Behavioural equivalences

Comparing behaviours

• terms and their *meaning*:

a syntactic object	its ≡-equivalence class	its evolutions
$(oldsymbol{ u} v) (\overline{a} \langle v angle \ \mid \overline{v} \langle t angle)$	$(oldsymbol{ u} v) (\overline{v} \langle t angle \ \mid \overline{a} \langle v angle)$	$(oldsymbol{ u} v) \overline{a} \langle v angle . \overline{v} \langle t angle$

Comparing behaviours

• terms and their *meaning*:

a syntactic	its ≡-equivalence	its evolutions
object	class	
$(oldsymbol{ u} v) \left(\overline{a} \langle v angle ~ ~ \overline{v} \langle t angle ight)$	$(oldsymbol{ u} v) (\overline{v} \langle t angle \ \mid \overline{a} \langle v angle)$	$(oldsymbol{ u} v) \overline{a} \langle v angle . \overline{v} \langle t angle$

- equate terms that exhibit the same behaviour
- replace a component by another one (specif. vs implem.)
- program a particular construct
- encode a language in another language

Comparing behaviours

• terms and their *meaning*:

a syntactic	its ≡-equivalence	its evolutions
object	class	
$(oldsymbol{ u} v) \left(\overline{a} \langle v angle ~ ~ \overline{v} \langle t angle ight)$	$(oldsymbol{ u} v) (\overline{v} \langle t angle \ \mid \overline{a} \langle v angle)$	$(oldsymbol{ u} v) \overline{a} \langle v angle . \overline{v} \langle t angle$

- equate terms that exhibit the same behaviour
- replace a component by another one (specif. vs implem.)
- program a particular construct
- encode a language in another language
- compositionality is crucial two equivalent systems should be undistinguishable, in any context (we are in a concurrent setting)

- what is behaviour?
- $\triangleright \neq$ functions: no notion of a result of computation

- what is behaviour?
- $\triangleright \neq$ functions: no notion of a result of computation
- observation: ∃ context in which the process performs some action

- what is behaviour?
- $\triangleright \neq$ functions: no notion of a result of computation
- observation: ∃ context in which the process performs some action

let us first concentrate on CCS

$$a.P \xrightarrow{a} P$$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P$$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$

$$\frac{P \xrightarrow{\mu} P'}{P|Q \xrightarrow{\mu} P'|Q}$$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$
$$\frac{P \xrightarrow{\mu} P'}{P|Q \xrightarrow{\mu} P'|Q} \qquad \dots \qquad \frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$
$$\frac{P \xrightarrow{\mu} P'}{P|Q \xrightarrow{\mu} P'|Q} \qquad \dots \qquad \frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

• $P \xrightarrow{\mu} P'$: there exists a context in which P may "do" μ

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$
$$\frac{P \xrightarrow{\mu} P'}{P|Q \xrightarrow{\mu} P'|Q} \qquad \dots \qquad \frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

• $P \xrightarrow{\mu} P'$: there exists a context in which P may "do" μ

• P, P' processes $(\mathcal{P}), \mu$ action (\mathcal{A}) labelled transition system $(LTS) \subseteq (\mathcal{P} \times \mathcal{A} \times \mathcal{P})$

$$a.P \xrightarrow{a} P \qquad \overline{a}.P \xrightarrow{\overline{a}} P \qquad \tau.P \xrightarrow{\tau} P$$
$$\frac{P \xrightarrow{\mu} P'}{P|Q \xrightarrow{\mu} P'|Q} \qquad \dots \qquad \frac{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

• $P \xrightarrow{\mu} P'$: there exists a context in which P may "do" μ

• P, P' processes $(\mathcal{P}), \mu$ action (\mathcal{A}) labelled transition system $(LTS) \subseteq (\mathcal{P} \times \mathcal{A} \times \mathcal{P})$

N.B.: a *chemical semantics* for CCS? \rightarrow rather straightforward

Traces

• a process P is liable to exhibit *traces*: $P \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \dots$

Traces

- a process P is liable to exhibit *traces*: $P \xrightarrow{\mu_1} P_1 \xrightarrow{\mu_2} P_2 \dots$
- should we compare traces?

Definition [trace equivalence] P and Q are *trace equivalent* iff they have the same set of traces.

Trace equivalence is not compositional

one should be less "factual" (see "Marignan: 1515") (linear vs branching time) Towards compositionality

Definition [bisimulation]: A symmetrical relation \mathcal{R} on processes is a *bisimulation* iff, whenever $P \mathcal{R} Q$, $P \xrightarrow{\mu} P'$ implies that there exists Q s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$.

Definition [bisimilarity]: Bisimilarity (\sim) is the union of all bisimulations.

 $\frac{\text{Remarks:}}{\sim} \sim \text{is an equivalence relation} \\ \sim \text{is included in trace equivalence}$

Towards compositionality

Definition [bisimulation]: A symmetrical relation \mathcal{R} on processes is a *bisimulation* iff, whenever $P \mathcal{R} Q$, $P \xrightarrow{\mu} P'$ implies that there exists Q s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$.

Definition [bisimilarity]: Bisimilarity (\sim) is the union of all bisimulations.

 $\frac{\rm Remarks:}{\sim} \sim {\rm is \ an \ equivalence \ relation} \\ \sim {\rm is \ included \ in \ trace \ equivalence}$

Theorem: in CCS, bisimilarity is a congruence. (and hence it is compositional w.r.t. parallel composition)

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.

what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.

what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.

what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

Bisimulation and up-to bisimulation

•

bisimulation: $\begin{array}{ccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array}$

Bisimulation and up-to bisimulation

bisimulation: •

up-to bisimulation

let \mathcal{F} be a function from relations to relations

 $P \mathcal{R} Q$

$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{F}(\mathcal{R}) & Q' \end{array}$$

if \mathcal{F} gives a valid proof technique, then $\mathcal{R} \subseteq \sim$

Exercise – an up-to technique

• \mathcal{R} is a bisimulation up to bisimilarity if

$$egin{array}{ccc} P & \mathcal{R} & Q \ \mu \downarrow & & \downarrow \mu \ P' & \sim \mathcal{R} \sim & Q' \end{array}$$

Exercise – an up-to technique

• \mathcal{R} is a bisimulation up to bisimilarity if

$$egin{array}{cccc} P & \mathcal{R} & Q \ \mu \downarrow & & \downarrow \mu \ P' & \sim \mathcal{R} \sim & Q' \end{array}$$

Theorem: if \mathcal{R} is a bisimulation up to \sim , then $\mathcal{R} \subseteq \sim$.

