Behavioural equivalences

Comparing behaviours

- terms and their meaning:

$$
\begin{array}{ccc}
\text { a syntactic } & \text { its } \equiv \text {-equivalence } & \text { class } \\
\text { object } & \text { its evolutions } \\
(\boldsymbol{\nu} v)(\bar{a}\langle v\rangle \mid \bar{v}\langle t\rangle) & (\boldsymbol{\nu} v)(\bar{v}\langle t\rangle \mid \bar{a}\langle v\rangle) & (\boldsymbol{\nu} v) \bar{a}\langle v\rangle \cdot \bar{v}\langle t\rangle
\end{array}
$$

Comparing behaviours

- terms and their meaning:

$$
\begin{array}{ccc}
\text { a syntactic } & \text { its } \equiv \text {-equivalence } & \text { class } \\
\text { object } & \text { its evolutions } \\
(\boldsymbol{\nu} v)(\bar{a}\langle v\rangle \mid \bar{v}\langle t\rangle) & (\boldsymbol{\nu} v)(\bar{v}\langle t\rangle \mid \bar{a}\langle v\rangle) & (\boldsymbol{\nu} v) \bar{a}\langle v\rangle \cdot \bar{v}\langle t\rangle
\end{array}
$$

- equate terms that exhibit the same behaviour
\triangleright replace a component by another one (specif. vs implem.)
\triangleright program a particular construct
\triangleright encode a language in another language

Comparing behaviours

- terms and their meaning:

$$
\begin{array}{ccc}
\text { a syntactic } & \text { its } \equiv \text {-equivalence } & \text { class } \\
\text { object } & \text { its evolutions } \\
(\boldsymbol{\nu} v)(\bar{a}\langle v\rangle \mid \bar{v}\langle t\rangle) & (\boldsymbol{\nu} v)(\bar{v}\langle t\rangle \mid \bar{a}\langle v\rangle) & (\boldsymbol{\nu} v) \bar{a}\langle v\rangle \cdot \bar{v}\langle t\rangle
\end{array}
$$

- equate terms that exhibit the same behaviour
\triangleright replace a component by another one (specif. vs implem.)
\triangleright program a particular construct
\triangleright encode a language in another language
- compositionality is crucial
two equivalent systems should be undistinguishable, in any context (we are in a concurrent setting)

When are two terms behaviourally equivalent?

- when they "act the same" (?!?) ?
$\bar{a}\langle v\rangle \mid a(x) \cdot(\bar{c}\langle x\rangle \mid \bar{d}\langle x\rangle)$
$\left.\bar{c}\langle v\rangle\right|_{\nless} ^{\downarrow} \bar{d}\langle v\rangle$
$(\boldsymbol{\nu} c)(\bar{c}\langle c\rangle \mid c(x) .0)$
\downarrow
0
\npreceq
[When are two terms behaviourally equivalent?
- when they "act the same" (?!?) ?

When are two terms behaviourally equivalent?

- when they "act the same" (?!?) ?

- what is behaviour?
$\triangleright \neq$ functions: no notion of a result of computation
[When are two terms behaviourally equivalent?
- when they "act the same" (?!?) ?

- what is behaviour?
$\triangleright \neq$ functions: no notion of a result of computation
\triangleright observation: \exists context in which the process performs some action
[When are two terms behaviourally equivalent?
- when they "act the same" (?!?) ?

- what is behaviour?
$\triangleright \neq$ functions: no notion of a result of computation
\triangleright observation: \exists context in which the process performs some action
let us first concentrate on CCS

Labelled transitions

$$
a . P \xrightarrow{a} P
$$

Labelled transitions

$$
a . P \quad \xrightarrow{a} P \quad \bar{a} . P \quad \xrightarrow{\bar{a}} P
$$

Labelled transitions

$$
\text { a.P } \xrightarrow{a} P \quad \bar{a} . P \quad \xrightarrow{\bar{a}} P \quad \text { т.P } \xrightarrow{\tau} P
$$

Labelled transitions

$$
\begin{array}{rllllll}
a . P & \xrightarrow{a} P & \bar{a} \cdot P & \xrightarrow{\bar{a}} P & \tau . P & \xrightarrow{\tau} P \\
P \mid Q & \xrightarrow{\mu} P^{\prime} \\
P \mid Q & & & &
\end{array}
$$

Labelled transitions

$$
\begin{aligned}
& a . P \xrightarrow{a} P \quad \bar{a} . P \quad \xrightarrow{\bar{a}} P \quad \tau . P \xrightarrow{\tau} P \\
& \frac{P}{P \mid Q} \xrightarrow{\mu} P^{\mu} \left\lvert\, Q \quad P^{\prime} \quad \frac{P}{P\left|Q \xrightarrow{a} P^{\prime} Q \xrightarrow{\bar{a}} P^{\prime}\right| Q^{\prime}}\right.
\end{aligned}
$$

Labelled transitions

$$
\begin{array}{ccccc}
a . P \xrightarrow{a} P & \bar{a} . P & \xrightarrow{\bar{a}} P & \tau . P \xrightarrow{\tau} P \\
P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q & \cdots & \frac{P \xrightarrow{a} P^{\prime} Q \xrightarrow{\bar{a}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}
\end{array}
$$

- $P \xrightarrow{\mu} P^{\prime}$: there exists a context in which P may "do" μ

Labelled transitions

$$
\begin{array}{ccccc}
a . P \xrightarrow{a} P & \bar{a} . P & \xrightarrow{\bar{a}} P & \tau . P \xrightarrow{\tau} P \\
& P \xrightarrow{\mu} P^{\prime} \\
P \mid Q & \ldots & \xrightarrow{\mu} P^{\prime} \mid Q & \cdots & P^{\prime} Q \xrightarrow{\bar{a}} Q^{\prime} \\
P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}
\end{array}
$$

- $P \xrightarrow{\mu} P^{\prime}$: there exists a context in which P may "do" μ
- P, P^{\prime} processes $(\mathcal{P}), \mu$ action (\mathcal{A}) labelled transition system $(\mathrm{LTS}) \subseteq(\mathcal{P} \times \mathcal{A} \times \mathcal{P})$

「Labelled transitions

$$
\begin{aligned}
& a . P \xrightarrow{a} P \quad \bar{a} . P \quad \xrightarrow{\bar{a}} P \quad \tau . P \xrightarrow{\tau} P \\
& \frac{P}{P \mid Q} \xrightarrow{\mu} P^{\mu} \left\lvert\, Q \quad P^{\prime} \quad \frac{P \xrightarrow[\rightarrow]{a} P^{\prime} Q \xrightarrow{\bar{a}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}\right.
\end{aligned}
$$

- $P \xrightarrow{\mu} P^{\prime}$: there exists a context in which P may "do" μ
- P, P^{\prime} processes $(\mathcal{P}), \mu$ action (\mathcal{A}) labelled transition system $($ LTS $) \subseteq(\mathcal{P} \times \mathcal{A} \times \mathcal{P})$
N.B.: a chemical semantics for CCS? \rightarrow rather straightforward

Traces

- a process P is liable to exhibit traces: $P \xrightarrow{\mu_{1}} P_{1} \xrightarrow{\mu_{2}} P_{2} \ldots$

「Traces

- a process P is liable to exhibit traces: $P \xrightarrow{\mu_{1}} P_{1} \xrightarrow{\mu_{2}} P_{2} \ldots$
- should we compare traces?

