Mobile Ambients

「Mobility

- name passing in the π-calculus models dynamically evolving network topology

Mobility

- name passing in the π-calculus models dynamically evolving network topology
- actually this is enough to represent mobility of terms (Higher-Order π-calculus, $\mathrm{HO} \pi$)

「Mobility

- name passing in the π-calculus models dynamically evolving network topology
- actually this is enough to represent mobility of terms (Higher-Order π-calculus, $\mathrm{HO} \pi$)
- Mobile Ambients: a model where term mobility is a primitive

From π-calculus to Mobile Ambients

$$
\pi \quad P=\mathbf{0}|a(x) \cdot P| \bar{a}\langle x\rangle . P\left|\left(P_{1} \mid P_{2}\right)\right|!P|(\nu a) P| P+Q
$$

From π-calculus to Mobile Ambients

$$
\begin{aligned}
\pi & =0|a(x) \cdot P| \bar{a}\langle x\rangle . P\left|\left(P_{1} \mid P_{2}\right)\right|!P|(\nu a) P| P+Q \\
\downarrow & =0 \\
P & \left|\left(P_{1} \mid P_{2}\right)\right|!P \mid(\nu a) P
\end{aligned}
$$

constructs for space

「From π-calculus to Mobile Ambients

$$
\begin{aligned}
& \pi \quad P=0|a(x) . P| \bar{a}\langle x\rangle . P\left|\left(P_{1} \mid P_{2}\right)\right|!P|(\nu a) P| P+Q \\
& \quad \downarrow=0 \\
& \quad\left|\left(P_{1} \mid P_{2}\right)\right|!P \mid(\nu a) P \\
& \quad \text { constructs for space }
\end{aligned}
$$

+ localities (ambients):

$$
n[P]
$$

spatial structure

「From π-calculus to Mobile Ambients

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
P=0|a(x) . P| \bar{a}\langle x\rangle . P\left|\left(P_{1} \mid P_{2}\right)\right|!P|(\nu a) P| P+Q \\
\downarrow=0 \\
\quad \text { constructs for space }
\end{array} \quad\left|\left(P_{1} \mid P_{2}\right)\right|!P \right\rvert\,(\nu a) P
\end{aligned}
$$

+ localities (ambients):

$$
\begin{array}{|l|}
\hline n[P] \\
\hline
\end{array}
$$

spatial structure

+ actions: capabilities
M.P
make the spatial structure evolve
[Mobile Ambients - [Cardelli Gordon 1998]

$$
\begin{aligned}
P & =0|a[P]| P_{1}\left|P_{2}\right|!P|(\nu x) P| M . P \\
M & ==\operatorname{in} a \mid \text { out } a \mid \text { open } a
\end{aligned}
$$

Reduction, movement

$$
\begin{aligned}
\stackrel{\mathrm{a}}{\mathrm{P} \mid \mathrm{Q}} \mid \stackrel{\mathrm{b}}{\mathrm{R}} & \rightarrow \sqrt[b]{\sqrt[\mathrm{a}]{\mathrm{P} \mid \mathrm{Q}} \mid \mathrm{R}} \\
a[\text { in } b . P \mid Q] \mid b[R] & \rightarrow \quad b[a[P \mid Q] \mid R]
\end{aligned}
$$

「Reduction, movement

$$
\begin{aligned}
& \stackrel{\mathrm{a}}{\mathrm{P} / \mathrm{Q}} \stackrel{\mathrm{~b}}{\mathrm{R}} \rightarrow \sqrt[b]{\mathrm{b} / \mathrm{P} / \mathrm{Q} \mid \mathrm{R}} \\
& a[\text { in } b . P \mid Q] \mid b[R] \rightarrow b[a[P \mid Q] \mid R] \\
& a \mathrm{a} \mathrm{~b} \mathrm{P\mid Q} \left\lvert\, \mathrm{R} \rightarrow \frac{\mathrm{~b}}{\mathrm{P} \mid \mathrm{Q}} \mathrm{I} \stackrel{\mathrm{R}}{\mathrm{R}}\right. \\
& a[b[\text { out } a . P \mid Q] \mid R] \quad \rightarrow \quad b[P \mid Q] \mid a[R]
\end{aligned}
$$