• prove it

Exercise – an up-to technique

• \mathcal{R} is a bisimulation up to bisimilarity if

$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \downarrow \mu \\ P' & \sim \mathcal{R} \sim & Q' \end{array}$$

Theorem: if \mathcal{R} is a bisimulation up to \sim , then $\mathcal{R} \subseteq \sim$.

- prove it
- $\triangleright~\mathcal{R}$ itself is not necessarily a bisimulation
- useful to "plug" known bisimilarity laws into bisimulation proofs – other such techniques exist

Weak bisimilarity

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; *abstract from internal computations* $\stackrel{\hat{\mu}}{\rightarrow}$: $\xrightarrow{\tau}$ or = if $\alpha = \tau$, $\stackrel{\mu}{\rightarrow}$ otherwise; $P \stackrel{\mu}{\Longrightarrow} P'$: $P \Rightarrow \stackrel{\hat{\mu}}{\rightarrow} \Rightarrow P'$.

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; *abstract from internal computations* $\stackrel{\hat{\mu}}{\rightarrow}$: $\xrightarrow{\tau}$ or = if $\alpha = \tau$, $\stackrel{\mu}{\rightarrow}$ otherwise; $P \stackrel{\mu}{\Longrightarrow} P'$: $P \Rightarrow \stackrel{\hat{\mu}}{\rightarrow} \Rightarrow P'$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a *weak bisimulation* iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$. Weak bisimilarity (\approx), is the greatest weak bisimulation.

Proposition: \approx is an equivalence relation.

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; *abstract from internal computations* $\stackrel{\hat{\mu}}{\rightarrow}$: $\xrightarrow{\tau}$ or = if $\alpha = \tau$, $\stackrel{\mu}{\rightarrow}$ otherwise; $P \stackrel{\mu}{\Longrightarrow} P'$: $P \Rightarrow \stackrel{\hat{\mu}}{\rightarrow} \Rightarrow P'$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a *weak bisimulation* iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$. Weak bisimilarity (\approx), is the greatest weak bisimulation.

Proposition: \approx is an equivalence relation.

$$\triangleright ~\sim \, \subseteq \, \approx$$

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; *abstract from internal computations* $\stackrel{\hat{\mu}}{\rightarrow}$: $\xrightarrow{\tau}$ or = if $\alpha = \tau$, $\stackrel{\mu}{\rightarrow}$ otherwise; $P \stackrel{\mu}{\Longrightarrow} P'$: $P \Rightarrow \stackrel{\hat{\mu}}{\rightarrow} \Rightarrow P'$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a *weak bisimulation* iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$. Weak bisimilarity (\approx), is the greatest weak bisimulation.

Proposition: \approx is an equivalence relation.

$$\triangleright \sim \subseteq \approx$$

 \triangleright why take τ moves into account for the bisimulation game?

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; *abstract from internal computations* $\stackrel{\hat{\mu}}{\rightarrow}$: $\xrightarrow{\tau}$ or = if $\alpha = \tau$, $\stackrel{\mu}{\rightarrow}$ otherwise; $P \stackrel{\mu}{\Longrightarrow} P'$: $P \Rightarrow \stackrel{\hat{\mu}}{\rightarrow} \Rightarrow P'$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a *weak bisimulation* iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P'$, there exists Q' s.t. $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$. Weak bisimilarity (\approx), is the greatest weak bisimulation.

Proposition: \approx is an equivalence relation.

- $\triangleright ~\sim \, \subseteq \, \approx$
- ▶ why take τ moves into account for the bisimulation game? consider $a + \tau (b|c)$ and a + (b|c)

\boxed{pprox} and au

- some laws: let α be any prefix,
- $\triangleright \alpha.\tau.P \approx \alpha.P$

\boxed{pprox} and au

- some laws: let α be any prefix,
- $\triangleright \alpha.\tau.P \approx \alpha.P$
- \triangleright $P + \tau P \approx \tau P$

- some laws: let α be any prefix,
- $\triangleright \alpha.\tau.P \approx \alpha.P$
- \triangleright $P + \tau P \approx \tau P$
- $\triangleright \quad \alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$

- some laws: let α be any prefix,
- $\triangleright \alpha.\tau.P \approx \alpha.P$
- \triangleright $P + \tau P \approx \tau P$
- $\triangleright \quad \alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$
- \triangleright P \approx τ .P? this would imply e.g. $a + \tau . (u|v) \approx a + (u|v)$

- some laws: let α be any prefix,
- $\triangleright \quad \alpha.\tau.P \; \approx \; \alpha.P$
- \triangleright $P + \tau P \approx \tau P$
- $\triangleright \quad \alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$
- ▷ $P \approx \tau P$? this would imply e.g. $a + \tau (u|v) \approx a + (u|v)$ N.B.: ok in π with some restrictions on +

- some laws: let α be any prefix,
- $\triangleright \quad \alpha.\tau.P \; \approx \; \alpha.P$
- \triangleright $P + \tau P \approx \tau P$
- $\triangleright \quad \alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$
- ▷ $P \approx \tau P$? this would imply e.g. $a + \tau (u|v) \approx a + (u|v)$ N.B.: ok in π with some restrictions on +
- weak bisimilarity and divergences
- \triangleright ! τ .0 \approx 0