Definition [trace equivalence] P and Q are trace equivalent iff they have the same set of traces.

「Milner's coffe machines

「Milner's coffe machines

「Milner's coffe machines

$P^{\prime} \mid C$ may exhibit a deadlock

「Milner's coffe machines

$$
\begin{aligned}
& P^{\prime} \mid C \text { may exhibit } \\
& \text { a deadlock }
\end{aligned}
$$

「Milner's coffe machines

$P^{\prime} \mid C$ may exhibit
a deadlock
Trace equivalence is not compositional
one should be less "factual" (see "Marignan: 1515")
(linear vs branching time)

「Towards compositionality
Definition [bisimulation]: A symmetrical relation \mathcal{R} on processes is a bisimulation iff, whenever $P \mathcal{R} Q, P \xrightarrow{\mu} P^{\prime}$ implies that there exists Q s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.

Definition [bisimilarity]: Bisimilarity (\sim) is the union of all bisimulations.

Remarks: \sim is an equivalence relation
\sim is included in trace equivalence

「Towards compositionality
Definition [bisimulation]: A symmetrical relation \mathcal{R} on processes is a bisimulation iff, whenever $P \mathcal{R} Q, P \xrightarrow{\mu} P^{\prime}$ implies that there exists Q s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.

Definition [bisimilarity]: Bisimilarity (\sim) is the union of all bisimulations.

Remarks: ~ is an equivalence relation
\sim is included in trace equivalence

Theorem: in CCS, bisimilarity is a congruence.
(and hence it is compositional w.r.t. parallel composition)

Exercise: bisimulation versus two simulations
Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.

Exercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.
what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

Exercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.
what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

P

P^{\prime}

Exercise: bisimulation versus two simulations

Definition: Q simulates P if there exists a relation \mathcal{R} s.t. $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. $P \leftrightarrows Q$ if Q simulates P and P simulates Q.
what is the relationship between $P \sim Q$ and $P \leftrightarrows Q$?

8

Bisimulation and up-to bisimulation
$P \quad \mathcal{R} \quad Q$

- bisimulation:

$$
\begin{array}{ccc}
\mu \downarrow \\
P^{\prime} & \mathcal{R} & \stackrel{\downarrow}{Q^{\prime}}
\end{array}
$$

Bisimulation and up-to bisimulation

$$
P \quad \mathcal{R} \quad Q
$$

- bisimulation:

$$
\begin{array}{cc}
\mu \downarrow \\
P^{\prime} & \mathcal{R}
\end{array} \stackrel{\downarrow}{Q^{\prime}}
$$

- a framework for bisimulation proof techniques:
up-to bisimulation
let \mathcal{F} be a function from relations to relations
$\begin{array}{ccc}P & \mathcal{R} & Q \\ \mu \downarrow & & \downarrow \mu \\ P^{\prime} & \mathcal{F}(\mathcal{R}) & \stackrel{Q^{\prime}}{\prime} \\ \text { if } \mathcal{F} \text { gives a valid proof technique, then } \mathcal{R} \subseteq \sim\end{array}$

Exercise - an up-to technique

- \mathcal{R} is a bisimulation up to bisimilarity if

$$
\begin{array}{rcc}
P & \mathcal{R} \quad \begin{array}{l}
Q \\
\mu \downarrow \\
P^{\prime}
\end{array} \sim \mathcal{R} \sim \stackrel{\downarrow \mu}{Q^{\prime}}
\end{array}
$$

Exercise - an up-to technique

- \mathcal{R} is a bisimulation up to bisimilarity if

$$
\begin{array}{rcc}
P & \mathcal{R} & \begin{array}{l}
Q \\
\mu \downarrow \\
P^{\prime}
\end{array} \\
\sim \mathcal{R} \sim & \stackrel{\downarrow}{Q^{\prime}}
\end{array}
$$

Theorem: if \mathcal{R} is a bisimulation up to \sim, then $\mathcal{R} \subseteq \sim$.

- prove it

Exercise - an up-to technique

- \mathcal{R} is a bisimulation up to bisimilarity if

$$
\begin{array}{rll}
P & \mathcal{R} & Q \\
\mu \downarrow & & \downarrow \mu \\
P^{\prime} & \sim \mathcal{R} \sim & Q^{\prime}
\end{array}
$$

Theorem: if \mathcal{R} is a bisimulation up to \sim, then $\mathcal{R} \subseteq \sim$.

- prove it
$\triangleright \mathcal{R}$ itself is not necessarily a bisimulation
\triangleright useful to "plug" known bisimilarity laws into bisimulation proofs - other such techniques exist

Weak bisimilarity

「Bisimulation - weak case
Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations

Bisimulation - weak case

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations
$\xrightarrow{\widehat{\mu}}: \xrightarrow{\tau}$ or $=$ if $\alpha=\tau, \xrightarrow{\mu}$ otherwise; $\quad P \xrightarrow{\mu} P^{\prime}: P \Rightarrow \xrightarrow{\widehat{\mu}} \Rightarrow P^{\prime}$.

Bisimulation - weak case

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations
$\xrightarrow{\widehat{\mu}}: \xrightarrow{\tau}$ or $=$ if $\alpha=\tau, \xrightarrow{\mu}$ otherwise; $\quad P \xrightarrow{\mu} P^{\prime}: P \Rightarrow \xrightarrow{\hat{\mu}} \Rightarrow P^{\prime}$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a weak bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \stackrel{\hat{\mu}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. Weak bisimilarity (\approx), is the greatest weak bisimulation.
Proposition: \approx is an equivalence relation.

Bisimulation - weak case

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations
$\xrightarrow{\widehat{\mu}}: \xrightarrow{\tau}$ or $=$ if $\alpha=\tau, \xrightarrow{\mu}$ otherwise; $P \xrightarrow{\mu} P^{\prime}: P \Rightarrow \xrightarrow{\hat{\mu}} \Rightarrow P^{\prime}$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a weak bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \xrightarrow{\hat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. Weak bisimilarity (\approx), is the greatest weak bisimulation.
Proposition: \approx is an equivalence relation.

$$
\triangleright \sim \subseteq \approx
$$

Bisimulation - weak case

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations
$\xrightarrow{\hat{\mu}}: \xrightarrow{\tau}$ or $=$ if $\alpha=\tau, \xrightarrow{\mu}$ otherwise; $P \xrightarrow{\mu} P^{\prime}: P \Rightarrow \xrightarrow{\widehat{\mu}} \Rightarrow P^{\prime}$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a weak bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \stackrel{\hat{\mu}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. Weak bisimilarity (\approx), is the greatest weak bisimulation.
Proposition: \approx is an equivalence relation.
$\triangleright \sim \subseteq \approx$
\triangleright why take τ moves into account for the bisimulation game?

Bisimulation - weak case

Definition [weak transitions] \Rightarrow : refl. trans. closure of $\xrightarrow{\tau}$; abstract from internal computations
$\xrightarrow{\hat{\mu}}: \xrightarrow{\tau}$ or $=$ if $\alpha=\tau, \xrightarrow{\mu}$ otherwise; $P \xrightarrow{\mu} P^{\prime}: P \Rightarrow \xrightarrow{\widehat{\mu}} \Rightarrow P^{\prime}$.