「Reduction, movement

$$
\begin{aligned}
& \stackrel{\mathrm{a}}{\mathrm{P} / \mathrm{Q}}|\stackrel{\mathrm{~b}}{\mathrm{R}} \rightarrow \sqrt{\mathrm{~b}} \mathrm{a} \mathrm{P} / \mathrm{Q}| \mathrm{R} \\
& a[\text { in } b . P \mid Q] \mid b[R] \rightarrow b[a[P \mid Q] \mid R] \\
& a^{a} \mathrm{~b} \mathrm{P}|\mathrm{Q}| \mathrm{R} \rightarrow \frac{\mathrm{~b}}{\mathrm{P} \mid \mathrm{Q}} \text { । }{ }^{\mathrm{a}} \\
& a[b[\text { out } a . P \mid Q] \mid R] \quad \rightarrow \quad b[P \mid Q] \mid a[R]
\end{aligned}
$$

Remark: movements are subjective

Reduction, opening

$$
\begin{array}{r}
\mathrm{a}_{\mathrm{P} \mid \mathrm{Q}} \rightarrow \mathrm{P\mid Q} \\
a[P] \mid \text { open } a . Q \quad \rightarrow \quad P \mid Q
\end{array}
$$

「Reduction, opening

$$
\begin{array}{r}
\mathrm{a}^{\mathrm{P} \mid \mathrm{Q}} \longrightarrow \mathrm{P\mid Q} \\
a[P] \mid \text { open } a \cdot Q \quad \rightarrow \quad P \mid Q
\end{array}
$$

\triangleright opening is "objective"

「Reduction, opening

$$
\mathrm{a}_{\mathrm{P}|\mathrm{Q} \longrightarrow \mathrm{P}| \mathrm{Q}, ~}^{\mathrm{P}}
$$

$$
a[P] \mid \text { open } a \cdot Q \quad \rightarrow \quad P \mid Q
$$

\triangleright opening is "objective"
\triangleright an ambient disappears, its content is thrown in its enclosing ambient (capabilities act on a different locality)

Where does non-determinism come from in Mobile Ambients?

$$
\begin{array}{rll}
a[\text { in } b . P \mid Q] \mid b[R] & \rightarrow b[a[P \mid Q] \mid R] & \text { in } \\
a[b[\text { out } a . P \mid Q] \mid R] & \rightarrow b[P \mid Q] \mid a[R] & \text { out } \\
a[P] \mid \text { open } a . Q & \rightarrow P \mid Q & \text { open }
\end{array}
$$

Where does non-determinism come from in Mobile Ambients?

$$
\begin{array}{cll}
a[\text { in } b . P \mid Q] \mid b[R] & \rightarrow b[a[P \mid Q] \mid R] & \text { in } \\
a[b[\text { out } a . P \mid Q] \mid R] & \rightarrow b[P \mid Q] \mid a[R] & \text { out } \\
a[P] \mid \text { open } a . Q & \rightarrow P \mid Q & \text { open }
\end{array}
$$

$$
a[P] \mid b\left[\text { in } a . Q \mid Q^{\prime}\right] \mid a[R]
$$

\lceil Where does non-determinism come from in Mobile Ambients?

$$
\begin{array}{cll}
a[\text { in } b . P \mid Q] \mid b[R] & \rightarrow b[a[P \mid Q] \mid R] & \text { in } \\
a[b[\text { out } a . P \mid Q] \mid R] & \rightarrow b[P \mid Q] \mid a[R] & \text { out } \\
a[P] \mid \text { open } a . Q & \rightarrow P \mid Q & \text { open }
\end{array}
$$

$$
a[P] \mid b\left[\text { in } a . Q \mid Q^{\prime}\right] \mid a[R]
$$

$$
a\left[b\left[\text { in } b^{\prime} . P \mid \text { out } a . P^{\prime}\right] \mid b^{\prime}[Q]\right]
$$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$
$\triangleright(\nu n) m[P] \equiv m[(\nu n) P]$ if $n \neq m$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$
$\triangleright(\nu n) m[P] \equiv m[(\nu n) P]$ if $n \neq m$
- take for example $P \stackrel{\text { def }}{=} a\left[(\nu c)\left(b\left[\right.\right.\right.$ out a. in $\left.\left.\left.r . P_{c}\right] \mid c[Q]\right)\right] \mid r[T]$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$
$\triangleright(\nu n) m[P] \equiv m[(\nu n) P]$ if $n \neq m$
- take for example $P \stackrel{\text { def }}{=} a\left[(\nu c)\left(b\left[\right.\right.\right.$ out a.in $\left.\left.\left.r . P_{c}\right] \mid c[Q]\right)\right] \mid r[T]$