\boxed{pprox} and au

- some laws: let α be any prefix,
- $\triangleright \quad \alpha.\tau.P \; \approx \; \alpha.P$

$$\triangleright P + \tau P \approx \tau P$$

$$\triangleright \quad \alpha.(P + \tau.Q) + \alpha.Q \approx \alpha.(P + \tau.Q)$$

- ▷ $P \approx \tau P$? this would imply e.g. $a + \tau (u|v) \approx a + (u|v)$ N.B.: ok in π with some restrictions on +
- weak bisimilarity and divergences

$$\triangleright \quad !\tau.\mathbf{0} \approx \mathbf{0}$$

$$\triangleright \quad \text{let } A \stackrel{\text{def}}{=} a + \tau.A, A \approx a.\mathbf{0}$$

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

 $\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \Downarrow \mu \\ P' &\approx \mathcal{R} \approx & Q' \end{array}$ and symmetrically, then $\mathcal{R} \subseteq \approx$?

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

 $\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \Downarrow \mu \\ P' &\approx \mathcal{R} \approx & Q' \end{array} \text{ and symmetrically, then } \mathcal{R} \subseteq \approx ?$

consider $\tau.a.0$ and 0: the game allows us to "go back in time"

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \Downarrow \mu \\ P' &\approx \mathcal{R} \approx & Q' \end{array} \text{ and symmetrically, then } \mathcal{R} \subseteq \approx ?$$

consider $\tau.a.0$ and 0: the game allows us to "go back in time"

$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \Downarrow \mu & \text{is ok,} \\ P' & \sim \mathcal{R} \sim & Q' \end{array}$$

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

 $\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & & \Downarrow \mu \\ P' & \approx \mathcal{R} \approx & Q' \end{array} \quad \text{and symmetrically, then } \mathcal{R} \subseteq \approx ?$

consider $\tau.a.\mathbf{0}$ and $\mathbf{0}:$ the game allows us to "go back in time"

Definition [expansion]: \mathcal{R} is an expansion iff whenever $P \mathcal{R} Q$:

- if
$$P \xrightarrow{\mu} P'$$
 there exists Q' s.t. $Q \xrightarrow{\hat{\mu}} Q'$ and $P' \mathcal{R} Q'$
- if $Q \xrightarrow{\mu} Q'$ there exists P' s.t. $P \xrightarrow{\hat{\mu}} P'$ and $P' \mathcal{R} Q'$.
 \lesssim is the greatest expansion, \gtrsim is \lesssim^{-1} .

Behavioural equivalences for π

Labelled Transition System for the π -calculus

what are the (labelled) transitions of the following term?

$$(\boldsymbol{\nu} x)(\boldsymbol{\nu} y) \Big(\overline{a} \langle w \rangle . P \mid b(t) . Q \mid \overline{y} \langle v \rangle . \mathbf{0} \mid \overline{b} \langle x \rangle . R \Big)$$

what are the possible actions in π ?

LTS for the π -calculus

three (+1) kinds of actions:
$$\begin{cases} P \xrightarrow{a(b)} Q \\ P \xrightarrow{\overline{a}\langle b \rangle} Q, & P \xrightarrow{\overline{a}(b)\nu} Q \\ P \xrightarrow{\tau} Q \end{cases}$$

names: $n(\mu)$ bound names: $bn(\overline{a}(b)) = \{b\}$, $bn(\mu) = \emptyset$ otherwise

[LTS for the π -calculus

three (+1) kinds of actions:
$$\begin{cases} P \xrightarrow{a(b)} Q \\ P \xrightarrow{\overline{a}\langle b \rangle} Q, & P \xrightarrow{\overline{a}(b)\nu} Q \\ P \xrightarrow{\tau} Q \end{cases}$$

names: $n(\mu)$ bound names: $bn(\overline{a}(b)) = \{b\}$, $bn(\mu) = \emptyset$ otherwise

N.B.: in a polyadic setting, bound outputs are of the form $(\nu \tilde{x}) \overline{a} \langle \tilde{y} \rangle$, with $\tilde{x} \subseteq \tilde{y}$ and \tilde{x} is a set rather than a tuple

 \rightarrow a precise, rigorous definition is really tedious

$\label{eq:labelled transitions for the π-calculus, the rules$$ Inp $a(m).P$ $\stackrel{a(n)}{\longrightarrow}$ $P_{\{m \leftarrow n\}}$ Out $\overline{a}\langle n \rangle.P$ $\stackrel{\overline{a}\langle n \rangle}{\longrightarrow}$ $P$$ $$

$$\begin{split} \hline \mbox{Labelled transitions for the π-calculus, the rules} \\ & \mbox{Inp} \ a(m).P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} & \mbox{Out} \ \overline{a}\langle n \rangle.P \xrightarrow{\overline{a}\langle n \rangle} P \\ & \mbox{Comm}_{l} \, \frac{P \xrightarrow{a(n)} P' \quad Q \xrightarrow{\overline{a}\langle n \rangle} Q'}{P \,|\, Q \xrightarrow{\tau} P' \,|\, Q'} \end{split}$$

$$\begin{split} \hline \mbox{Labelled transitions for the π-calculus, the rules} \\ & \mbox{Inp} \ a(m).P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} & \mbox{Out} \ \overline{a}\langle n \rangle.P \xrightarrow{\overline{a}\langle n \rangle} P \\ & \mbox{Comm}_1 \frac{P \xrightarrow{a(n)} P' \quad Q \xrightarrow{\overline{a}\langle n \rangle} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \\ & \mbox{Par}_1 \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q} \ bn(\mu) \cap fn(Q) = \emptyset \end{split}$$

