\right) \cdot \left(2 + \frac{1 + \sqrt{5}}{2}\right) = 5$$

2 Consider matrix

$$\mathbf{A} = \begin{bmatrix} \sqrt{\beta} & \mathbf{0} \\ \mathbf{0} & \sqrt{\bar{\beta}} \end{bmatrix}$$

whose determinant is det $(\mathbf{A}) = \sqrt{N(\beta)} = \sqrt{5}$. Equivalent to consider lattices for trace form $(x, y) = \text{Tr}(\beta x y)$.

1 Take
$$\beta = 2 + \frac{1-\sqrt{5}}{2}$$
. Its norm is

$$N(\beta) = \left(2 + \frac{1 - \sqrt{5}}{2}\right) \cdot \left(2 + \frac{1 + \sqrt{5}}{2}\right) = 5$$

2 Consider matrix

$$\mathbf{A} = \begin{bmatrix} \sqrt{\beta} & \mathbf{0} \\ \mathbf{0} & \sqrt{\bar{\beta}} \end{bmatrix}$$

whose determinant is det $(\mathbf{A}) = \sqrt{N(\beta)} = \sqrt{5}$. Equivalent to consider lattices for trace form $(x, y) = \text{Tr}(\beta xy)$.

3 Construct $P = A \cdot M$ whose Gram matrix has determinant 5^2 .

D Take
$$\beta = 2 + \frac{1-\sqrt{5}}{2}$$
. Its norm is

$$N(\beta) = \left(2 + \frac{1 - \sqrt{5}}{2}\right) \cdot \left(2 + \frac{1 + \sqrt{5}}{2}\right) = 5$$

2 Consider matrix

$$A = \begin{bmatrix} \sqrt{\beta} & 0\\ 0 & \sqrt{\bar{\beta}} \end{bmatrix}$$

whose determinant is det $(\mathbf{A}) = \sqrt{N(\beta)} = \sqrt{5}$. Equivalent to consider lattices for trace form $(x, y) = \text{Tr}(\beta xy)$.

3 Construct $P = A \cdot M$ whose Gram matrix has determinant 5^2 .

We can check that $P^t \cdot P = 5 \cdot I$. The rotation matrix is

$$\mathbf{R} = \frac{1}{\sqrt{5}} \mathbf{P} = \frac{1}{\sqrt{5}} \begin{bmatrix} \sqrt{2+\bar{\varphi}} & \varphi\sqrt{2+\bar{\varphi}} \\ \sqrt{2+\varphi} & \bar{\varphi}\sqrt{2+\varphi} \end{bmatrix}$$

Minimum product distance of the constellation is $d_{p,\min} = \frac{1}{\sqrt{5}}$ which is the best known minimum product distance for \mathbb{Z}^2 .

• Same considerations apply when instead of $\mathbb{F} = \mathbb{Q}$ we consider $\mathbb{F} = \mathbb{Q}(i)$. Here *a* and *b* will be in $\mathbb{Z}[i]$.

- Same considerations apply when instead of $\mathbb{F} = \mathbb{Q}$ we consider $\mathbb{F} = \mathbb{Q}(i)$. Here *a* and *b* will be in $\mathbb{Z}[i]$.
- The unitary matrix now is

$$\boldsymbol{U} = \frac{1}{\sqrt{5}} \begin{bmatrix} \boldsymbol{\alpha} & \boldsymbol{\alpha}\boldsymbol{\varphi} \\ \boldsymbol{\bar{\alpha}} & \boldsymbol{\bar{\alpha}}\boldsymbol{\bar{\varphi}} \end{bmatrix}$$
(2)

where $\alpha = 1 + \iota - \iota \varphi$ and $\bar{\alpha} = 1 + \iota - \iota \bar{\varphi}$. It is the key transform in the construction of the **Golden Code** for MIMO communication.

- Same considerations apply when instead of F = Q we consider F = Q(i). Here a and b will be in Z[i].
- The unitary matrix now is

$$\boldsymbol{U} = \frac{1}{\sqrt{5}} \begin{bmatrix} \boldsymbol{\alpha} & \boldsymbol{\alpha}\boldsymbol{\varphi} \\ \boldsymbol{\bar{\alpha}} & \boldsymbol{\bar{\alpha}}\boldsymbol{\bar{\varphi}} \end{bmatrix}$$
(2)

where $\alpha = 1 + \iota - \iota \varphi$ and $\bar{\alpha} = 1 + \iota - \iota \bar{\varphi}$. It is the key transform in the construction of the **Golden Code** for MIMO communication.