$$
P \rightarrow(\nu c)\left(a[c[Q]] \mid b\left[\text { in } r \cdot P_{c}\right]\right) \mid r[T]
$$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$
$\triangleright(\nu n) m[P] \equiv m[(\nu n) P]$ if $n \neq m$
- take for example $P \stackrel{\text { def }}{=} a\left[(\nu c)\left(b\left[\right.\right.\right.$ out a.in $\left.\left.\left.r . P_{c}\right] \mid c[Q]\right)\right] \mid r[T]$

$$
\begin{aligned}
P & \rightarrow(\nu c)\left(a[c[Q]] \mid b\left[\text { in } r . P_{c}\right]\right) \mid r[T] \\
& \rightarrow(\nu c)\left(a[c[Q]] \mid r\left[b\left[P_{c}\right] \mid T\right]\right)
\end{aligned}
$$

Is name extrusion available in Mobile Ambients?

- structural congruence rules:
$\triangleright(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q$ if $n \notin \mathrm{fn}(P)$
$\triangleright(\nu n) m[P] \equiv m[(\nu n) P]$ if $n \neq m$
- take for example $P \stackrel{\text { def }}{=} a\left[(\nu c)\left(b\left[\right.\right.\right.$ out a.in $\left.\left.\left.r . P_{c}\right] \mid c[Q]\right)\right] \mid r[T]$

$$
\begin{aligned}
P & \rightarrow(\nu c)\left(a[c[Q]] \mid b\left[\text { in } r . P_{c}\right]\right) \mid r[T] \\
& \rightarrow(\nu c)\left(a[c[Q]] \mid r\left[b\left[P_{c}\right] \mid T\right]\right)
\end{aligned}
$$

- c is a secret that is carried along

Firewall

- $n[P]$ a firewall named n enclosing P
- capabilities in n, out n are needed in order to cross the firewall
- the context $=$ the network

Firewall

- $n[P]$ a firewall named n enclosing P
- capabilities in n, out n are needed in order to cross the firewall
- the context $=$ the network

Example: an agent Agent $=k^{\prime}\left[\right.$ open $\left.k . k^{\prime \prime}[B]\right]$, the firewall Firewall $=w\left[k\left[\right.\right.$ out w. in k^{\prime}.in $\left.w .0\right] \mid$ open k^{\prime}.open $\left.k^{\prime \prime} . A\right]$

$$
(\nu w)(\text { Agent } \mid \text { Firewall }) \approx(\nu w) w[B \mid A]
$$

$(\nu w)\left(w\left[k\left[\right.\right.\right.$ out w.in k^{\prime}.in $\left.w .0\right] \mid$ open k^{\prime}.open $\left.\left.k^{\prime \prime} . A\right]\right) \quad \mid \quad k^{\prime}\left[\right.$ open $\left.k . k^{\prime \prime}[B]\right]$

$$
\begin{array}{cccc}
(\nu w)\left(w\left[k\left[\text { out } w . \text { in } k^{\prime} \text {.in } w .0\right] \mid \text { open } k^{\prime} \text {.open } k^{\prime \prime} . A\right]\right) & \mid & \left.k^{\prime} \text { [open } k . k^{\prime \prime}[B]\right] \\
(\nu w)\left(w\left[\text { open } k^{\prime} . \text { open } k^{\prime \prime} . A\right] \mid\right. & \left.k\left[\text { in } k^{\prime} \text {.in } w .0\right]\right) & \left.k^{\prime} \text { [open } k . k^{\prime \prime}[B]\right]
\end{array}
$$