$$\begin{split} \hline \text{Labelled transitions for the } \pi\text{-calculus, the rules} \\ & \text{Inp} \ a(m).P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text{Out} \ \overline{a}\langle n \rangle.P \xrightarrow{\overline{a}\langle n \rangle} P \\ & \quad Comm_{\text{I}} \frac{P \xrightarrow{a(n)} P' \quad Q \quad \overline{a}\langle n \rangle}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \\ & \text{Par}_{\text{I}} \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q} \text{bn}(\mu) \cap \text{fn}(Q) = \emptyset \quad \text{Bang} \frac{!P \mid P \xrightarrow{\mu} P'}{!P \xrightarrow{\mu} P'} \\ & \text{Res} \frac{P \xrightarrow{\mu} P'}{(\nu n) P \xrightarrow{\mu} (\nu n) P'} n \notin n(\mu) \end{split}$$

$$\begin{bmatrix} \text{Labelled transitions for the } \pi\text{-calculus, the rules} \\ \text{Inp} \quad a(m).P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} & \text{Out} \quad \overline{a}\langle n \rangle.P \xrightarrow{\overline{a}\langle n \rangle} P \\ & \text{Comm}_{l} \frac{P \xrightarrow{a(n)} P' \quad Q \quad \overline{a}\langle n \rangle}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \\ \text{Par}_{l} \frac{P \xrightarrow{\mu} P'}{P \mid Q \quad bn(\mu) \cap fn(Q) = \emptyset} & \text{Bang} \quad \frac{!P \mid P \xrightarrow{\mu} P'}{!P \xrightarrow{\mu} P'} \\ & \text{Res} \quad \frac{P \xrightarrow{\mu} P'}{(\nu n) P \xrightarrow{\mu} (\nu n) P'} n \notin n(\mu) \\ \text{Open} \quad \frac{P \quad \overline{a}\langle n \rangle_{\nu}}{(\nu n) P \quad \overline{a}\langle n \rangle_{\nu}} P' n \neq a \\ & \text{Close}_{l} \quad \frac{P \quad a(n)}{P \mid Q \xrightarrow{\tau} (\nu n) (P' \mid Q')} n \notin fn(P') \\ \end{bmatrix}$$

symmetrical versions of rules Comm_I, Par_I and Close_I have been omitted

$$\begin{array}{c} \operatorname{Par} \begin{array}{c} \operatorname{Out} \quad \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} Q \\ \hline P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q \\ \hline (\nu c) \left(P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q \\ \end{array} \right) \end{array}$$

$$\operatorname{Par} \frac{\operatorname{Out} \quad \overline{a} \langle c \rangle.Q \xrightarrow{\overline{a} \langle c \rangle} Q}{P \mid \overline{a} \langle c \rangle.Q \xrightarrow{\overline{a} \langle c \rangle} P \mid Q}$$
$$\operatorname{Par} \frac{\operatorname{Open} \frac{P \mid \overline{a} \langle c \rangle.Q \xrightarrow{\overline{a} \langle c \rangle} P \mid Q}{(\nu c) \left(P \mid \overline{a} \langle c \rangle.Q\right) \xrightarrow{\overline{a} \langle c \rangle} P \mid Q}$$
$$\frac{\overline{a} \langle c \rangle.Q \mid R \xrightarrow{\overline{a} \langle c \rangle} P \mid Q}{(\nu c) \left(P \mid \overline{a} \langle c \rangle.Q\right) \mid R \xrightarrow{\overline{a} \langle c \rangle} P \mid Q \mid R}$$

$$\operatorname{Par} \frac{\operatorname{Out} \quad \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} Q}{P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q}$$
$$\operatorname{Par} \frac{\operatorname{Open} \frac{P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q}{(\nu c) \left(P \mid \overline{a}\langle c \rangle.Q\right) \xrightarrow{\overline{a}\langle c \rangle} P \mid Q} \quad \stackrel{\text{def}}{=} \quad \Delta$$

$$\operatorname{Par} \frac{\operatorname{Out} \quad \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} Q}{P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q}$$
$$\operatorname{Par} \frac{\operatorname{Open} \frac{P \mid \overline{a}\langle c \rangle.Q \xrightarrow{\overline{a}\langle c \rangle} P \mid Q}{(\nu c) \left(P \mid \overline{a}\langle c \rangle.Q\right) \xrightarrow{\overline{a}\langle c \rangle} P \mid Q} \xrightarrow{\overline{a}(c)} P \mid Q$$
$$\stackrel{\text{def}}{=} \Delta$$

Close
$$\frac{\Delta}{(\nu c) \left(P \mid \overline{a} \langle c \rangle. Q\right) \mid R \mid a(x). S \xrightarrow{\tau} (\nu c) \left(P \mid Q \mid R \mid S_{\{x \leftarrow c\}}\right)}$$

Same computation in chemical version

$$\begin{aligned} (\boldsymbol{\nu}c) \left(P \mid \overline{a}\langle c \rangle.Q \right) \mid R \mid a(x).S &\equiv (\boldsymbol{\nu}c) \left(P \mid \overline{a}\langle c \rangle.Q \mid R \right) \mid a(x).S \\ &\equiv (\boldsymbol{\nu}c) \left(P \mid \overline{a}\langle c \rangle.Q \mid R \mid a(x).S \right) \\ &\equiv (\boldsymbol{\nu}c) \left(a(x).S \mid \overline{a}\langle c \rangle.Q \mid P \mid R \right) \quad \Delta_1 \end{aligned}$$

$$(\boldsymbol{\nu}c)\left(S_{\{x\leftarrow c\}} \mid Q \mid P \mid R\right) \equiv (\boldsymbol{\nu}c)\left(P \mid Q \mid R \mid S_{\{x\leftarrow c\}}\right) \quad \Delta_2$$

Reduction semantics and labelled semantics

Proposition: $P \to P'$ iff $P \xrightarrow{\tau} \equiv P'$

Reduction semantics and labelled semantics

Proposition: $P \to P'$ iff $P \xrightarrow{\tau} \equiv P'$

→ : is easier to read; work modulo α -conversion, AC properties of |, + and moving ν around

