
Cryptanalysis – Project

Master 2–DI–ENS de Lyon 2019-2020

Guillaume Hanrot and Damien Stehlé

Cryptanalysis – Project.

The homework is to be handed back before 15/01/2020, 23:59. In electronic format to guillaume.
hanrot@ ens-lyon. fr and damien. stehle@ ens-lyon. fr . The clarity of the code and the overall
presentation will be taken into account in the evaluation.

The goal of this project is to implement some algorithms described in class, or some applica-
tions of these algorithms. The recommended language for this project is Sage/Python, though for
programming lovers with plenty of time C+GMP might offer a more interesting challenge (you
might need external libraries for some components).

1 Exercise 1: A few factoring / discrete log algorithms

1.1 Pollard ρ for factoring

Program Floyd’s variant of Pollard ρ method (using epact) for factoring with f(x) = x2+1 mod N .
Application : N = 60331193824455101058028269521753,
N = 276474933387964773460419532857385928669681.

1.2 Pohlig-Hellman algorithm for DL

Implement Pohlig-Hellman algorithm for computing discrete log when the group order factorization
is computable.

Example: G = (Z/pZ)∗, p = 13827821670227353601, g = 3, h = 10780909174164501009.

1.3 p+ 1 algorithm for factoring

Implement the p + 1 method (recall that to get a starting point (a, b) in T2(Z/NZ), you have to
choose a, b, and define D = (1−a2)/b2 mod N . You may have to repeat a few times to get a factor
(only half the D work).

Examples :
N = 95853544864250299111409 (take B = 2100).
N = 74648282401223830866161949113577350333338506436676205 995761855483

5738449567418578817253229.
(restrict the primes of the product defining B to be among the first 1000 ones, and take B =

40000000000).

1

1.4 Adleman’s / Dixon’s algorithm

Implement either Adleman’s algorithm (the plain one with relations found by factoring ga for
random a) for discrete log, or Dixon’s algorithm for factoring. You can actually do both at little
extra cost: most of the machinery is common.

Report on your final choices – do not pick too large a factor basis since sage’s linear algebra
over Z/nZ seems pretty lame.

You may gain significantly in terms of efficiency by implementing early abort strategy and/or
large prime variation, but this is purely optional. You may also play with sieving ideas (this is
easier for factoring).

Examples for DL : G = (Z/pZ)∗, p = 10000000259, g = 2, h = 7038304916
G = (Z/pZ)∗, p = 1000000000005719, g = 11, h = 492328621286001
G = (Z/pZ)∗, p = 100000000000000000039, g = 3, h = 56088846212909947255 (feasible with a
crude implementation of Adelman, but rather long).

Examples for factoring : N = 8591966237, N = 2251802665812493, N = 73786976659910426999.

2 Exercise 2: An application of Coppersmith’s method

In 1998, Takagi proposed to use a modulus N of the form p · qr with p, q prime and r ≥ 2, rather
than p · q, in order to accelerate RSA decryption.

1- Explain why Takagi’s idea helps accelerating RSA decryption.

2- Assume that | log2 p− log2 q| ≤ O(1). Using Coppersmith’s method, show that one can factor
pqr in polynomial time when r = Ω(log p).

3- Let N be as follows:
2642815425901590293560897488912722319556533908119969449002605923497863983308299

6144835489977969646168563452443542522292691290596215841754516642459273318557797
7759316121768584362425272409014052639676778985766113063317512207456970318590307
6838389250811571463028846098146648036451870901715049416356848547386440134766320
2460522140396019233424593452690435532460026536067953900137408198762179014665720
1096025378770233470383970102781325591629292365139475970224294858059230403654763
4161527563784726842046443603131308926756434398995928936032559265301172319973566
61350759298228510599507660377993360507002371881622197065049932987.
The integer N is of the form p · q3, with |q − q| ≤ 2320 and q as follows:

3018590329916106903745950161275822102186792168462972683821507802033552387294630

1938053575955400221735067890965825658069724406927120922045769729509411690034.
Find p and q.

2