$$
\begin{aligned}
& \left.(\nu w)\left(w\left[k\left[\text { out } w . \text { in } k^{\prime} \text {.in } w .0\right] \mid \text { open } k^{\prime} \text {.open } k^{\prime \prime} . A\right]\right) \quad \mid \quad k^{\prime} \text { [open } k . k^{\prime \prime}[B]\right] \\
& \left.(\nu w)\left(w\left[\text { open } k^{\prime} \text {.open } k^{\prime \prime} . A\right] \mid k\left[\text { in } k^{\prime} \text {.in } w .0\right]\right) \mid k^{\prime} \text { [open } k . k^{\prime \prime}[B]\right] \\
& (\nu w)\left(w\left[\text { open } k^{\prime} . \text { open } k^{\prime \prime} . A\right] \stackrel{\downarrow}{\mid} k^{\prime}\left[k[\text { in } w .0] \text { open } k . k^{\prime \prime}[B]\right]\right)
\end{aligned}
$$

```
(\nuw)(w[k[out w.in }\mp@subsup{k}{}{\prime}.\mathrm{ in }w.0]|open k'.open k'\prime.A]) | k'[open k.k'"[B]
    (\nuw)(w[open k'.open }\mp@subsup{k}{}{\prime\prime}.A]|k[\mathrm{ in }\mp@subsup{k}{}{\prime}.\mathrm{ .in w.0]) | k'[open }k.\mp@subsup{k}{}{\prime\prime}[B]
        (\nuw)(w[open }\mp@subsup{k}{}{\prime}.\mathrm{ open }\mp@subsup{k}{}{\prime\prime}.A]\stackrel{\downarrow}{|}\mp@subsup{k}{}{\prime}[k[\mathrm{ in w.0]|open }k.\mp@subsup{k}{}{\prime\prime}[B]]
        (\nuw)(w[open k}\mp@subsup{k}{}{\prime}.0\mathrm{ open }\mp@subsup{k}{}{\prime\prime}.A]|\quad\mp@subsup{k}{}{\prime}[\mathrm{ in w.0 | | < " [B]])
```

```
(\nuw)(w[k[out w.in }\mp@subsup{k}{}{\prime}.\mathrm{ in }w.0]|open k'.open k'\prime.A]) | k'[open k.k'"[B]
    (\nuw)(w[open k'.open }\mp@subsup{k}{}{\prime\prime}.A]|k[\mathrm{ in }\mp@subsup{k}{}{\prime}.\mathrm{ .in w.0]) | k'[open }k.\mp@subsup{k}{}{\prime\prime}[B]
        (\nuw)(w[open }\mp@subsup{k}{}{\prime}.\mathrm{ open }\mp@subsup{k}{}{\prime\prime}.A]\stackrel{\downarrow}{|}\mp@subsup{k}{}{\prime}[k[\mathrm{ in }w.0]|\mathrm{ open }k.\mp@subsup{k}{}{\prime\prime}[B]]
```



```
        (\nuw)w[open k'.open }\mp@subsup{k}{}{\prime\prime}.A|\mp@subsup{k}{}{\prime}[0|\mp@subsup{k}{}{\prime\prime}[B]]
```

```
(\nuw)(w[k[out w.in }\mp@subsup{k}{}{\prime}.\mathrm{ in }w.0]|open k'.open k'\prime.A]) | k'[open k.k'"[B]
(\nuw)(w[open k'.open }\mp@subsup{k}{}{\prime\prime}.A]|k[\mathrm{ in }\mp@subsup{k}{}{\prime}.\mathrm{ .in w.0]) | k '[open }k.\mp@subsup{k}{}{\prime\prime}[B]
    (\nuw)(w[open }\mp@subsup{k}{}{\prime}.\mathrm{ open }\mp@subsup{k}{}{\prime\prime}.A]\stackrel{\downarrow}{|}\mp@subsup{k}{}{\prime}[k[\mathrm{ in w.0] open }k.\mp@subsup{k}{}{\prime\prime}[B]]
```



```
                        (\nuw)w[open }\stackrel{\downarrow}{\prime\prime}.A|\mp@subsup{k}{}{\prime\prime}[B]
```

```
(\nuw)(w[k[out w.in }\mp@subsup{k}{}{\prime}.\mathrm{ in }w.0]|open k'.open k'\prime.A]) | k'[open k.k'"[B]
(\nuw)(w[open k'.open }\mp@subsup{k}{}{\prime\prime}.A]|k[\mathrm{ in }\mp@subsup{k}{}{\prime}.\mathrm{ .in w.0]) | 朗[open }k.\mp@subsup{k}{}{\prime\prime}[B]
    (\nuw)(w[open }\mp@subsup{k}{}{\prime}.\mathrm{ open }\mp@subsup{k}{}{\prime\prime}.A]\stackrel{\downarrow}{|}\mp@subsup{k}{}{\prime}[k[\mathrm{ in w.0] open }k.\mp@subsup{k}{}{\prime\prime}[B]]
```



```
            (\nuw)w[0pen \mp@subsup{k}{}{\prime}.00en }\stackrel{\downarrow}{\mp@subsup{k}{}{\prime\prime}.A|}\mp@subsup{k}{}{\prime}[0|\mp@subsup{k}{}{\prime\prime}[B]]
            (\nuw)w[open }\stackrel{\downarrow}{\prime\prime}.A|\mp@subsup{k}{}{\prime\prime}[B]
                        (\nuw) w[A|B]
```