Reduction semantics and labelled semantics

Proposition: $P \to P'$ iff $P \xrightarrow{\tau} \equiv P'$

→ : is easier to read; work modulo α -conversion, AC properties of |, + and moving ν around

 $\xrightarrow{\mu}$: manipulate syntax trees; the "redex" is read "on the term" progressively construct the interaction between a term and its context

• same thing as before:

 $P \ \mathcal{R} \ Q$ bisimulation: $\mu \downarrow \qquad \downarrow \mu \qquad \sim$ is the greatest bisimulation $P' \ \mathcal{R} \ Q'$

• same thing as before:

 $P \mathcal{R} Q$ bisimulation: $\mu \downarrow \qquad \downarrow \mu \qquad \sim$ is the greatest bisimulation $P' \ \mathcal{R} \ Q'$

• BUT

• same thing as before:

bisimulation: $\begin{array}{ccc} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array} \sim \text{ is the greatest bisimulation}$

• BUT \sim is not a congruence

$$\overline{a} \mid b \sim \overline{a}.b + b.\overline{a}$$

• same thing as before:

bisimulation: $\begin{array}{ccc} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array} \sim \text{ is the greatest bisimulation}$

• BUT \sim is not a congruence

$$\overline{a} \mid b \sim \overline{a}.b + b.\overline{a}$$

$$c(b).(\overline{a} \mid b) \not\sim c(b).(\overline{a}.b + b.\overline{a}) \quad (b \leftarrow a...)$$

• same thing as before:

bisimulation:
$$\begin{array}{cccc} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array}$$
 is the greatest bisimulation

• BUT ~ is not a congruence $\overline{a} \mid b \sim \overline{a}.b + b.\overline{a}$ $c(b).(\overline{a} \mid b) \not\sim c(b).(\overline{a}.b + b.\overline{a}) \quad (b \leftarrow a...)$

▷ why this does not happen in CCS?

• same thing as before:

bisimulation: $\begin{array}{ccc} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array}$ ~ is the greatest bisimulation

- BUT ~ is not a congruence $\overline{a} \mid b \sim \overline{a}.b + b.\overline{a}$ $c(b).(\overline{a} \mid b) \not\sim c(b).(\overline{a}.b + b.\overline{a}) \quad (b \leftarrow a...)$
- ▶ why this does not happen in CCS?
- ▷ we have though: $(\nu b)(\overline{a} \mid b) \sim^{c} (\nu b)(\overline{a}.b + b.\overline{a}),$ ~^c being the greatest congruence included in ~

• example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a)(a(x).P) \sim^c$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a) (a(x).P) \sim^{c} \mathbf{0}$ $(\boldsymbol{\nu}x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c}$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a) (a(x).P) \sim^{c} \mathbf{0}$ $(\boldsymbol{\nu}x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\boldsymbol{\nu}x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication $!(P | Q) \sim^c$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a) (a(x).P) \sim^{c} \mathbf{0}$ $(\boldsymbol{\nu}x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\boldsymbol{\nu}x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication $!(P | Q) \sim^{c} !P | !Q$ $!!P \sim^{c}$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\nu a) (a(x).P) \sim^{c} \mathbf{0}$ $(\nu x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\nu x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication
$$!(P | Q) \sim^{c} !P | !Q$$

 $!!P \sim^{c} !P$
 $!\alpha.P$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a) (a(x).P) \sim^{c} \mathbf{0}$ $(\boldsymbol{\nu}x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\boldsymbol{\nu}x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication
$$!(P|Q) \sim^{c} !P | !Q$$

 $!!P \sim^{c} !P$
 $!\alpha .P \not\sim^{c} \alpha .!P$, for α a prefix $!(P+Q)$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\nu a) (a(x).P) \sim^{c} \mathbf{0}$ $(\nu x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\nu x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication
$$!(P | Q) \sim^{c} !P | !Q$$

 $!!P \sim^{c} !P$
 $!\alpha .P \not\sim^{c} \alpha .!P$, for α a prefix
 $!(P + Q) \sim^{c} !(P | Q)$
 $![a = b] P$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\nu a) (a(x).P) \sim^{c} \mathbf{0}$ $(\nu x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\nu x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication
$$!(P | Q) \sim^{c} !P | !Q$$

 $!!P \sim^{c} !P$
 $!\alpha .P \not\sim^{c} \alpha .!P$, for α a prefix
 $!(P + Q) \sim^{c} !(P | Q)$
 $![a = b] P \sim^{c} [a = b] !P$
 $!(\nu x) P$

- example above: $\overline{b} \mid a \sim^c \overline{b} \cdot a + a \cdot \overline{b} + [b = a] \tau$
- restriction

 $(\boldsymbol{\nu}a) (a(x).P) \sim^{c} \mathbf{0}$ $(\boldsymbol{\nu}x) (x(y).P \mid \overline{w}\langle z \rangle.Q) \sim^{c} \overline{w}\langle z \rangle.(\boldsymbol{\nu}x) (x(y).P \mid Q) \text{ if } x \neq w, x \neq z$

• replication
$$!(P | Q) \sim^{c} !P | !Q$$

 $!!P \sim^{c} !P$
 $!\alpha .P \not\sim^{c} \alpha .!P$, for α a prefix
 $!(P + Q) \sim^{c} !(P | Q)$
 $![a = b] P \sim^{c} [a = b] !P$
 $!(\nu x) P \not\sim^{c} (\nu x) !P$

Expansion lemma

Lemma [expansion]: if $M = \alpha_1 \cdot P_1 + \cdots + \alpha_n \cdot P_n$ and $N = \beta_1 \cdot Q_1 + \cdots + \beta_m \cdot Q_m$ then

 $M \mid N \sim \sum_{i} \alpha_{i} (P_{i}|N) + \sum_{j} \beta_{j} (M|Q_{j}) + \sum_{\langle \alpha_{i} \text{ comp } \beta_{j} \rangle^{\tau} R_{ij}$ with $\alpha_{i} \text{ comp } \beta_{j}$ (α_{i} is the "dual" of β_{j}): $\alpha_{i} = \overline{x} \langle y \rangle$ and $\beta_{j} = x(z)$, in which case $R_{ij} = P_{i}|Q_{j\{y \leftarrow z\}}$, or symmetrically.