Definition [weak bisimilarity]

A symmetrical relation \mathcal{R} is a weak bisimulation iff, whenever $P \mathcal{R} Q$ and $P \xrightarrow{\mu} P^{\prime}$, there exists Q^{\prime} s.t. $Q \stackrel{\widehat{\mu}}{\Longrightarrow} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$. Weak bisimilarity (\approx), is the greatest weak bisimulation.
Proposition: \approx is an equivalence relation.
$\triangleright \sim \subseteq \approx$
\triangleright why take τ moves into account for the bisimulation game? consider $a+\tau .(b \mid c)$ and $a+(b \mid c)$
$\lceil\approx$ and τ

- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\triangleright \alpha \cdot(P+\tau . Q)+\alpha . Q \approx \alpha .(P+\tau . Q)$
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\triangleright \alpha \cdot(P+\tau . Q)+\alpha . Q \approx \alpha .(P+\tau . Q)$
$\triangleright P \approx \tau . P$? this would imply e.g. $a+\tau .(u \mid v) \approx a+(u \mid v)$
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\triangleright \alpha .(P+\tau . Q)+\alpha . Q \approx \alpha .(P+\tau . Q)$
$\triangleright P \approx \tau . P$? this would imply e.g. $a+\tau .(u \mid v) \approx a+(u \mid v)$ N.B.: ok in π with some restrictions on +
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\triangleright \alpha \cdot(P+\tau . Q)+\alpha . Q \approx \alpha .(P+\tau . Q)$
$\triangleright P \approx \tau . P$? this would imply e.g. $a+\tau .(u \mid v) \approx a+(u \mid v)$ N.B.: ok in π with some restrictions on +
- weak bisimilarity and divergences
$\triangleright!\tau .0 \approx 0$
$\lceil\approx$ and τ
- some laws: let α be any prefix,
$\triangleright \alpha . \tau . P \approx \alpha . P$
$\triangleright P+\tau . P \approx \tau . P$
$\triangleright \alpha .(P+\tau . Q)+\alpha . Q \approx \alpha .(P+\tau . Q)$
$\triangleright P \approx \tau . P$? this would imply e.g. $a+\tau .(u \mid v) \approx a+(u \mid v)$ N.B.: ok in π with some restrictions on +
- weak bisimilarity and divergences
$\triangleright!\tau .0 \approx 0$
\triangleright let $A \stackrel{\text { def }}{=} a+\tau \cdot A, A \approx a .0$

WWeak bisimulation up to (weak) bisimilarity
let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

[Weak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

consider $\tau . a .0$ and 0 : the game allows us to "go back in time"

[Weak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

consider $\tau . a .0$ and 0 : the game allows us to "go back in time"

Weak bisimulation up to (weak) bisimilarity

let us try to establish a proof technique similar to (strong) bisimulation up to \sim in the weak case:

consider r.a. 0 and 0 : the game allows us to "go back in time"

Definition [expansion]: \mathcal{R} is an expansion iff whenever $P \mathcal{R} Q$:

- if $P \xrightarrow{\mu} P^{\prime}$ there exists Q^{\prime} s.t. $Q \xrightarrow{\widehat{\mu}} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$
- if $Q \xrightarrow{\mu} Q^{\prime}$ there exists P^{\prime} s.t. $P \xrightarrow{\widehat{\mu}} P^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$.
\lesssim is the greatest expansion, \gtrsim is \lesssim^{-1}.

Behavioural equivalences for π

Labelled Transition System for the π-calculus
what are the (labelled) transitions of the following term?

$$
(\boldsymbol{\nu} x)(\boldsymbol{\nu} y)(\bar{a}\langle w\rangle . P|b(t) . Q| \bar{y}\langle v\rangle .0 \mid \bar{b}\langle x\rangle . R)
$$

what are the possible actions in π ?

LTS for the π-calculus

names: $\mathfrak{n}(\mu)$
bound names: $\operatorname{bn}(\bar{a}(b))=\{b\}, \operatorname{bn}(\mu)=\emptyset$ otherwise

〔LTS for the π-calculus
three (+1) kinds of actions: $\left\{\begin{array}{l}P \xrightarrow{a(b)} Q \\ P \xrightarrow{\bar{a}\langle b\rangle} Q, \quad P \xrightarrow{\bar{a}(b)_{\nu}} Q \\ P \xrightarrow{\tau} Q\end{array}\right.$
names: $\mathrm{n}(\mu)$
bound names: $\mathrm{bn}(\bar{a}(b))=\{b\}, \mathrm{bn}(\mu)=\emptyset$ otherwise
N.B.: in a polyadic setting, bound outputs are of the form $(\boldsymbol{\nu} \tilde{x}) \bar{a}\langle\tilde{y}\rangle$, with $\tilde{x} \subseteq \tilde{y}$ and \tilde{x} is a set rather than a tuple
\rightarrow a precise, rigorous definition is really tedious

LLabelled transitions for the π-calculus, the rules

$$
\text { Inp } a(m) . P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{gathered}
\text { Inp } a(m) . P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P \\
\text { Comm }_{1} \frac{P \xrightarrow{a(n)} P^{\prime} \quad Q \xrightarrow{\bar{a}\langle n\rangle} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}
\end{gathered}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{gathered}
\text { Inp } a(m) \cdot P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle \cdot P \xrightarrow{\bar{a}(n)} P \\
\operatorname{Comm}_{1} \xrightarrow[P]{P \xrightarrow{P(n)} P^{\prime} \quad Q \xrightarrow{\bar{\alpha}(n)} P^{\prime} \mid Q^{\prime}} Q^{\prime} \\
\operatorname{Par}_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset
\end{gathered}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{gathered}
\text { Inp } a(m) \cdot P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle \cdot P \xrightarrow{\bar{a}\langle n\rangle} P \\
\operatorname{Comm}_{1} \xrightarrow{P \xrightarrow{a(n)} P^{\prime} Q \xrightarrow{\bar{a}\langle n\rangle} Q^{\prime}} \begin{array}{c}
P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}
\end{array} \\
\operatorname{Par}_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset \quad \text { Bang } \frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}}
\end{gathered}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{aligned}
& \text { Inp } a(m) . P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Par}_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset \quad \text { Bang } \frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \\
& \text { Res } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\mu}(\boldsymbol{\nu} n) P^{\prime}} n \notin \mathrm{n}(\mu)
\end{aligned}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{aligned}
& \text { Inp } a(m) \cdot P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P \\
& \mathrm{Comm}_{1} \frac{P \xrightarrow{a(n)} P^{\prime} Q \xrightarrow{\bar{a}\langle n\rangle} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \\
& \text { Par }_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset \quad \text { Bang } \frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \\
& \operatorname{Res} \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\mu}(\boldsymbol{\nu} n) P^{\prime}} n \notin \mathrm{n}(\mu) \\
& \text { Open } \frac{P \xrightarrow{(\boldsymbol{\nu} n) P \xrightarrow{\bar{a}\langle n\rangle} P^{\prime}} n \neq a, ~ P^{\prime}}{\xrightarrow{\bar{a}(n)_{\nu}}} n \neq a
\end{aligned}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{aligned}
& \text { Inp } a(m) . P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P \\
& \mathrm{Comm}_{1} \xrightarrow{P \xrightarrow{a(n)} P^{\prime} Q \xrightarrow{\tau} P^{\prime} \mid Q^{\prime}} Q^{\prime} \\
& \text { Par }_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset \quad \text { Bang } \frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \\
& \text { Res } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\mu}(\boldsymbol{\nu} n) P^{\prime}} n \notin \mathrm{n}(\mu) \\
& \text { Open } \frac{P \xrightarrow{\bar{a}\langle n\rangle} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\bar{a}(n)_{\nu}} P^{\prime}} n \neq a \\
& \text { Close } \frac{P \xrightarrow{P} \xrightarrow{\text { a(n) }} P^{\prime} \quad Q \xrightarrow{\bar{a}(n)_{\nu}} Q^{\prime}}{P \mid Q n)\left(P^{\prime} \mid Q^{\prime}\right)} n \notin \mathrm{fn}\left(P^{\prime}\right)
\end{aligned}
$$