Locks and sums

$$
\begin{gathered}
\text { acquire l.P } \stackrel{\text { def }}{=} \text { open l.P release l.P } \stackrel{\text { def }}{=} l[] \mid P \\
\text { handshake: acquire n.release m.P } \mid \text { release n.acquire } m . Q
\end{gathered}
$$

「Locks and sums

$$
\text { acquire l.P } \stackrel{\text { def }}{=} \text { open } l . P \quad \text { release l.P } \stackrel{\text { def }}{=} l[] \mid P
$$

handshake: acquire n.release m. $P \mid$ release n.acquire m. Q

$$
\begin{aligned}
& \llbracket n \Rightarrow P+m \Rightarrow Q \rrbracket \stackrel{\text { def }}{=}(\nu p, q, r)(\\
& p[\text { in } n . \text { out } n . q[\text { out } p . \text { open } r . P]] \mid \\
& p[\text { in } m . \text { out } m . q[\text { out } p . \text { open } r . Q]] \mid \\
&\text { open } q \mid r[]) \\
& \llbracket n \Rightarrow P+m \Rightarrow Q \rrbracket\left|n[R] \rightarrow^{*} \approx P\right| n[R]
\end{aligned}
$$

Remarks

- mobility is the central mechanism

Remarks

- mobility is the central mechanism
- no substitution

Remarks

- mobility is the central mechanism
- no substitution
- ambients are trees that change structure over time

Remarks

- mobility is the central mechanism
- no substitution
- ambients are trees that change structure over time
- see an ambient as: $a[\underbrace{b_{1}\left[B_{1}\right]|\ldots| b_{n}\left[B_{n}\right]}_{\text {child ambients }} \mid \underbrace{P_{1}|\ldots| P_{k}}_{\text {active "threads" }}]$

Remarks

- mobility is the central mechanism
- no substitution
- ambients are trees that change structure over time
- see an ambient as: $a[\underbrace{b_{1}\left[B_{1}\right]|\ldots| b_{n}\left[B_{n}\right]}_{\text {child ambients }} \mid \underbrace{P_{1}|\ldots| P_{k}}_{\text {active "threads" }}]$
- the model is "very distributed"
\triangleright movement every where, at any level (except under capabilities)
\triangleright autonomous movement: no synchronisation

Mobile Ambients are Turing complete

- ribbon cells: nested Ambients
"leftmost and rightmost cells" : Ambients to extend the ribbon
- every cell contains an Ambient that represents its state
- head of the machine: in go right, out go left

「Communications
what we have been discussing are Pure Mobile Ambients let us now put some π-calculus into the language

Messages: $\langle M\rangle \quad$ Abstractions: $(x) . P$
Reduction: $\langle M\rangle \mid(x) \cdot P \rightarrow P_{\{x:=M\}}$

「Communications

what we have been discussing are Pure Mobile Ambients let us now put some π-calculus into the language

Messages: $\langle M\rangle \quad$ Abstractions: $(x) . P$ Reduction: $\langle M\rangle \mid(x) \cdot P \rightarrow P_{\{x:=M\}}$
\triangleright local communications (no medium)

「Communications
what we have been discussing are Pure Mobile Ambients let us now put some π-calculus into the language

Messages: $\langle M\rangle \quad$ Abstractions: $(x) . P$
Reduction: $\langle M\rangle \mid(x) \cdot P \rightarrow P_{\{x:=M\}}$
\triangleright local communications (no medium)
\triangleright communication of capabilities in a broad sense (name, capability, path)