• This transform gives the best product distance among all unitary transforms in dimension 2.

General case: Get a lattice with given determinant

Norm of an ideal The norm of an ideal \mathscr{I} of $\mathscr{O}_{\mathbb{K}}$ is defined as

Rotations

 $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = \operatorname{Card}(\mathscr{O}_{\mathbb{K}}/\mathscr{I}).$

Moreover, if *I* is principal, generated by α , then $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = |N_{\mathbb{K}/\mathbb{Q}}(\alpha)|$.

General case: Get a lattice with given determinant

Norm of an ideal The norm of an ideal \mathscr{I} of $\mathscr{O}_{\mathbb{K}}$ is defined as

Rotations

 $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = \operatorname{Card}(\mathscr{O}_{\mathbb{K}}/\mathscr{I}).$

Moreover, if *I* is principal, generated by α , then $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = |N_{\mathbb{K}/\mathbb{Q}}(\alpha)|$.

Determinant

Suppose that we consider the canonical embedding of an ideal \mathscr{I} of absolute norm $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I})$. Then the lattice obtained by canonical embedding has determinant,

 $\det\left(\Lambda_{\mathscr{I}}\right) = N_{\mathbb{K}/\mathbb{Q}} \, (\mathscr{I})^2 \cdot d_{\mathbb{K}}$

General case: Get a lattice with given determinant

Norm of an ideal The norm of an ideal \mathscr{I} of $\mathscr{O}_{\mathbb{K}}$ is defined as

Rotations

 $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = \operatorname{Card}(\mathscr{O}_{\mathbb{K}}/\mathscr{I}).$

Moreover, if *I* is principal, generated by α , then $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I}) = |N_{\mathbb{K}/\mathbb{Q}}(\alpha)|$.

Determinant

Suppose that we consider the canonical embedding of an ideal \mathscr{I} of absolute norm $N_{\mathbb{K}/\mathbb{Q}}(\mathscr{I})$. Then the lattice obtained by canonical embedding has determinant,

 $\det(\Lambda_{\mathscr{I}}) = N_{\mathbb{K}/\mathbb{Q}} \, (\mathscr{I})^2 \cdot d_{\mathbb{K}}$

Rotation

If we want to have a chance of generating a lattice equivalent to \mathbb{Z}^n , then $\det(\Lambda_{\mathscr{I}}) = q^n$ for some integer *q*. If it is impossible, then try to use the trace form $(x, y)_{\beta} = \text{Tr}(\beta x y)$.

Part V

Lattices for Security

Outline of current Part

🚺 The Secrecy Gain

Even Unimodular Lattices

The distance fractor fining fracting fractions in the state of the sta

The Gaussian Wiretap Channel

Figure: The Gaussian Wiretap Channel model

Figure: The Gaussian Wiretap Channel model

The secrecy capacity is given by

$$C_{\mathcal{S}} = \left[C_{A \rightarrow B} - C_{A \rightarrow E} \right]^+$$

where $C_{A \to B} = \log_2 \left(1 + \frac{P}{N_0}\right)$ and $C_{A \to E} = \log_2 \left(1 + \frac{P}{N_1}\right)$ can be achieved by doing **lattice** coding. Of course, $C_s > 0$ if $N_0 < N_1$.

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \rightarrow Eve that outputs

y = x + 2

with probability 1/2 and *x* with same probability. The **symbol** error probability is 1/2.

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \rightarrow Eve that outputs

y = x + 2

with probability 1/2 and x with same probability. The **symbol** error probability is 1/2.

Symbol to Bits Labelling

 $s = 2b_1 + b_0$

Bit b_1 experiences error probability 1/2 while bit b_0 experiences error probability 0.

+2 mod (4) Channel

We suppose the alphabet \mathbb{Z}_4 and a channel Alice \rightarrow Eve that outputs

y = x + 2

with probability 1/2 and x with same probability. The **symbol** error probability is 1/2.

Symbol to Bits Labelling

 $s = 2b_1 + b_0$

Bit b_1 experiences error probability 1/2 while bit b_0 experiences error probability 0.