Expansion lemma

Lemma [expansion]: if $M = \alpha_1 \cdot P_1 + \cdots + \alpha_n \cdot P_n$ and $N = \beta_1 \cdot Q_1 + \cdots + \beta_m \cdot Q_m$ then

 $M \mid N \sim \sum_{i} \alpha_{i} \cdot (P_{i} \mid N) + \sum_{j} \beta_{j} \cdot (M \mid Q_{j}) + \sum_{\langle \alpha_{i} \text{ comp } \beta_{j} \rangle^{\tau} \cdot R_{ij}$ with $\alpha_{i} \text{ comp } \beta_{j}$ (α_{i} is the "dual" of β_{j}): $\alpha_{i} = \overline{x} \langle y \rangle$ and $\beta_{j} = x(z)$, in which case $R_{ij} = P_{i} \mid Q_{j} \mid Y \leftarrow z \rangle$, or symmetrically.

 replace |s with + s towards a kind of "normal form" – see also models for π, as well as automated techniques

Expansion lemma

Lemma [expansion]: if $M = \alpha_1 \cdot P_1 + \cdots + \alpha_n \cdot P_n$ and $N = \beta_1 \cdot Q_1 + \cdots + \beta_m \cdot Q_m$ then

 $M \mid N \sim \sum_{i} \alpha_{i} \cdot (P_{i} \mid N) + \sum_{j} \beta_{j} \cdot (M \mid Q_{j}) + \sum_{\langle \alpha_{i} \text{ comp } \beta_{j} \rangle^{\tau} \cdot R_{ij}$ with $\alpha_{i} \text{ comp } \beta_{j}$ (α_{i} is the "dual" of β_{j}): $\alpha_{i} = \overline{x} \langle y \rangle$ and $\beta_{j} = x(z)$, in which case $R_{ij} = P_{i} \mid Q_{j} \mid Y \leftarrow z \rangle$, or symmetrically.

- replace |s with + s towards a kind of "normal form" – see also models for π, as well as automated techniques
- ▷ the term blows up

let us prove that in the $\pi\text{-calculus, }T \,|\, U \; \sim \; U \,|\, T$ for all T, U

let us prove that in the $\pi\text{-calculus, }T \,|\, U \; \sim \; U \,|\, T$ for all T, U

consider
$$\mathcal{R} \stackrel{\text{def}}{=} \{ (T|U, U|T), T, U \text{ processes} \}$$

 $\begin{array}{c} P \quad \mathcal{R} \quad Q \\ \mu \downarrow \qquad \downarrow \mu \\ P' \quad \mathcal{R} \quad Q' \end{array}$

let us prove that in the $\pi\text{-calculus, }T \mid U ~\sim~ U \mid T$ for all T, U

consider $\mathcal{R} \stackrel{\text{def}}{=} \{ (T|U, U|T), T, U \text{ processes} \}$ $\begin{array}{c} P \quad \mathcal{R} \quad Q \\ \mu \downarrow \qquad \downarrow \mu \\ P' \quad \mathcal{R} \quad Q' \end{array}$

▶ rules Par, Comm: ok

let us prove that in the $\pi\text{-calculus, }T \,|\, U \; \sim \; U \,|\, T$ for all T, U

consider
$$\mathcal{R} \stackrel{\text{def}}{=} \{ (T|U, U|T), T, U \text{ processes} \}$$

 $\begin{array}{c} P \quad \mathcal{R} \quad Q \\ \mu \downarrow \qquad \downarrow \mu \\ P' \quad \mathcal{R} \quad Q' \end{array}$

▷ rules Par, Comm: ok
▷ rule Close
$$\frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}(b)} Q'}{P|Q \xrightarrow{\tau} (\nu b) (P'|Q')}$$

let us prove that in the $\pi\text{-calculus, }T \mid U ~\sim~ U \mid T$ for all T, U

consider
$$\mathcal{R} \stackrel{\text{def}}{=} \{ (T|U, U|T), T, U \text{ processes} \}$$

$$\begin{array}{c} P \quad \mathcal{R} \quad Q \\ \mu \downarrow \qquad \downarrow \mu \\ P' \quad \mathcal{R} \quad Q' \end{array}$$

▶ rules Par, Comm: ok
 ▶ rule Close

$$\frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}(b)} Q'}{P|Q \xrightarrow{\tau} (\nu b) (P'|Q')}$$

 \hookrightarrow replace \mathcal{R} with $\mathcal{R} \cup \{ ((\boldsymbol{\nu}x) (P|Q), (\boldsymbol{\nu}x) (Q|P)) \}$

let us prove that in the $\pi\text{-calculus, }T \,|\, U \; \sim \; U \,|\, T$ for all T, U

consider
$$\mathcal{R} \stackrel{\text{def}}{=} \{ (T|U, U|T), T, U \text{ processes} \}$$

 $\begin{array}{c} P & \mathcal{R} & Q \\ \mu \downarrow & \downarrow \mu \\ P' & \mathcal{R} & Q' \end{array}$

► rules Par, Comm: ok
► rule Close
$$\frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}(b)} Q'}{P|Q \xrightarrow{\tau} (\nu b) (P'|Q')}$$

$$\rightarrow \text{ replace } \mathcal{R} \text{ with } \mathcal{R} \cup \{ ((\boldsymbol{\nu}x) (P|Q), (\boldsymbol{\nu}x) (Q|P)) \} \\ \dots \text{ no, with } \{ ((\boldsymbol{\nu}\tilde{x}) (P|Q), (\boldsymbol{\nu}\tilde{x}) (Q|P)) \} \quad (\tilde{x}: \text{ set of names})$$