「Labelled transitions for the π-calculus, the rules

$$
\begin{aligned}
& \text { Inp } a(m) . P \xrightarrow{a(n)} P_{\{m \leftarrow n\}} \quad \text { Out } \bar{a}\langle n\rangle . P \xrightarrow{\bar{a}\langle n\rangle} P \\
& \mathrm{Comm}_{1} \xrightarrow{P \xrightarrow{a(n)} P^{\prime} Q \xrightarrow{\tau} P^{\prime} \mid Q^{\prime}} Q^{\prime} \\
& \operatorname{Par}_{1} \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \operatorname{bn}(\mu) \cap \mathrm{fn}(Q)=\emptyset \quad \text { Bang } \frac{!P \mid P \xrightarrow{\mu} P^{\prime}}{!P \xrightarrow{\mu} P^{\prime}} \\
& \text { Res } \frac{P \xrightarrow{\mu} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\mu}(\boldsymbol{\nu} n) P^{\prime}} n \notin \mathrm{n}(\mu) \\
& \text { Open } \frac{P \xrightarrow{\bar{a}\langle n\rangle} P^{\prime}}{(\boldsymbol{\nu} n) P \xrightarrow{\bar{a}(n)_{\nu}} P^{\prime}} n \neq a \quad \text { Close } \frac{P \xrightarrow{a(n)} P^{\prime} \quad Q \xrightarrow{\bar{a}(n)_{\nu}} Q^{\prime}}{P \mid Q \xrightarrow{\tau}(\boldsymbol{\nu} n)\left(P^{\prime} \mid Q^{\prime}\right)} n \notin \mathrm{fn}\left(P^{\prime}\right)
\end{aligned}
$$

Labelled transitions: a derivation

$$
(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle . Q)|R| a(x) . S \rightarrow
$$

Labelled transitions: a derivation

$$
\text { Par Out } \bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c\rangle} Q
$$

Open
Par

$$
(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle . Q)|R| a(x) . S \rightarrow
$$

Labelled transitions: a derivation

$$
\text { Par } \frac{\text { Out } \bar{a}\langle c\rangle . Q \xrightarrow{\bar{a}\langle c\rangle} Q}{P|\bar{a}\langle c\rangle . Q \xrightarrow{\bar{a}\langle c\rangle} P| Q}
$$

Par

$$
(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R| a(x) \cdot S \rightarrow
$$

Labelled transitions: a derivation

$$
\operatorname{Par} \xrightarrow{\text { Open } \frac{\text { Par } \frac{\text { Out } \bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c\rangle} Q}{P|\bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c\rangle} P| Q}}{(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q) \xrightarrow{\bar{a}(c)} P \mid Q}}
$$

$$
(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle . Q)|R| a(x) . S \rightarrow
$$

Labelled transitions: a derivation

$$
\operatorname{Par} \frac{\operatorname{Par} \frac{\text { Out } \bar{a}\langle c\rangle \cdot Q \stackrel{\bar{a}\langle c\rangle}{\longrightarrow} Q}{P|\bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c\rangle} P| Q}}{(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R \xrightarrow{\bar{a}(c)} P| Q \mid R}
$$

$$
(\boldsymbol{\nu c})(P \mid \bar{a}\langle c\rangle . Q)|R| a(x) . S \rightarrow
$$

Labelled transitions: a derivation

$$
\begin{aligned}
& \text { Open } \frac{\operatorname{Par} \frac{\text { Out } \bar{a}\langle c\rangle \cdot Q \stackrel{\bar{a}\langle c\rangle}{ } Q}{P|\bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c c} P| Q}}{(\boldsymbol{\nu} c)(P|\bar{a}\langle c\rangle \cdot Q \stackrel{\bar{a}(c)}{\longrightarrow} P| Q} \\
& \operatorname{Par} \frac{\text { def }}{=} \\
& (\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R \xrightarrow{\bar{a}(c)} P| Q \mid R
\end{aligned}
$$

Labelled transitions: a derivation

$$
\begin{aligned}
& \begin{array}{c}
\text { Open } \frac{\operatorname{Par} \frac{\text { Out } \bar{a}\langle c\rangle \cdot Q \xrightarrow{\bar{a}\langle c\rangle}}{P} Q}{(\boldsymbol{\nu} c)(P|\bar{a}\langle c\rangle \cdot Q \stackrel{\bar{a}\langle c\rangle \cdot Q) \xrightarrow{\bar{a}(c)} P \mid Q}{\longrightarrow} P| Q} \\
\operatorname{Par} \frac{\text { def }}{(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R \xrightarrow{\bar{a}(c)} P| Q \mid R} \triangle
\end{array} \\
& \text { Close } \frac{\Delta}{(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle . Q)|R| a(x) . S \xrightarrow{\tau}(\boldsymbol{\nu} c)\left(P|Q| R \mid S_{\{x \leftarrow c\}}\right)}
\end{aligned}
$$

Same computation in chemical version

$$
\begin{aligned}
&(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R| a(x) \cdot S \equiv(\boldsymbol{\nu} c)(P|\bar{a}\langle c\rangle \cdot Q| R) \mid a(x) . S \\
& \equiv(\boldsymbol{\nu} c)(P|\bar{a}\langle c\rangle \cdot Q| R \mid a(x) \cdot S) \\
& \equiv(\boldsymbol{\nu} c)(a(x) \cdot S|\bar{a}\langle c\rangle \cdot Q| P \mid R) \quad \triangle_{1} \\
&(\boldsymbol{\nu} c)\left(S_{\{x \leftarrow c\}}|Q| P \mid R\right) \equiv(\boldsymbol{\nu} c)\left(P|Q| R \mid S_{\{x \leftarrow c\}}\right) \quad \Delta_{2} \\
& \left.\frac{a(x) \cdot S \mid \bar{a}\langle c\rangle \cdot Q}{\longrightarrow} S_{\{x \leftarrow c\}} \right\rvert\, Q \\
& \triangle_{1} \quad \frac{\triangle_{2}}{(\boldsymbol{\nu} c)(a(x) \cdot S|\bar{a}\langle c\rangle \cdot Q| P \mid R) \longrightarrow(\boldsymbol{\nu} c)\left(S_{\{x \leftarrow c\}}|Q| P \mid R\right)} \\
&(\boldsymbol{\nu} c)(P \mid \bar{a}\langle c\rangle \cdot Q)|R| a(x) \cdot S \longrightarrow(\boldsymbol{\nu} c)\left(P|Q| R \mid S_{\{x \leftarrow c\}}\right)
\end{aligned}
$$