Confidential data must be encoded through b_1 . On b_0 , put random bits.

Outline of current Part

🔟 The Secrecy Gain

15 Even Unimodular Lattices

The distance fractor finning francis from distant for the

Assume that Alice \rightarrow Eve channel is corrupted by an additive uniform noise

Assume that Ance \rightarrow Eve channel is corrupted by an additive uniform horse

Figure: Points can be decoded error free: label with pseudo-random symbols

Figure: Points are not distinguishable: label with data

Assume that Alice \rightarrow Eve channel is corrupted by an additive uniform noise

Figure: Constellation corrupted by uniform noise

 $\textbf{J.-C. Belfiore} \ - \ Lattices \ for \ Wireless \ Communications$

Assume that Alice \rightarrow Eve channel is corrupted by an additive uniform noise

Error Probability

Pseudo-random symbols are perfectly decoded by Eve when data error probability will be high.

• unfortunately not valid for Gaussian noise.

Coset Coding

Coset Coding with Integers

Transmitted point

Coset Coding with Integers

Example

• Suppose that points *x* are in \mathbb{Z} .

Coset Coding

Euclidean division

x = 3q + r

• *q* carries the pseudo-random symbols while *r* carries the data or "pseudo-random symbols label points in 3Z while data label elements of Z/3Z".

Gaussian noise is **not** bounded: it **needs** a *n*-dimensional approach (then let $n \to \infty$ for **sphere hardening**).

	1-dimensional	<i>n</i> -dimensional
Transmitted lattice	Z	Fine lattice Λ_b
Pseudo-random symbols	$m\mathbb{Z} \subset \mathbb{Z}$	Coarse lattice $\Lambda_e \subset \Lambda_b$
Data	$\mathbb{Z}/m\mathbb{Z}$	Cosets Λ_b / Λ_e

Table: From the example to the general scheme

Gaussian noise is **not** bounded: it **needs** a *n*-dimensional approach (then let $n \to \infty$ for sphere hardening).

Figure: Example of coset coding

Gaussian noise is **not** bounded: it **needs** a *n*-dimensional approach (then let $n \rightarrow \infty$ for **sphere hardening**).

Figure: Probability of correct decoding for coset coding compared to QPSK

Probability of correct decoding is given by

$$P_{c,e} = \left[1 - \frac{1}{3}\left(5Q\left(\sqrt{\theta}\right) - 4Q\left(3\sqrt{\theta}\right) + 3Q\left(5\sqrt{\theta}\right) - 2Q\left(7\sqrt{\theta}\right) + Q\left(9\sqrt{\theta}\right)\right)\right]^2, \ \theta = \frac{6}{35}\frac{E_b}{N_0}$$

he Secrecy Gain

Outline of current Part

Coset Coding

¹⁵ Even Unimodular Lattices

6 Wheel Materices Structure (Mingg January Barrard Stehl (s. 19)

TELECOM ParisTech The Secrecy Gain

Eve's Probability of Correct Decision (data)

TELECOM ParisIcch

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

OM The Secrecy Gain

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

Eve's Probability of correct decision

$$\begin{aligned} z_{e} &\leq \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \sum_{\mathbf{r}\in\Lambda_{e}} e^{-\frac{\|\mathbf{r}\|^{2}}{2N_{1}}} \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n} \operatorname{Vol}\left(\Lambda_{b}\right) \Theta_{\Lambda_{e}}\left(\frac{1}{2\pi\sigma^{2}}\right) \end{aligned}$$

where

 P_{ℓ}

$$\Theta_{\Lambda}(y) = \sum_{\vec{x} \in \Lambda} q^{\|\vec{x}\|^2}, q = e^{-\pi y}, y > 0$$

is the **theta series** of Λ and $\sigma^2 = N_1$.

The Secrecy Gain

Eve's Probability of Correct Decision (data)

Can Eve decode the data?

Figure: Eve correctly decodes when finding another coset representative

Eve's Probability of correct decision

$$c_{e} \leq \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \operatorname{Vol}(\Lambda_b) \sum_{\mathbf{r}\in\Lambda_e} e^{-\frac{\|\mathbf{r}\|^2}{2N_1}} \\ = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \operatorname{Vol}(\Lambda_b) \Theta_{\Lambda_e}\left(\frac{1}{2\pi\sigma^2}\right)$$

where

 P_{ℓ}

$$\Theta_{\Lambda}(y) = \sum_{\vec{x} \in \Lambda} q^{\|\vec{x}\|^2}, q = e^{-\pi y}, y > 0$$

is the **theta series** of Λ and $\sigma^2 = N_1$.