• parallel compositions may evolve into restricted processes

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique $P \mathcal{R} Q$ $\mu \downarrow \qquad \downarrow \mu \qquad \text{implies } \mathcal{R} \subseteq \sim$ $(\nu x) P' \mathcal{R} (\nu x) Q'$

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique $\begin{array}{ccc}
 P & \mathcal{R} & Q \\
 \mu \downarrow & \downarrow \mu & \text{implies } \mathcal{R} \subseteq \sim \\
 (\nu x) P' & \mathcal{R} & (\nu x) Q'\end{array}$
- we are allowed to erase common restrictions
 useful with parallel composition

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique $P \mathcal{R} Q$ $\mu \downarrow \qquad \downarrow \mu \qquad \text{implies } \mathcal{R} \subseteq \sim$ $(\nu x) P' \mathcal{R} (\nu x) Q'$
- we are allowed to erase common restrictions useful with parallel composition
- we are also allowed to erase common parallel components (up to parallel composition)

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique $\begin{array}{ccc}
 P & \mathcal{R} & Q \\
 \mu \downarrow & \downarrow \mu & \text{implies } \mathcal{R} \subseteq \sim \\
 (\nu x) P' & \mathcal{R} & (\nu x) Q'\end{array}$
- we are allowed to erase common restrictions
 useful with parallel composition
- we are also allowed to erase common parallel components (up to parallel composition) useful with replication

An important law about replications

processes of the form !a(x).P may be seen as *resources* for example: $R \stackrel{\text{def}}{=} !c(r).(\nu n) \overline{r}n.n(v).!\overline{n}v$

An important law about replications

processes of the form !a(x).P may be seen as *resources*

for example: $R \stackrel{\text{def}}{=} !c(r).(\nu n) \overline{r}n.n(v).!\overline{n}v$

 $(\nu a)(!a(x).P | Q | R) \sim (\nu a)(!a(x).P | Q) | (\nu a)(!a(x).P | R)$ where *a* can only appear free in P_1, P_2, R in output subject position *(distributivity of private resources)*

An important law about replications

processes of the form !a(x).P may be seen as *resources*

for example: $R \stackrel{\text{def}}{=} !c(r).(\nu n) \overline{r}n.n(v).!\overline{n}v$

 $(\nu a)(!a(x).P | Q | R) \sim (\nu a)(!a(x).P | Q) | (\nu a)(!a(x).P | R)$ where *a* can only appear free in P_1, P_2, R in output subject position *(distributivity of private resources)*

 $\mathcal{R} \stackrel{\text{def}}{=} \{ ((\nu a) (P_1 | P_2 | ! a(x) . R), (\nu a) (P_1 | ! a(x) . R) | (\nu a) (P_2 | ! a(x) . R)) \}$

An important law about replications

processes of the form !a(x).P may be seen as *resources*

for example: $R \stackrel{\text{def}}{=} !c(r).(\nu n) \overline{r}n.n(v).!\overline{n}v$

 $(\nu a)(!a(x).P | Q | R) \sim (\nu a)(!a(x).P | Q) | (\nu a)(!a(x).P | R)$ where *a* can only appear free in P_1, P_2, R in output subject position *(distributivity of private resources)*

 $\mathcal{R} \stackrel{\text{def}}{=} \{ ((\nu a) (P_1 | P_2 | ! a(x).R), (\nu a) (P_1 | ! a(x).R) | (\nu a) (P_2 | ! a(x).R)) \}$

 \mathcal{R} is a bisimulation up to bisimilarity, up to restriction and up to parallel composition Behavioural equivalence with reduction semantics

- in the chemical version \longrightarrow is not enough to define a sensible notion of bisimulation

Behavioural equivalence with reduction semantics

- in the chemical version \longrightarrow is not enough to define a sensible notion of bisimulation

- one should observe *possibilities of interaction*: barbs
- $P \downarrow_a$ (resp. $P \downarrow_{\overline{a}}$): P may receive (resp. emit) on a

"I can offer coffee or tea"

<u>Remark:</u> $P \downarrow_a \Leftrightarrow P \equiv (\boldsymbol{\nu} \tilde{v}) (a(x).R \mid T), a \notin \tilde{v}$

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

$$P \mathcal{R} Q$$
1. $\downarrow \qquad \downarrow$

$$P' \mathcal{R} Q'$$
2. for any η , $P \downarrow_{\eta}$ iff $Q \downarrow_{\eta}$

 $\dot{\sim}$ is the greatest barbed bisimulation

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

1.
$$P \mathcal{R} Q$$

1. $\downarrow \qquad \downarrow$
 $P' \mathcal{R} Q'$
2. for any η , $P \downarrow_{\eta}$ iff $Q \downarrow_{\eta}$

 $\dot{\sim}$ is the greatest barbed bisimulation

 $\dot{\sim}$ is not very interesting: $\overline{a}\langle u \rangle \ \dot{\sim} \ \overline{a}\langle v \rangle \ \dot{\sim} \ (\boldsymbol{\nu}u) \, \overline{a}\langle u \rangle$

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

1.
$$P \mathcal{R} Q$$

1. $\downarrow \qquad \downarrow$
 $P' \mathcal{R} Q'$
2. for any η , $P \downarrow_{\eta}$ iff $Q \downarrow_{\eta}$

 $\dot{\sim}$ is the greatest barbed bisimulation

 $\dot{\sim}$ is not very interesting: $\overline{a}\langle u \rangle \ \dot{\sim} \ \overline{a}\langle v \rangle \ \dot{\sim} \ (\boldsymbol{\nu} u) \, \overline{a}\langle u \rangle$

BUT Theorem: $\dot{\sim}^c$, the greatest congruence included in $\dot{\sim}$, coincides with \sim^c

 \sim is " $\forall R. P \mid R \sim Q \mid R$ "

Theorem: $\dot{\sim}^c = \sim^c$.

