Course on Mobility

Daniel.Hirschkoff@ens-lyon.fr



|About this course

focus on the w-calculus: a calculus of mobile processes based
on naming (cf. R. Milner, Turing award lecture)



|About this course

focus on the w-calculus: a calculus of mobile processes based
on naming (cf. R. Milner, Turing award lecture)

specification
7 as a . language
programming



|About this course

focus on the w-calculus: a calculus of mobile processes based
on naming (cf. R. Milner, Turing award lecture)

specification
7 as a . language
programming

more a panorama than a precise technical study of a particular poi



|About this course

focus on the w-calculus: a calculus of mobile processes based
on naming (cf. R. Milner, Turing award lecture)

specification
7 as a . language
programming

more a panorama than a precise technical study of a particular poi

outline:
7. definition - types - MXNinmw - behavioural equivalences

2



[Origins and sources

predecessors: other process algebras — CSP, CCS



[Origins and sources

predecessors: other process algebras — CSP, CCS

books:
R. Milner, Communication and Concurrency, Prentice Hall
R. Milner, Communicating and Mobile Systems: the mw-calculus, CUP
D. Sangiorgi, D. Walker, The w-calculus, a Theory of Mobile Computation, CUP



[Origins and sources

predecessors: other process algebras — CSP, CCS

books:
R. Milner, Communication and Concurrency, Prentice Hall
R. Milner, Communicating and Mobile Systems: the mw-calculus, CUP
D. Sangiorgi, D. Walker, The w-calculus, a Theory of Mobile Computation, CUP

notes for the course:
not a tutorial, more to be used as a reference with the slides



INames and Processes

nominal calculus:
an infinite set of names (channels, links, ports)

a,b,....,p,q,7,..., 2,9, ...

we define terms (processes)

AB,....PQ,...



[Interaction, reduction, communication

P = a{v).b(x).0 | a(y).(é(y>.0|a(y>.0)



[Interaction, reduction, communication

P = a{v).b(x).0 | a(y). (E(y).O | E(y>.0)
l
b(z).0 | cw).0 | d).0



[Interaction, reduction, communication

P = a{v).b(x).0 | a(y). (E(y).O | E(y>.0)
l
b(z).0 | cw).0 | d).0

competition for a resource:

Q = a@).Q1]alx)Q2 | a).0



[Interaction, reduction, communication

P = a{v).b(x).0 | a(y). (E(y).O | E(y>.0)
l
b(z).0 | cw).0 | d).0

competition for a resource:

Q = a@).Q1|a(®).Q2 | av).0
/ \
Qiizv} | al2).Q2 |0 a(z).Q1 | Q2fzpy | O

non confluence
5



|A single entity: names

prefixes:

a. subject

a(b). reception, a(b). emission { b: object



|A single entity: names

prefixes:

a(b). reception, a(b). emission

a. subject
b: object

communication:
> synchronisation on a channel
> substitution of a name with a name (# \)



A single entity: names

prefixes:

a. subject

a(b). reception, a(b). emission { b: object

communication:
> synchronisation on a channel
> substitution of a name with a name (# \)

often use names like z,y in input object (bound name)



A single entity: names

prefixes:

a. subject

a(b). reception, a(b). emission { b: object

communication:
> synchronisation on a channel
> substitution of a name with a name (# \)

often use names like z,y in input object (bound name)

notation: a(b).0 is often written a(b)



| Another process




| Another process

a{c).c{v).0 | a(xz).x(t).7(t).0




| Another process
a{c).c{v).0 | a(xz).x(t).7(t).0

!
c(v).0 | c(t).7(t).0




| Another process
a{c).c{v).0 | a(xz).x(t).7(t).0
!
c(v).0 | c(t).7(t).0

!
0 | 7(v).0




| Another process

a{c).c{v).0 | a(xz).x(t).7(t).0

!
c(v).0 | c(t).7(t).0
|
0| 7{v).0

a form of reference passing
> object — subject: a(c).¢(v), a(x).x(t).7(t)



| Another process

a{c).c{v).0 | a(xz).x(t).7(t).0

!
c(v).0 | c(t).7(t).0
|
0| 7{v).0

a form of reference passing
> object — subject: a(c).¢(v), a(x).x(t).7(t)
> name passing: the king of France, Google



| Another process

a{c).c{v).0 | a(xz).x(t).7(t).0

!
c(v).0 | c(t).7(t).0
|
0| 7{v).0

a form of reference passing
> object — subject: a(c).¢(v), a(x).x(t).7(t)
> name passing: the king of France, Google

we have added a context: a(c).c{v).0



| Another process

a{c).c{v).0 | a(xz).x(t).7(t).0

!
c(v).0 | c(t).7(t).0
|
0| 7{v).0

a form of reference passing
> object — subject: a(c).¢(v), a(x).x(t).7(t)
> name passing: the king of France, Google

we have added a context: a(c).c(v).0 | a(x).x(t).7(t).0
this is the way we reason on w-calculus terms




|\ versus =

A: functions that are applied to their arguments (3-reduction)
. names being exchanged (~ (Bp-reduction)



|\ versus =

A: functions that are applied to their arguments (3-reduction)
. names being exchanged (~ (Bp-reduction)

M. a term being reduced, an evaluation that is going on
7. a term in a context



|\ versus =

A: functions that are applied to their arguments (3-reduction)
. names being exchanged (~ (Bp-reduction)