Problem

Find Λ minimizing

for some y.

The Secrecy Gain

Secrecy function

Definition

Let Λ be a *n*-dimensional lattice with fundamental volume λ^n . Its secrecy function is defined as,

$$\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^n}(y)}{\Theta_{\Lambda}(y)} = \frac{\vartheta_3^n \left(e^{-\pi \sqrt{\lambda}y} \right)}{\Theta_{\Lambda}(y)}$$

where $\vartheta_3(q) = \sum_{n=-\infty}^{+\infty} q^{n^2}$ and y > 0.

The Secrecy Gain

Secrecy function

Definition

Let Λ be a *n*-dimensional lattice with fundamental volume λ^n . Its secrecy function is defined as,

$$\Xi_{\Lambda}(y) \triangleq \frac{\Theta_{\lambda \mathbb{Z}^n}(y)}{\Theta_{\Lambda}(y)} = \frac{\vartheta_3^n \left(e^{-\pi \sqrt{\lambda}y} \right)}{\Theta_{\Lambda}(y)}$$

where
$$\vartheta_3(q) = \sum_{n=-\infty}^{+\infty} q^{n^2}$$
 and $y > 0$

Examples

Figure: Secrecy functions of E_8 and Λ_{24}

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y>0} \Xi_{\Lambda}(y)$$

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y>0} \Xi_{\Lambda}(y)$$

• A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at $d(\Lambda)^{-\frac{1}{n}}$ (Poisson-Jacobi's formula),

$$\Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}}y\right) = \Xi_{\Lambda}\left(\frac{d(\Lambda)^{-\frac{1}{n}}}{y}\right)$$

Definition

The strong secrecy gain of a lattice Λ is

$$\chi^s_{\Lambda} \stackrel{\Delta}{=} \sup_{y>0} \Xi_{\Lambda}(y)$$

• A lattice equivalent to its dual has a theta series with a multiplicative symmetry point at $d(\Lambda)^{-\frac{1}{n}}$ (Poisson-Jacobi's formula),

$$\Xi_{\Lambda}\left(d(\Lambda)^{-\frac{1}{n}}y\right) = \Xi_{\Lambda}\left(\frac{d(\Lambda)^{-\frac{1}{n}}}{y}\right)$$

Definition

For a lattice Λ equivalent to its dual and of determinant (volume) $d(\Lambda)$, we define the weak secrecy gain,

$$\chi_{\Lambda} \triangleq \Xi_{\Lambda} \left(d(\Lambda)^{-\frac{1}{n}} \right)$$

Conjecture

If Λ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary

The strong secrecy gain of a unimodular lattice Λ is $\chi_{\Lambda}^{s} \triangleq \Xi_{\Lambda}(1)$ (unimodular means that the Gram matrix has integer-valued entries and determinant equal to 1).

Conjecture

If Λ is a lattice equivalent to its dual, then the strong and the weak secrecy gains coincide.

Corollary

The strong secrecy gain of a unimodular lattice Λ is $\chi_{\Lambda}^{s} \triangleq \Xi_{\Lambda}(1)$ (unimodular means that the Gram matrix has **integer-valued** entries and **determinant** equal to 1).

Calculation of E₈ secrecy gain

From E₈ theta series,

$$\frac{1}{2E_8(1)} = \frac{\frac{1}{2} \left(\vartheta_2(e^{-\pi})^8 + \vartheta_3(e^{-\pi})^8 + \vartheta_4(e^{-\pi})^8 \right)}{\vartheta_3(e^{-\pi})^8} \\ = \frac{3}{4} \quad (\text{since } \frac{\vartheta_2(e^{-\pi})}{\vartheta_3(e^{-\pi})} = \frac{\vartheta_4(e^{-\pi})}{\vartheta_3(e^{-\pi})} = \frac{1}{\sqrt[4]{2}}$$

so we get
$$\chi_{E_8} = \Xi_{E_8}(1) = \frac{4}{3}$$

Definition

An even unimodular lattice is a lattice whose squared length of all its vectors is always an even integer). For instance, E_8 or the Leech lattice Λ_{24} are even unimodular.