Reduction semantics and labelled semantics
Proposition: $P \rightarrow P^{\prime}$ iff $P \xrightarrow{\tau} \equiv P^{\prime}$

Reduction semantics and labelled semantics

Proposition: $P \rightarrow P^{\prime}$ iff $P \xrightarrow{\tau} \equiv P^{\prime}$
\rightarrow : is easier to read; work modulo α-conversion, AC properties of $\mid,+$ and moving $\boldsymbol{\nu}$ around

Reduction semantics and labelled semantics

Proposition: $P \rightarrow P^{\prime}$ iff $P \xrightarrow{\tau} \equiv P^{\prime}$
\rightarrow : is easier to read; work modulo α-conversion, AC properties of $\mid,+$ and moving $\boldsymbol{\nu}$ around
$\xrightarrow{\mu}:$ manipulate syntax trees; the "redex" is read "on the term" progressively construct the interaction between a term and its context

Porting the definition of bisimilarity in the π-calculus

- same thing as before:
bisimulation: $\begin{array}{rll}P & \mathcal{R} & Q \\ \mu & \downarrow & \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array} \quad \sim$ is the greatest bisimulation

Porting the definition of bisimilarity in the π-calculus

- same thing as before:
bisimulation: $\begin{array}{rll}P & \mathcal{R} & Q \\ \mu & & \downarrow \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array} \quad \sim$ is the greatest bisimulation - But

Porting the definition of bisimilarity in the π-calculus

- same thing as before:

$$
P \quad \mathcal{R} \quad Q
$$

bisimulation: $\mu \underset{P^{\prime}}{\downarrow} \stackrel{\downarrow}{\downarrow} \quad \sim$ is the greatest bisimulation

- BUT ~ is not a congruence

$$
\bar{a} \mid b \sim \bar{a} \cdot b+b \cdot \bar{a}
$$

Porting the definition of bisimilarity in the π-calculus

- same thing as before:

$$
P \mathcal{R} \quad Q
$$

- BUT \sim is not a congruence

$$
\begin{aligned}
\bar{a} \mid b & \sim \bar{a} \cdot b+b \cdot \bar{a} \\
c(b) \cdot(\bar{a} \mid b) & \nsim c(b) \cdot(\bar{a} \cdot b+b \cdot \bar{a}) \quad(b \leftarrow a \ldots)
\end{aligned}
$$

Porting the definition of bisimilarity in the π-calculus

- same thing as before:

$$
P \mathcal{R} \quad Q
$$

bisimulation: $\begin{array}{ccc}\mu \underset{P^{\prime}}{\downarrow} & \mathcal{R} & \stackrel{\downarrow}{\downarrow}\end{array} \quad \sim$ is the greatest bisimulation

- BUT ~ is not a congruence

$$
\begin{aligned}
\bar{a} \mid b & \sim \bar{a} \cdot b+b \cdot \bar{a} \\
c(b) \cdot(\bar{a} \mid b) & \nsim c(b) \cdot(\bar{a} \cdot b+b \cdot \bar{a}) \quad(b \leftarrow a \ldots)
\end{aligned}
$$

\triangleright why this does not happen in CCS?

Porting the definition of bisimilarity in the π-calculus

- same thing as before:

$$
P \mathcal{R} \quad Q
$$

bisimulation: $\begin{array}{ccc}\mu \downarrow \\ P^{\prime} & & \mathcal{R}\end{array} \begin{aligned} & \downarrow \mu\end{aligned} \quad \sim$ is the greatest bisimulation

- BUT ~ is not a congruence

$$
\begin{aligned}
\bar{a} \mid b & \sim \bar{a} \cdot b+b \cdot \bar{a} \\
c(b) \cdot(\bar{a} \mid b) & \nsim c(b) \cdot(\bar{a} \cdot b+b \cdot \bar{a}) \quad(b \leftarrow a \ldots)
\end{aligned}
$$

- why this does not happen in CCS?
\triangleright we have though: $(\boldsymbol{\nu} b)(\bar{a} \mid b) \sim^{c}(\boldsymbol{\nu} b)(\bar{a} \cdot b+b \cdot \bar{a})$, \sim^{c} being the greatest congruence included in \sim

Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction
$(\boldsymbol{\nu} a)(a(x) . P) \sim^{c}$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

$$
\begin{aligned}
& (\boldsymbol{\nu} a)(a(x) \cdot P) \sim^{c} \mathbf{0} \\
& (\boldsymbol{\nu} x)(x(y) \cdot P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c}
\end{aligned}
$$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
\((\boldsymbol{\nu} a)(a(x) . P) \sim^{c} \mathbf{0}\)
\((\boldsymbol{\nu} x)(x(y) . P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c} \bar{w}\langle z\rangle .(\boldsymbol{\nu} x)(x(y) . P \mid Q)\) if \(x \neq w, x \neq z\)
    - replication \(!(P \mid Q) \sim^{c}\)
```

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
\((\nu a)(a(x) . P) \sim^{c} \mathbf{0}\)
\((\boldsymbol{\nu} x)(x(y) . P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c} \bar{w}\langle z\rangle .(\boldsymbol{\nu} x)(x(y) . P \mid Q)\) if \(x \neq w, x \neq z\)
    - replication \(\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}\end{aligned}\)
```

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
(\nua)(a(x).P) ~}\mp@subsup{~}{}{c}\mathbf{0
(\nux)(x(y).P|\overline{w}\langlez\rangle.Q) ~
```

- replication $\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}!P\end{aligned}$! $\alpha . P$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

$$
\begin{aligned}
& (\boldsymbol{\nu} a)(a(x) \cdot P) \sim^{c} 0 \\
& (\boldsymbol{\nu} x)(x(y) \cdot P \mid \bar{w}\langle z\rangle \cdot Q) \quad \sim^{c} \bar{w}\langle z\rangle \cdot(\boldsymbol{\nu} x)(x(y) \cdot P \mid Q) \text { if } x \neq w, x \neq z
\end{aligned}
$$

- replication $\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}!P\end{aligned}$
$!\alpha . P \quad \chi^{c} \alpha .!P, \quad$ for α a prefix $!(P+Q)$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
\((\boldsymbol{\nu} a)(a(x) . P) \sim^{c} \mathbf{0}\)
\((\boldsymbol{\nu} x)(x(y) \cdot P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c} \bar{w}\langle z\rangle .(\boldsymbol{\nu} x)(x(y) \cdot P \mid Q)\) if \(x \neq w, x \neq z\)
```

- replication $\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}!P\end{aligned}$
$!\alpha . P \quad \chi^{c} \alpha .!P, \quad$ for α a prefix
$!(P+Q) \sim^{c}!(P \mid Q)$
$![a=b] P$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
\((\boldsymbol{\nu} a)(a(x) . P) \sim^{c} \mathbf{0}\)
\((\boldsymbol{\nu} x)(x(y) \cdot P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c} \bar{w}\langle z\rangle .(\boldsymbol{\nu} x)(x(y) \cdot P \mid Q)\) if \(x \neq w, x \neq z\)
```

- replication $\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}!P\end{aligned}$
$!\alpha . P \quad \chi^{c} \alpha .!P, \quad$ for α a prefix
$!(P+Q) \sim^{c}!(P \mid Q)$
$![a=b] P \sim^{c} \quad[a=b]!P$ $!(\boldsymbol{\nu} x) P$

「Bisimliarity - some example laws

- example above:

$$
\bar{b} \mid a \sim^{c} \bar{b} \cdot a+a \cdot \bar{b}+[b=a] \tau
$$

- restriction