M. a term being reduced, an evaluation that is going on
7. a term in a context

M. several kinds of reduction
> strategies (call-by-name, call-by-value,...)
> computing everywhere in the term (rule &)
7. reduction only *“at top-level”, non deterministically



| Exercise: matching

some w-calculi include a matching operator:
[n = m] P behaves like P if n = m, is stuck otherwise

examples:
> a(x).b(y).[x = y]e{x) forwards a name if received twice
> (vy)a(x).[t = y] P is equivalent to 0



| Exercise: matching

some w-calculi include a matching operator:
[n = m] P behaves like P if n = m, is stuck otherwise

examples:
> a(x).b(y).[x = y]e{x) forwards a name if received twice
> (vy)a(x).[t = y] P is equivalent to 0

IS matching encodable in a w-calculus without matching
operator?



| Restriction operator, v

(va) P: the process P in which name a is private
(unknown to any other process, unknown to the context)

10



| Restriction operator, v

(va) P: the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

10



| Restriction operator, v

(va) P: the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (va) (@(v)|a(x).Q1) | a(y).Q>
— NO communication with “Q>"

10



| Restriction operator, v

(va) P: the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (va) (@(v)|a(x).Q1) | a(y).Q>
— NO communication with “Q>"

Remarks:
v is a binder: T is a-equivalent to

(vd) (a/(v) | a'(2).Q1{aay) | a(¥).Q2  (d fresh name)

10



| Restriction operator, v

(va) P: the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (va) (@(v)|a(x).Q1) | a(y).Q>
— NO communication with “Q>"

Remarks:
v is a binder: T is a-equivalent to

(vd) (a/(v) | a'(2).Q1{aay) | a(¥).Q2  (d fresh name)
v has greater priority than |
10



[Name extrusion

the object of an output is a restricted name

(ve) (P | a(c).Q) | a(xz).R  — (ve)(P| Q| Rpeey) (ve) (P|Rz—ey) | Q
if ¢ fn(Q)

P P
® R >_‘ R \ R
[
Q Q
— ‘network topology’ is changing along computation

11



| Exercise: localised =

grammar so far: P 1= 0| P1| P> | a(b).P | a(b).P | (vn) P

12



| Exercise: localised =

grammar so far: P 1= 0| P1| P> | a(b).P | a(b).P | (vn) P

localised «: in a(b).P, b can only be used in output

— why the name “localised w7

(consider a term of the form (vn) P)

12



| The polyadic w-calculus

possibility of exchanging name tuples:

a(u,v).P | a(x,y).Q — P | Q{x,y%u,v}

13



| The polyadic w-calculus

possibility of exchanging name tuples:

a(u,v).P | a(x,y).Q — P | Q{x,y%u,v}

remark: ‘type” errors

alu,v,w).P | a(x,y).Q — 77

13



| The polyadic w-calculus

possibility of exchanging name tuples:

a(u,v).P | a(x,y).Q — P | Q{x,y%u,v}

remark: ‘type” errors

alu,v,w).P | a(x,y).Q — 77

notation:

a().P (resp. a{).P) is written a.P (resp. a.P): cf.

CCS

13



|Booleans in the polyadic w-calculus

an abstraction: true & (t, f).t

cf. Milner’s tutorial on w, abstractions and concretions

14



|Booleans in the polyadic w-calculus

an abstraction: true & (t, f).t

cf. Milner’s tutorial on w, abstractions and concretions

the value true located at b: true, det b(t, ).t

14



|Booleans in the polyadic w-calculus

an abstraction: true & (t, f).t

cf. Milner’s tutorial on w, abstractions and concretions

the value true located at b: true, det b(t, ).t
test:

) def -

if b then P else Q = b{t, f).(t.P | f.Q)

14



|Booleans in the polyadic w-calculus

an abstraction: true & (t, f).t

cf. Milner’s tutorial on w, abstractions and concretions

the value true located at b: true, det b(t, ).t
test:
) def -
if b then P else Q = b{t, f).(t.P | f.Q)
better — L wHWwH b, £).(t.P | £.Q)

14



| Exercises

write m-calculus terms for boolean — and A operators

15



| Exercises

write m-calculus terms for boolean — and A operators

how can we ‘program’ the diadic w-calculus in the
monadic w-calculus?

a<U,'U>-P ‘ CL(CI%Q)Q - P | Q{x,y<—u,’u}

15



|Replication

to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

16



|Replication

to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

replication: | P

stands for as many copies of P as you wish in parallel
(P “=" P|P|P|...)

16



|Replication

to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

replication: | P
stands for as many copies of P as you wish in parallel
('\p “=" P|P|P|...)
examples:

> a(v).P | la(x).Q — P | Qruv} | la(x).Q

16



|Replication

to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

replication: | P
stands for as many copies of P as you wish in parallel
('\p “=" P|P|P|...)
examples:
> a(v).P | la(z).Q — P|Quy |la(z).Q
> let T & 1e(x) | le(y), T — T

— the replication operator brings persistence
16



|Replication and persistence

persistent data

trueb

b(t, ).

17



|Replication and persistence

persistent data

true, det Ib(t, ).t

a resource: server for boolean Vv

(b1, b2, m)-(wb) (10t ). f) (Brlt, f) | f'B2(t, £)) |

(b))

17



| The language so far

P == O0|P|P|'P|a).P|ab).P| (va)P

this m-calculus is:
monadic
synchronous
with replication

but there exist several other variations/extensions

18