Definition

TELECOM

An **even unimodular lattice** is a lattice whose squared length of all its vectors is always an even integer). For instance, E_8 or the Leech lattice Λ_{24} are even unimodular.

Properties

An even unimodular lattice Λ only exists when *n* is a multiple of 8. The minimum squared length of any non zero vector is upperbounded

 $\delta^2 \le 2(m+1)$

where n = 24m + 8k, k = 0, 1, 2. A lattice achieving this upperbound is called **extremal**.

TELECOM ParisTech **Secrecy Gain of Extremal Lattices**

Secrecy Functions in dimensions 72 and 80

Figure: Secrecy functions of extremal lattices (n = 72, 80)

TELECOM

Revision Secrecy Gain of Extremal Lattices

Secrecy Functions in dimensions 72 and 80

Figure: Secrecy functions of extremal lattices (n = 72, 80)

Secrecy gains of extremal lattices (all rational numbers !!!)

Dimension	8	24	32	48	72	80
Secrecy gain	$\frac{4}{3}$	256 63	$\frac{64}{9}$	524288 19467	$\frac{134217728}{685881} \simeq 195.7$	$\frac{536870912}{1414413} \simeq 380$

Secrecy Gain of Extremal Even Unimodular Lattices

Theorem

The secrecy gain of an even unimodular lattice is a rational number.

Secrecy Gain of Extremal Even Unimodular Lattices

Theorem

The secrecy gain of an even unimodular lattice is a rational number.

Proof.

Theta series of an even unimodular lattice Λ (n = 24m + 8k),

$$\Theta_{\Lambda} = \sum_{j=0}^{m} b_j E_4^{3(m-j)+k} \Delta^j$$

with $E_4 = \frac{1}{2} \left(\vartheta_2^8 + \vartheta_3^8 + \vartheta_4^8 \right)$, $\Delta = \frac{1}{256} \left(\vartheta_2 \vartheta_3 \vartheta_4 \right)^8$ and $b_j \in \mathbb{Q}$. For an extremal lattice, the annihilation of the first terms give integer b_j . As

$$\begin{cases} \vartheta_2 \left(e^{-\pi} \right) &= \vartheta_4 \left(e^{-\pi} \right) \\ \vartheta_3 \left(e^{-\pi} \right) &= \sqrt[4]{2} \vartheta_4 \left(e^{-\pi} \right) \end{cases}$$

we obtain

$$E_4(e^{-\pi}) = \frac{3}{4} \vartheta_3^8(e^{-\pi})$$
 and $\Delta(e^{-\pi}) = \frac{1}{2^{12}} \vartheta_3^{24}(e^{-\pi})$

giving the rationality of $\Xi_{\Lambda}(1)$.

• Want to study the behavior of even unimodular lattices when *n* becomes large.

Question

How does the optimal secrecy gain behaves when $n \to \infty$?

• Want to study the behavior of even unimodular lattices when *n* becomes large.

Question

How does the optimal secrecy gain behaves when $n \to \infty$?

First answer

Apply the Siegel-Weil formula,

$$\sum_{\Lambda \in \Omega_n} \frac{\Theta_{\Lambda}(q)}{|\operatorname{Aut}(\Lambda)|} = M_n \cdot E_k(q^2)$$

where

$$M_n = \sum_{\Lambda \in \Omega_n} \frac{1}{|\operatorname{Aut}(\Lambda)|}$$

and E_k is the Eisenstein series with weight $k = \frac{n}{2}$. Ω_n is the set of all inequivalent *n*-dimensional, even unimodular lattices. We get

$$\Theta_{n,\text{opt}}\left(e^{-\pi}\right) \leq E_k\left(e^{-2\pi}\right)$$

TELECOM ParisTech

Even Unimodular Lattices

Asymptotic behavior (II)

Maximal Secrecy gain

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \ge \frac{\vartheta_3^n \left(e^{-\pi}\right)}{E_k \left(e^{-2\pi}\right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^n \simeq \frac{1.086^n}{2}$$

Asymptotic behavior (II)

Maximal Secrecy gain

TELECOM ParisTech

三紫河

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \geq \frac{\vartheta_3^n \left(e^{-\pi}\right)}{E_k \left(e^{-2\pi}\right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4}\right)}\right)^n \simeq \frac{1.086^n}{2}$$

Behavior of Eisenstein Series

We have

$$E_k\left(e^{-2\pi}\right) = 1 + \frac{2k}{|B_k|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2\pi m} - 1}$$

 B_k being the Bernoulli numbers. For k a multiple of 4, then $E_k(e^{-2\pi})$ fastly converges to 2 $(k \to \infty)$.