```
\((\boldsymbol{\nu} a)(a(x) . P) \sim^{c} \mathbf{0}\)
\((\boldsymbol{\nu} x)(x(y) \cdot P \mid \bar{w}\langle z\rangle \cdot Q) \sim^{c} \bar{w}\langle z\rangle .(\boldsymbol{\nu} x)(x(y) \cdot P \mid Q)\) if \(x \neq w, x \neq z\)
```

- replication $\begin{aligned} & !(P \mid Q) \sim^{c}!P \mid!Q \\ & !!P \sim^{c}!P\end{aligned}$
$!\alpha . P \quad \not \chi^{c} \alpha .!P, \quad$ for α a prefix
$!(P+Q) \sim^{c}!(P \mid Q)$
$![a=b] P \sim^{c} \quad[a=b]!P$ $!(\boldsymbol{\nu} x) P \not \chi^{c}(\boldsymbol{\nu} x)!P$

Expansion Iemma

Lemma [expansion]: if $M=\alpha_{1} \cdot P_{1}+\cdots+\alpha_{n} \cdot P_{n}$ and $N=$ $\beta_{1} \cdot Q_{1}+\cdots+\beta_{m} \cdot Q_{m}$ then

$$
M \mid N \sim \Sigma_{i} \alpha_{i} \cdot\left(P_{i} \mid N\right)+\Sigma_{j} \beta_{j} \cdot\left(M \mid Q_{j}\right)+\Sigma_{\left\langle\alpha_{i} \operatorname{comp} \beta_{j}\right\rangle} \tau \cdot R_{i j}
$$

with α_{i} comp β_{j} (α_{i} is the "dual" of β_{j}):
$\alpha_{i}=\bar{x}\langle y\rangle$ and $\beta_{j}=x(z)$, in which case $R_{i j}=P_{i} \mid Q_{j\{y \leftarrow z\}}$, or symmetrically.

Expansion lemma

Lemma [expansion]: if $M=\alpha_{1} \cdot P_{1}+\cdots+\alpha_{n} . P_{n}$ and $N=$ $\beta_{1} \cdot Q_{1}+\cdots+\beta_{m} \cdot Q_{m}$ then

$$
M \mid N \sim \Sigma_{i} \alpha_{i} \cdot\left(P_{i} \mid N\right)+\Sigma_{j} \beta_{j} \cdot\left(M \mid Q_{j}\right)+\Sigma_{\left\langle\alpha_{i} \operatorname{comp} \beta_{j}\right\rangle} \tau \cdot R_{i j}
$$

with α_{i} comp $\beta_{j}\left(\alpha_{i}\right.$ is the "dual" of $\left.\beta_{j}\right)$:
$\alpha_{i}=\bar{x}\langle y\rangle$ and $\beta_{j}=x(z)$, in which case $R_{i j}=P_{i} \mid Q_{j\{y \leftarrow z\}}$, or symmetrically.
\triangleright replace $\mid s$ with $+s$ towards a kind of "normal form" - see also models for π, as well as automated techniques

Expansion lemma

Lemma [expansion]: if $M=\alpha_{1} \cdot P_{1}+\cdots+\alpha_{n} . P_{n}$ and $N=$ $\beta_{1} \cdot Q_{1}+\cdots+\beta_{m} \cdot Q_{m}$ then
$M \mid N \sim \Sigma_{i} \alpha_{i} .\left(P_{i} \mid N\right)+\Sigma_{j} \beta_{j} .\left(M \mid Q_{j}\right)+\Sigma_{\left\langle\alpha_{i} \operatorname{comp} \beta_{j}\right\rangle} \tau . R_{i j}$ with α_{i} comp β_{j} (α_{i} is the "dual" of β_{j}):
$\alpha_{i}=\bar{x}\langle y\rangle$ and $\beta_{j}=x(z)$, in which case $R_{i j}=P_{i} \mid Q_{j\{y \leftarrow z\}}$, or symmetrically.
\triangleright replace $\mid s$ with $+s$ towards a kind of "normal form" - see also models for π, as well as automated techniques
\triangleright the term blows up

A bisimulation proof
let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U

「A bisimulation proof
let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U
consider $\mathcal{R} \stackrel{\text { def }}{=}\{(T|U, U| T), T, U$ processes $\} \quad \begin{array}{rll}P & \mathcal{R} & Q \\ \mu_{1}^{\downarrow} & \downarrow \mu \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$

「A bisimulation proof
let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U
consider $\mathcal{R} \stackrel{\text { def }}{=}\{(T|U, U| T), T, U$ processes $\} \quad \begin{array}{rll}P & \mathcal{R} & Q \\ \mu_{\downarrow}^{\downarrow} & \downarrow \mu \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$

- rules Par, Comm: ok

「A bisimulation proof

let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U

\triangleright rules Par, Comm: ok
\triangleright rule Close $\xrightarrow{\stackrel{P(Q)}{\rightarrow} P^{\prime} P(\nu)\left(P^{\prime} \mid Q^{\prime}\right)}$
\lceil A bisimulation proof
let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U
consider $\mathcal{R} \stackrel{\text { def }}{=}\{(T|U, U| T), T, U$ processes $\} \quad \begin{array}{rll}P & \mathcal{R} & Q \\ \mu_{1}^{\downarrow} & \underset{\sim}{\downarrow} \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$
\triangleright rules Par, Comm: ok
\triangleright rule Close $\left.\xrightarrow\left[{\left.P \xrightarrow{P \xrightarrow{a(b)} P^{\prime}} \quad Q \xrightarrow{\underline{\sigma}(b)} \boldsymbol{\nu}^{\prime}\right)\left(P^{\prime} \mid Q^{\prime}\right.}\right)\right]{P \mid Q}$
\hookrightarrow replace \mathcal{R} with $\mathcal{R} \cup\{((\boldsymbol{\nu} x)(P \mid Q),(\boldsymbol{\nu} x)(Q \mid P))\}$
\lceil A bisimulation proof
let us prove that in the π-calculus, $T|U \sim U| T$ for all T, U
consider $\mathcal{R} \stackrel{\text { def }}{=}\{(T|U, U| T), T, U$ processes $\} \quad \begin{array}{ccl}P & \mathcal{R} & Q \\ \mu_{1} \downarrow & \downarrow \mu \\ P^{\prime} & \mathcal{R} & Q^{\prime}\end{array}$
\triangleright rules Par, Comm: ok
\triangleright rule Close $\xrightarrow{\left.\stackrel{P(Q)}{\rightarrow} P^{\prime} \quad Q \xrightarrow{\boldsymbol{a}(b)} \boldsymbol{\nu}^{\prime}\right)\left(P^{\prime} \mid Q^{\prime}\right)}$
\hookrightarrow replace \mathcal{R} with $\mathcal{R} \cup\{((\boldsymbol{\nu} x)(P \mid Q),(\boldsymbol{\nu} x)(Q \mid P))\}$
\ldots no, with $\{((\boldsymbol{\nu} \tilde{x})(P \mid Q),(\boldsymbol{\nu} \tilde{x})(Q \mid P))\} \quad(\tilde{x}$: set of names)

「Up-to techniques for the π-calculus

- parallel compositions may evolve into restricted processes

「Up-to techniques for the π-calculus

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique

$$
\begin{array}{rll}
P & \mathcal{R} & Q \\
\mu \downarrow & \stackrel{\downarrow}{ } \quad \text { implies } \mathcal{R} \subseteq \sim \\
(\boldsymbol{\nu} x) P^{\prime} & \mathcal{R} & (\boldsymbol{\nu} x) Q^{\prime}
\end{array} \quad \text {, }
$$

「Up-to techniques for the π-calculus

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique

$$
\begin{array}{rll}
P & \mathcal{R} & Q \\