「Well-formed terms

$$
\begin{aligned}
P & \stackrel{\text { def }}{=}(\nu n) P|0| P_{1}\left|P_{2}\right|!P|M[P]| M \cdot P|(x) \cdot P|\langle M\rangle \\
M & \stackrel{\text { def }}{=} x|n| \text { in } M \mid \text { out } M \mid \text { open } M|\epsilon| M_{1} \cdot M_{2}
\end{aligned}
$$

- variables (x) stand for names and capabilities
- badly formed terms: n.P, (in $n)[P]$
- a simple type system can be defined to rule out badly formed terms
$\lceil\pi$ in MA

$$
\begin{aligned}
& \llbracket(\nu n) P \rrbracket \stackrel{\text { def }}{=}(\nu n)(n[!\text { open } i o] \mid \llbracket P \rrbracket) \\
& \llbracket n(x) . P \rrbracket \stackrel{\text { def }}{=}(\nu p)(i o[\text { in } n .(x) \cdot p[\text { out } n . \llbracket P \rrbracket] \rrbracket \mid \text { open } p) \\
& \llbracket \bar{n} m \rrbracket \stackrel{\text { def }}{=} i o[\text { in } n \cdot\langle m\rangle] \\
& \llbracket P|Q \rrbracket \stackrel{\text { def }}{=} \llbracket P \rrbracket| \llbracket Q \rrbracket \quad \llbracket!P \rrbracket \stackrel{\text { def }}{=}!\llbracket P \rrbracket
\end{aligned}
$$

$\lceil\pi$ in MA

$$
\begin{aligned}
\llbracket(\nu n) P \rrbracket & \stackrel{\text { def }}{=}(\nu n)(n[\text { !open } i o] \mid \llbracket P \rrbracket) \\
\llbracket n(x) \cdot P \rrbracket & \stackrel{\text { def }}{=}(\nu p)(i o[\text { in } n \cdot(x) \cdot p[\text { out } n \cdot \llbracket P \rrbracket]] \mid \text { open } p) \\
\llbracket \bar{n} m \rrbracket & \stackrel{\text { def }}{=} i o[\text { in } n \cdot\langle m\rangle] \\
\llbracket P \mid Q \rrbracket & \stackrel{\text { def }}{=} \llbracket P \rrbracket \mid \llbracket Q \rrbracket \quad \llbracket!P \rrbracket \stackrel{\text { def }}{=}!\llbracket P \rrbracket
\end{aligned}
$$

\rightarrow remote inputs and outputs

Substitutions

- when adding communication, we brought back substitutions

「Substitutions

- when adding communication, we brought back substitutions
- difference w.r.t. π : variable instanciation at any level or if you prefer: in π there is only one level

「Substitutions

- when adding communication, we brought back substitutions
- difference w.r.t. π : variable instanciation at any level or if you prefer: in π there is only one level
- Zimmer $00-\pi$-calculus in Pure Mobile Ambients Mobile Ambients in Pure Mobile Ambients?

「Substitutions

- when adding communication, we brought back substitutions
- difference w.r.t. π : variable instanciation at any level or if you prefer: in π there is only one level
- Zimmer $00-\pi$-calculus in Pure Mobile Ambients Mobile Ambients in Pure Mobile Ambients?
- similarly:
are recursive definitions and replication equivalent in MA?

「A young calculus

- since the 1998 paper "Mobile Ambients", there have been numerous criticisms/counterproposals
the calculus, as it is, is:
\triangleright very difficult to implement

「A young calculus

- since the 1998 paper "Mobile Ambients", there have been numerous criticisms/counterproposals
the calculus, as it is, is:
\triangleright very difficult to implement
\triangleright very difficult to reason about

「A young calculus

- since the 1998 paper "Mobile Ambients", there have been numerous criticisms/counterproposals
the calculus, as it is, is:
\triangleright very difficult to implement
\triangleright very difficult to reason about
barbed equivalence: barbs are ambients

「A young calculus

- since the 1998 paper "Mobile Ambients", there have been numerous criticisms/counterproposals
the calculus, as it is, is:
\triangleright very difficult to implement
\triangleright very difficult to reason about
barbed equivalence: barbs are ambients but then, what about a labelled transition system?