79/8

Asymptotic behavior (II)

Maximal Secrecy gain

TELECOM ParisTech

For a given dimension *n*, multiple of 8, there **exists** an even unimodular lattice whose secrecy gain is

$$\chi_n \geq \frac{\vartheta_3^n \left(e^{-\pi} \right)}{E_k \left(e^{-2\pi} \right)} \simeq \frac{1}{2} \left(\frac{\pi^{\frac{1}{4}}}{\Gamma\left(\frac{3}{4} \right)} \right)^n \simeq \frac{1.086^n}{2}$$

Behavior of Eisenstein Series We have

$$E_k(e^{-2\pi}) = 1 + \frac{2k}{|B_k|} \sum_{m=1}^{+\infty} \frac{m^{k-1}}{e^{2\pi m}}$$

 B_k being the Bernoulli numbers. For k a multiple of 4, then $E_k(e^{-2\pi})$ fastly converges to 2 $(k \to \infty)$.

Bound from Siegel-Weil Formula vs. Extremal lattices

Figure: Lower bound of the minimal secrecy gain as a function of *n* from Siegel-Weil formula. **Points** correspond to **extremal lattices**.

Another way of analyzing the asymptotic behavior

Expression of the theta series

For a 2k-dimensional even unimodular lattice, the Fourier decomposition gives

$$\Theta_{\Lambda}(z) = E_k(z) + S_k(z,\Lambda) = \sum_{m=0}^{\infty} r(m,\Lambda) e^{2i\pi m z}$$

where $S_k(z, \Lambda)$ is a cusp form.

Another way of analyzing the asymptotic behavior

Expression of the theta series

For a 2k-dimensional even unimodular lattice, the Fourier decomposition gives

$$\Theta_{\Lambda}(z) = E_k(z) + S_k(z, \Lambda) = \sum_{m=0}^{\infty} r(m, \Lambda) e^{2i\pi m z}$$

where $S_k(z, \Lambda)$ is a cusp form.

Fourier coefficients If $S_k(z, \Lambda) = \sum_{m=0}^{\infty} a(m, \Lambda) e^{2i\pi m z}$, then, $r(m, \Lambda) = \underbrace{\frac{(2\pi)^k}{\zeta(k)\Gamma(k)}\sigma_{k-1}(m)}_{E_k} + \underbrace{a(m, \Lambda)}_{S_k}$

Another way of analyzing the asymptotic behavior

Expression of the theta series

For a 2k-dimensional even unimodular lattice, the Fourier decomposition gives

$$\Theta_{\Lambda}(z) = E_k(z) + S_k(z,\Lambda) = \sum_{m=0}^{\infty} r(m,\Lambda) e^{2i\pi m z}$$

where $S_k(z, \Lambda)$ is a cusp form.

Fourier coefficients If $S_k(z, \Lambda) = \sum_{m=0}^{\infty} a(m, \Lambda) e^{2i\pi m z}$, then, $r(m, \Lambda) = \underbrace{\frac{(2\pi)^k}{\zeta(k)\Gamma(k)}\sigma_{k-1}(m)}_{E_k} + \underbrace{a(m, \Lambda)}_{S_k}$

Asymptotics

Asymptotic analysis gives

$$\begin{cases} \sigma_{k-1}(m) &= O\left(m^{k-1}\right) \\ a(m,\Lambda) &= O\left(m^{\frac{k}{2}}\right) \end{cases}$$

J.-C. Belfiore - Lattices for Wireless Communications

Another way of analyzing the asymptotic behavior

Expression of the theta series

For a 2k-dimensional even unimodular lattice, the Fourier decomposition gives

$$\Theta_{\Lambda}(z) = E_k(z) + S_k(z, \Lambda) = \sum_{m=0}^{\infty} r(m, \Lambda) e^{2i\pi m z}$$

where $S_k(z, \Lambda)$ is a cusp form.