\mu & \\
(\boldsymbol{\nu} x) P^{\prime} & \mathcal{R} & \stackrel{\downarrow}{(\nu x)} Q^{\prime}
\end{array} \quad \text { implies } \mathcal{R} \subseteq \sim
$$

- we are allowed to erase common restrictions
useful with parallel composition

「Up-to techniques for the π-calculus

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique

$$
\begin{array}{rll}
P & \mathcal{R} & Q \\
\mu \downarrow & & \downarrow \mu \\
(\boldsymbol{\nu} x) P^{\prime} & \mathcal{R} & (\boldsymbol{\nu} x) Q^{\prime}
\end{array} \quad \text { implies } \mathcal{R} \subseteq \sim
$$

- we are allowed to erase common restrictions
useful with parallel composition
- we are also allowed to erase common parallel components (up to parallel composition)

「Up-to techniques for the π-calculus

- parallel compositions may evolve into restricted processes
- up-to restriction proof technique

$$
\begin{aligned}
& P \mathcal{R} \quad Q \\
& \stackrel{\mu \downarrow}{ } \downarrow \quad \downarrow \mu \quad \text { implies } \mathcal{R} \subseteq \sim
\end{aligned}
$$

- we are allowed to erase common restrictions
useful with parallel composition
- we are also allowed to erase common parallel components (up to parallel composition) useful with replication

「An important law about replications
processes of the form $!a(x) . P$ may be seen as resources for example: $\quad R \stackrel{\text { def }}{=}!c(r) \cdot(\boldsymbol{\nu} n) \bar{r} n \cdot n(v)!!\bar{n} v$

「An important law about replications
processes of the form $!a(x) . P$ may be seen as resources
for example: $\quad R \stackrel{\text { def }}{=}!c(r) \cdot(\boldsymbol{\nu} n) \bar{r} n . n(v)!!\bar{n} v$
$(\boldsymbol{\nu} a)(!a(x) . P|Q| R) \sim(\boldsymbol{\nu} a)(!a(x) . P \mid Q) \mid(\boldsymbol{\nu} a)(!a(x) . P \mid R)$
where a can only appear free in P_{1}, P_{2}, R in output subject position (distributivity of private resources)

「An important law about replications
processes of the form ! $a(x) . P$ may be seen as resources

$$
\text { for example: } \quad R \xlongequal{\text { def }}!c(r) \cdot(\boldsymbol{\nu} n) \bar{r} n \cdot n(v)!!\bar{n} v
$$

$$
(\boldsymbol{\nu} a)(!a(x) \cdot P|Q| R) \sim(\boldsymbol{\nu} a)(!a(x) \cdot P \mid Q) \mid(\boldsymbol{\nu} a)(!a(x) \cdot P \mid R)
$$

where a can only appear free in P_{1}, P_{2}, R in output subject position (distributivity of private resources)
$\mathcal{R} \stackrel{\text { def }}{=}\left\{\left((\boldsymbol{\nu} a)\left(P_{1}\left|P_{2}\right|!a(x) \cdot R\right),(\boldsymbol{\nu} a)\left(P_{1} \mid!a(x) \cdot R\right) \mid(\boldsymbol{\nu} a)\left(P_{2} \mid!a(x) \cdot R\right)\right)\right\}$

「An important law about replications
processes of the form ! $a(x) . P$ may be seen as resources

$$
\text { for example: } \quad R \stackrel{\text { def }}{=}!c(r) \cdot(\nu n) \bar{r} n \cdot n(v) \cdot!\bar{n} v
$$

$$
(\boldsymbol{\nu} a)(!a(x) \cdot P|Q| R) \sim(\boldsymbol{\nu} a)(!a(x) \cdot P \mid Q) \mid(\boldsymbol{\nu} a)(!a(x) \cdot P \mid R)
$$

where a can only appear free in P_{1}, P_{2}, R in output subject position (distributivity of private resources)
$\mathcal{R} \stackrel{\text { def }}{=}\left\{\left((\boldsymbol{\nu} a)\left(P_{1}\left|P_{2}\right|!a(x) \cdot R\right),(\boldsymbol{\nu} a)\left(P_{1} \mid!a(x) \cdot R\right) \mid(\boldsymbol{\nu} a)\left(P_{2} \mid!a(x) \cdot R\right)\right)\right\}$
\mathcal{R} is a bisimulation up to bisimilarity, up to restriction and up to parallel composition

「Behavioural equivalence with reduction semantics

- in the chemical version \longrightarrow is not enough to define a sensible notion of bisimulation

「Behavioural equivalence with reduction semantics

- in the chemical version \longrightarrow is not enough to define a sensible notion of bisimulation
- one should observe possibilities of interaction: barbs
- $P \downarrow_{a}\left(\right.$ resp. $\left.P \downarrow_{\bar{a}}\right): P$ may receive (resp. emit) on a
"I can offer coffee or tea"
Remark: $P \downarrow_{a} \Leftrightarrow P \equiv(\boldsymbol{\nu} \tilde{v})(a(x) \cdot R \mid T), a \notin \tilde{v}$

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

$\dot{\sim}$ is the greatest barbed bisimulation

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

$$
\text { 1. } \begin{array}{rrrr}
P & \mathcal{R} & Q \\
\downarrow & \downarrow \\
P^{\prime} & \mathcal{R} & Q^{\prime}
\end{array} \quad \text { 2. for any } \eta, P \downarrow_{\eta} \text { iff } Q \downarrow_{\eta}
$$

$\dot{\sim}$ is the greatest barbed bisimulation
$\dot{\sim}$ is not very interesting: $\bar{a}\langle u\rangle \dot{\sim} \bar{a}\langle v\rangle \dot{\sim}(\boldsymbol{\nu} u) \bar{a}\langle u\rangle$

Barbed bisimilarity

Definition [barbed bisimulation]: \mathcal{R} is a barbed bisimulation iff, whenever $P \mathcal{R} Q$:

$$
\begin{array}{ccc}
P & \mathcal{R} & Q \\
\downarrow & & \downarrow
\end{array} \quad \text { 2. for any } \eta, P \downarrow_{\eta} \text { iff } Q \downarrow_{\eta}
$$

$\dot{\sim}$ is the greatest barbed bisimulation
$\dot{\sim}$ is not very interesting: $\bar{a}\langle u\rangle \dot{\sim} \bar{a}\langle v\rangle \dot{\sim}(\boldsymbol{\nu} u) \bar{a}\langle u\rangle$
BUT Theorem: $\dot{\sim}^{c}$, the greatest congruence included in $\dot{\sim}$, coincides with \sim^{c}
\sim is " $\forall R . P|R \dot{\sim} Q| R$ "

When labelled transitions coincide with barbs

Theorem: $\dot{\sim}^{c}=\sim^{c}$.

Proof.

「When labelled transitions coincide with barbs

Theorem: $\dot{\sim}^{c}=\sim^{c}$.

Proof.
the main idea is to establish that $\dot{\sim}^{c}$ is a bisimulation

「When labelled transitions coincide with barbs

Theorem: $\dot{\sim}^{c}=\sim^{c}$.

Proof.