Proof.

Theorem: $\dot{\sim}^c = \sim^c$.

Proof.

the main idea is to establish that $\dot{\sim}^c$ is a bisimulation

Theorem: $\dot{\sim}^c = \sim^c$.

Proof.

the main idea is to establish that $\dot{\sim}^c$ is a bisimulation

▶ take then $P \stackrel{.}{\sim}{}^c Q$, and $P \stackrel{\mu}{\rightarrow} P'$

Theorem: $\dot{\sim}^c = \sim^c$.

Proof.

the main idea is to establish that $\dot{\sim}^c$ is a bisimulation

- ▷ take then $P \sim^{c} Q$, and $P \xrightarrow{\mu} P'$
- ▷ exhibit contexts $\mathcal{C}, \mathcal{C}'$ s.t. $\mathcal{C}[P] \rightarrow \mathcal{C}'[P']$

Theorem: $\dot{\sim}^c = \sim^c$.

Proof.

the main idea is to establish that $\dot{\sim}^c$ is a bisimulation

- ▷ take then $P \stackrel{\cdot}{\sim}{}^c Q$, and $P \stackrel{\mu}{\rightarrow} P'$
- ▷ exhibit contexts $\mathcal{C}, \mathcal{C}'$ s.t. $\mathcal{C}[P] \rightarrow \mathcal{C}'[P']$
- \triangleright $\mathcal{C}, \mathcal{C}'s$ are chosen so that this entails that $Q \xrightarrow{\mu} Q'$

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R. P \mid R \leftrightarrow Q \mid R.$

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R. P \mid R \leftrightarrow Q \mid R.$

Theorem: $\sim = \simeq$

proof: relies on the fact that $\xrightarrow{\mu}$ is *image finite*

(finite number of reachable states)

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R. P \mid R \leftrightarrow Q \mid R.$

Theorem: $\sim = \simeq$

proof: relies on the fact that $\xrightarrow{\mu}$ is *image finite*

(finite number of reachable states)

Lemma [Context lemma]:

 $P \simeq^{c} Q$ iff for any $R, \sigma, P\sigma \mid R ~\sim~ Q\sigma \mid R$

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R. P \mid R \leftrightarrow Q \mid R.$

Theorem: $\sim = \simeq$

proof: relies on the fact that $\xrightarrow{\mu}$ is *image finite*

(finite number of reachable states)

Lemma [Context lemma]:

 $P \simeq^{c} Q$ iff for any $R, \sigma, P\sigma \mid R ~\sim~ Q\sigma \mid R$

 $\simeq^c = \dot{\sim}^c = \sim^c$

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R. P \mid R \leftrightarrow Q \mid R.$

Theorem: $\sim = \simeq$

proof: relies on the fact that $\xrightarrow{\mu}$ is *image finite*

(finite number of reachable states)

Lemma [Context lemma]:

 $P \simeq^{c} Q$ iff for any $R, \sigma, P\sigma \mid R \dot{\sim} Q\sigma \mid R$

 $\simeq^c = \dot{\sim}^c = \sim^c$

... and other notions of bisimilarity, e.g. in asynchronous π

Variants

Inp
$$a(x).P \xrightarrow{a(v)} P_{\{x \leftarrow v\}}$$
 blabla Comm $\frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$

this is the operational semantics *in early style*

Variants

$$\operatorname{Inp} a(x).P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad blabla \quad \operatorname{Comm} \frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

this is the operational semantics *in early style*

• one could consider

Inp
$$a(x).P \xrightarrow{a(x)} P$$
 Comm $\frac{P \xrightarrow{a(x)} P' \ Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'_{\{x \leftarrow b\}}|Q'}$

<u>Variants</u>

$$\operatorname{Inp} a(x).P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad blabla \quad \operatorname{Comm} \frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

this is the operational semantics in early style

• one could consider

Inp
$$a(x).P \xrightarrow{a(x)} P$$
 Comm $\frac{P \xrightarrow{a(x)} P' \quad Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'_{\{x \leftarrow b\}}|Q'}$

Definition: \mathcal{R} is a *late* bisimulation iff whenever $(P,Q) \in \mathcal{R}$:

- if $P \xrightarrow{a(x)} P'$, there is Q' s.t. $Q \xrightarrow{a(x)} Q'$, and, for all $a, (P_{\{x \leftarrow a\}}, Q_{\{x \leftarrow a\}}) \in \mathcal{R}$;
- if $P \xrightarrow{\mu} P'$ and μ is not an input: as usual.

<u>Variants</u>

$$\operatorname{Inp} a(x).P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad blabla \quad \operatorname{Comm} \frac{P \xrightarrow{a(b)} P' \quad Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$$

this is the operational semantics in early style

• one could consider

Inp
$$a(x).P \xrightarrow{a(x)} P$$
 Comm $\frac{P \xrightarrow{a(x)} P' \ Q \xrightarrow{\overline{a}\langle b \rangle} Q'}{P|Q \xrightarrow{\tau} P'_{\{x \leftarrow b\}}|Q'}$

Definition: \mathcal{R} is a *late* bisimulation iff whenever $(P,Q) \in \mathcal{R}$:

- if $P \xrightarrow{a(x)} P'$, there is Q' s.t. $Q \xrightarrow{a(x)} Q'$, and, for all $a, (P_{\{x \leftarrow a\}}, Q_{\{x \leftarrow a\}}) \in \mathcal{R}$;
- if $P \xrightarrow{\mu} P'$ and μ is not an input: as usual.

Theorem:
$$\sim_{\text{late}} \subsetneq \sim$$
. Proof: $P \stackrel{\text{def}}{=} x(z) + x(z).\overline{z}$
 $Q \stackrel{\text{def}}{=} x(z) + x(z).\overline{z} + x(z).[z = y]\overline{z}$