Fourier coefficients If $S_k(z, \Lambda) = \sum_{m=0}^{\infty} a(m, \Lambda) e^{2i\pi m z}$, then,

$$r(m,\Lambda) = \underbrace{\frac{(2\pi)^k}{\zeta(k)\Gamma(k)}\sigma_{k-1}(m)}_{E_k} + \underbrace{a(m,\Lambda)}_{S_k}$$

Asymptotics

Asymptotic analysis gives

$$\begin{cases} \sigma_{k-1}(m) &= O\left(m^{k-1}\right) \\ a(m,\Lambda) &= O\left(m^{\frac{k}{2}}\right) \end{cases}$$

Conclusion

Coefficients of E_k are asymptotic estimates of the coefficients of Θ_{Λ} . The secrecy gain of any even unimodular lattice behaves like

Outline of current Part

Coset Coding

14 The Secrecy Gain

15 Even Unimodular Lattices

¹⁶ The Flatness Factor [Ling, Luzzi, B. and Stehlé-12]

81/8

Maximum Likelihood Decoding

Best Strategy for the eavesdropper Signal transmitted by Alice is

$$\boldsymbol{x} = \boldsymbol{d} + \boldsymbol{r}, \qquad \boldsymbol{r} \in \Lambda_e, \, \boldsymbol{d} \in \Lambda_h / \Lambda_e.$$

Eve maximizes over all possible *d*,

$$\sum_{\mathbf{r}\in\Lambda_e} p(\mathbf{y}_e/\mathbf{d},\mathbf{r}) \propto \sum_{\mathbf{r}\in\Lambda_e} e^{-\frac{\|\mathbf{y}_e-\mathbf{d}-\mathbf{r}\|^2}{2\sigma^2}}$$

where y_e is the signal received by Eve.

The $2\mathbb{Z}^2$ example

$$\sum_{\boldsymbol{x}\in 2\mathbb{Z}^2} e^{-\frac{\|\boldsymbol{y}-\boldsymbol{x}\|^2}{2\sigma^2}}$$

Figure: Sum of Gaussian Measures on the $2\mathbb{Z}^2$ lattice with $\sigma^2 = 0.3$ and $\sigma^2 = 0.6$

Flatness Factor

Definition

Let

$$f_{\sigma,c}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\|\mathbf{x}-c\|^2}{2\sigma^2}}$$

and

$$f_{\sigma,\Lambda}(\mathbf{x}) = \sum_{\boldsymbol{\lambda} \in \Lambda} f_{\sigma,\boldsymbol{\lambda}}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{\boldsymbol{\lambda} \in \Lambda} e^{-\frac{\|\mathbf{x}-\boldsymbol{\lambda}\|^2}{2\sigma^2}}.$$

Then, the **flatness** factor for lattice Λ and parameter σ is

$$\varepsilon_{\Lambda}(\sigma) = \frac{\max_{\mathbf{x} \in \mathscr{R}(\Lambda)} \left| f_{\sigma,\Lambda}(\mathbf{x}) - \frac{1}{V(\Lambda)} \right|}{\frac{1}{V(\Lambda)}}$$

which means that $f_{\sigma,\Lambda}(\mathbf{x})$ is within $1 \pm \varepsilon_{\Lambda}(\sigma)$ from the uniform distribution over the Voronoi cell.

Flatness Factor

Definition

Let

$$f_{\sigma,c}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\|\mathbf{x}-\mathbf{c}\|^2}{2\sigma^2}}$$

and

$$f_{\sigma,\Lambda}(\mathbf{x}) = \sum_{\boldsymbol{\lambda} \in \Lambda} f_{\sigma,\boldsymbol{\lambda}}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{\boldsymbol{\lambda} \in \Lambda} e^{-\frac{\|\mathbf{x}-\boldsymbol{\lambda}\|^2}{2\sigma^2}}.$$

Then, the **flatness** factor for lattice Λ and parameter σ is

$$\varepsilon_{\Lambda}(\sigma) = \frac{\max_{\mathbf{x} \in \mathscr{R}(\Lambda)} \left| f_{\sigma,\Lambda}(\mathbf{x}) - \frac{1}{V(\Lambda)} \right|}{\frac{1}{V(\Lambda)}}$$

which means that $f_{\sigma,\Lambda}(\mathbf{x})$ is within $1 \pm \varepsilon_{\Lambda}(\sigma)$ from the uniform distribution over the Voronoi cell.