the main idea is to establish that $\dot{\sim}^{c}$ is a bisimulation
\triangleright take then $P \dot{\sim}^{c} Q$, and $P \xrightarrow{\mu} P^{\prime}$

「When labelled transitions coincide with barbs
Theorem: $\dot{\sim}^{c}=\sim^{c}$.

Proof.
the main idea is to establish that $\dot{\sim}^{c}$ is a bisimulation
\triangleright take then $P \dot{\sim}^{c} Q$, and $P \xrightarrow{\mu} P^{\prime}$
\triangleright exhibit contexts $\mathcal{C}, \mathcal{C}^{\prime}$ s.t. $\mathcal{C}[P] \rightarrow \mathcal{C}^{\prime}\left[P^{\prime}\right]$

「When labelled transitions coincide with barbs
Theorem: $\dot{\sim}^{c}=\sim^{c}$.

Proof.

the main idea is to establish that $\dot{\sim}^{c}$ is a bisimulation
\triangleright take then $P \dot{\sim}^{c} Q$, and $P \xrightarrow{\mu} P^{\prime}$
\triangleright exhibit contexts $\mathcal{C}, \mathcal{C}^{\prime}$ s.t. $\mathcal{C}[P] \rightarrow \mathcal{C}^{\prime}\left[P^{\prime}\right]$
$\triangleright \mathcal{C}, \mathcal{C}^{\prime} s$ are chosen so that this entails that $Q \xrightarrow{\mu} Q^{\prime}$

「Barbed equivalences - refining the spectrum
Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R . P|R \dot{\sim} Q| R$.

「Barbed equivalences - refining the spectrum
Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R . P|R \dot{\sim} Q| R$.
Theorem: $\sim=\simeq$
proof: relies on the fact that $\xrightarrow{\mu}$ is image finite
(finite number of reachable states)

Barbed equivalences - refining the spectrum

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R . P|R \dot{\sim} Q| R$.
Theorem: $\sim=\simeq$
proof: relies on the fact that $\xrightarrow{\mu}$ is image finite
(finite number of reachable states)
Lemma [Context lemma]:
$P \simeq^{c} Q$ iff for any $R, \sigma, P \sigma|R \dot{\sim} Q \sigma| R$

Barbed equivalences - refining the spectrum

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R . P|R \dot{\sim} Q| R$.
Theorem: $\sim=\simeq$
proof: relies on the fact that $\xrightarrow{\mu}$ is image finite
(finite number of reachable states)
Lemma [Context lemma]:
$P \simeq^{c} Q$ iff for any $R, \sigma, P \sigma|R \dot{\sim} Q \sigma| R$
$\simeq^{c}=\dot{\sim}^{c}=\sim^{c}$

Barbed equivalences - refining the spectrum

Definition [barbed equivalence]: $P \simeq Q$ iff $\forall R . P|R \dot{\sim} Q| R$.
Theorem: $\sim=\simeq$
proof: relies on the fact that $\xrightarrow{\mu}$ is image finite
(finite number of reachable states)
Lemma [Context lemma]:
$P \simeq^{c} Q$ iff for any $R, \sigma, P \sigma|R \sim \dot{\sim} Q| R$
$\simeq^{c}=\dot{\sim}^{c}=\sim^{c}$
... and other notions of bisimilarity, e.g. in asynchronous π

「Variants

$$
\text { Inp } a(x) . P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad \text { blabla } \quad \text { Comm } \xrightarrow{P \xrightarrow{a(b)} P^{\prime} \quad Q \xrightarrow{\bar{\alpha}(b)} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}{ }
$$

this is the operational semantics in early style

Variants

$$
\text { Inp } a(x) . P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad \text { blabla } \quad \text { Comm } \xrightarrow{P \xrightarrow{a(b)} P^{\prime} Q \xrightarrow{\bar{a}(b)} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}{ }
$$

this is the operational semantics in early style

- one could consider

$$
\text { Inp } a(x) . P \xrightarrow{a(x)} P \quad \text { Comm } \xrightarrow{P \xrightarrow{a(x)} P^{\prime} Q \xrightarrow{\bar{a}\langle b\rangle} Q^{\prime}} \underset{P \mid Q \leftarrow b\} \mid Q^{\prime}}{\prime}
$$

Variants

$$
\text { Inp } a(x) . P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad \text { blabla } \quad \text { Comm } \xrightarrow{P \xrightarrow{a(b)} P^{\prime} Q \xrightarrow{\bar{a}(b)} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}{ }
$$

this is the operational semantics in early style

- one could consider

$$
\text { Inp } a(x) . P \xrightarrow{a(x)} P \quad \text { Comm } \xrightarrow{P \xrightarrow{a(x)} P^{\prime} Q \xrightarrow{\bar{a}\langle b\rangle} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P_{\{x \leftarrow b\}}^{\prime}\right| Q^{\prime}}{ }
$$

Definition: \mathcal{R} is a late bisimulation iff whenever $(P, Q) \in \mathcal{R}$:

- if $P \xrightarrow{a(x)} P^{\prime}$, there is Q^{\prime} s.t. $Q \xrightarrow{a(x)} Q^{\prime}$, and, for all $a,\left(P_{\{x \leftarrow a\}}, Q_{\{x \leftarrow a\}}\right) \in \mathcal{R}$;
- if $P \xrightarrow{\mu} P^{\prime}$ and μ is not an input: as usual.

「Variants

$$
\text { Inp } a(x) . P \xrightarrow{a(v)} P_{\{x \leftarrow v\}} \quad \text { blabla } \quad \text { Comm } \xrightarrow{P \xrightarrow{a(b)} P^{\prime} \quad Q \xrightarrow{\bar{a}(b)} Q^{\prime}} \underset{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}{ }
$$

this is the operational semantics in early style

- one could consider

$$
\text { Inp } a(x) \cdot P \xrightarrow{a(x)} P \quad \text { Comm } \frac{P \xrightarrow{a(x)} P^{\prime} Q \xrightarrow{\bar{a}\langle b\rangle} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P_{\{x \leftarrow b\}}^{\prime}\right| Q^{\prime}}
$$

Definition: \mathcal{R} is a late bisimulation iff whenever $(P, Q) \in \mathcal{R}$:

- if $P \xrightarrow{a(x)} P^{\prime}$, there is Q^{\prime} s.t. $Q \xrightarrow{a(x)} Q^{\prime}$, and, for all $a,\left(P_{\{x \leftarrow a\}}, Q_{\{x \leftarrow a\}}\right) \in \mathcal{R}$;
- if $P \xrightarrow{\mu} P^{\prime}$ and μ is not an input: as usual.

Theorem: $\sim_{\text {late }} \subsetneq \sim$.

$$
\begin{array}{ll}
\text { Proof: } & P \stackrel{\text { def }}{=} x(z)+x(z) \cdot \bar{z} \\
& Q \stackrel{\text { def }}{=} x(z)+x(z) \cdot \bar{z}+x(z) \cdot[z=y] \bar{z}
\end{array}
$$