Connection with smoothing parameter Let $\eta_c(\Lambda) = \sqrt{2\pi\sigma}$ be the smoothing parameter, then solve

 $\varepsilon_{\Lambda}(\sigma) = \epsilon.$

Flatness Factor

Definition

Let

$$f_{\sigma,c}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\|\mathbf{x}-\mathbf{c}\|}{2\sigma^2}}$$

and

$$f_{\sigma,\Lambda}(\mathbf{x}) = \sum_{\boldsymbol{\lambda} \in \Lambda} f_{\sigma,\boldsymbol{\lambda}}(\mathbf{x}) = \frac{1}{\sqrt{2\pi\sigma}} \sum_{\boldsymbol{\lambda} \in \Lambda} e^{-\frac{\|\mathbf{x}-\boldsymbol{\lambda}\|^2}{2\sigma^2}}.$$

Then, the **flatness** factor for lattice Λ and parameter σ is

$$\varepsilon_{\Lambda}(\sigma) = \frac{\max_{\mathbf{x} \in \mathscr{R}(\Lambda)} \left| f_{\sigma,\Lambda}(\mathbf{x}) - \frac{1}{V(\Lambda)} \right|}{\frac{1}{V(\Lambda)}}$$

which means that $f_{\sigma,\Lambda}(\mathbf{x})$ is within $1 \pm \varepsilon_{\Lambda}(\sigma)$ from the uniform distribution over the Voronoi cell.

Connection with smoothing parameter Let $\eta_{\epsilon}(\Lambda) = \sqrt{2\pi\sigma}$ be the smoothing parameter, then solve

 $\varepsilon_{\Lambda}(\sigma) = \epsilon.$

Expression We have $\varepsilon_{\Lambda}(\sigma) = \gamma_{\Lambda}(\sigma)^{\frac{n}{2}} \Theta_{\Lambda}\left(\frac{1}{2\pi\sigma^{2}}\right) - 1$ where $\gamma_{\Lambda}(\sigma) = \frac{V(\Lambda)^{\frac{2}{n}}}{2\pi\sigma^{2}}$ is the GSNR (Gen-

eralized Signal to Noise Ratio).

84

Mutual Information

Theorem

Let ε_n be the flatness factor of Λ_e on Eve's channel. M is the message transmitted by Alice and Z^n is what is received by Eve. Then,

 $I(\mathsf{M}; \mathbb{Z}^n) \le 2nR\varepsilon_n - 2\varepsilon_n \log(2\varepsilon_n)$

where R is the rate per dimension.

Mutual Information

Theorem

Let ε_n be the flatness factor of Λ_e on Eve's channel. M is the message transmitted by Alice and Z^n is what is received by Eve. Then,

 $I(\mathsf{M}; \mathbb{Z}^n) \le 2nR\varepsilon_n - 2\varepsilon_n \log(2\varepsilon_n)$

where R is the rate per dimension.

Corollary

If $\varepsilon_n \to 0$ when $n \to \infty$, then

 $\lim_{n\to\infty} I(\mathsf{M}; Z^n) = 0$

which guarantees the strong secrecy property of the system.

The Flatness Factor [Ling, Luzzi, B. and Stehlé-12]

Mutual Information

Theorem

Let ε_n be the flatness factor of Λ_e on Eve's channel. M is the message transmitted by Alice and Z^n is what is received by Eve. Then,

 $I(\mathsf{M}; \mathbb{Z}^n) \le 2nR\varepsilon_n - 2\varepsilon_n \log(2\varepsilon_n)$

where R is the rate per dimension.

Corollary

If $\varepsilon_n \to 0$ when $n \to \infty$, then

 $\lim_{n\to\infty} I(\mathsf{M};Z^n) = 0$

which guarantees the strong secrecy property of the system.

Average behavior

By using the **Minkowski-Hlawka** theorem, we see that, on average, when *n* becomes large enough, ε_n behaves like $\gamma_{\Lambda_{\rho}}(\sigma)^{\frac{n}{2}}$ which tends to 0 **exponentially** when $\gamma_{\Lambda_{\rho}}(\sigma) < 1$.

Figure: Flatness Factors in dimension 24

Figure: Some Flatness Factors in dimension 80

8778

Thank You !!