Course on Mobility

Daniel.Hirschkoff@ens-lyon.fr

「About this course

- focus on the π-calculus: a calculus of mobile processes based on naming (cf. R. Milner, Turing award lecture)

「About this course

- focus on the π-calculus: a calculus of mobile processes based on naming (cf. R. Milner, Turing award lecture)
- π as a $\begin{aligned} & \text { specification } \\ & \text { programming }\end{aligned}$ language

「About this course

- focus on the π-calculus: a calculus of mobile processes based on naming (cf. R. Milner, Turing award lecture)
- π as a $\begin{aligned} & \text { specification } \\ & \text { programming }\end{aligned}$ language
- more a panorama than a precise technical study of a particular poi

「About this course

- focus on the π-calculus: a calculus of mobile processes based on naming (cf. R. Milner, Turing award lecture)
- π as a specification language
programming
- more a panorama than a precise technical study of a particular poi
- outline:
π : definition - types - λ in $\pi-$ behavioural equivalences

「Origins and sources

- predecessors: other process algebras - CSP, CCS

「Origins and sources

- predecessors: other process algebras - CSP, CCS
- books:
R. Milner, Communication and Concurrency, Prentice Hall
R. Milner, Communicating and Mobile Systems: the π-calculus, CUP
D. Sangiorgi, D. Walker, The π-calculus, a Theory of Mobile Computation, CUP

「Origins and sources

- predecessors: other process algebras - CSP, CCS
- books:
R. Milner, Communication and Concurrency, Prentice Hall
R. Milner, Communicating and Mobile Systems: the π-calculus, CUP
D. Sangiorgi, D. Walker, The π-calculus, a Theory of Mobile Computation, CUP
- notes for the course:
not a tutorial, more to be used as a reference with the slides

「Names and Processes

- nominal calculus:
an infinite set of names (channels, links, ports)

$$
a, b, \ldots, p, q, r, \ldots, x, y, \ldots
$$

- we define terms (processes)

$$
A, B, \ldots, P, Q, \ldots
$$

「Interaction, reduction, communication

$$
P \quad=\quad \bar{a}\langle v\rangle . b(x) .0 \quad \mid \quad a(y) \cdot(\bar{c}\langle y\rangle . \mathbf{0} \mid \bar{d}\langle y\rangle .0)
$$

「Interaction, reduction, communication

$$
\begin{aligned}
& P \quad=\quad \bar{a}\langle v\rangle . b(x) . \mathbf{0} \quad \mid \quad a(y) .(\bar{c}\langle y\rangle . \mathbf{0} \mid \bar{d}\langle y\rangle . \mathbf{0}) \\
& \begin{array}{l|lll}
b(x) .0 & \mid & \bar{c}\langle v\rangle .0 & \mid \\
\bar{d}\langle v\rangle .0
\end{array}
\end{aligned}
$$

「Interaction, reduction, communication

$$
\begin{aligned}
& P \quad=\quad \bar{a}\langle v\rangle . b(x) . \mathbf{0} \quad \mid \quad a(y) .(\bar{c}\langle y\rangle . \mathbf{0} \mid \bar{d}\langle y\rangle . \mathbf{0}) \\
& \begin{array}{l|l|l}
b(x) .0 & \bar{c}\langle v\rangle .0 & \mid \\
\bar{d}\langle v\rangle .0
\end{array}
\end{aligned}
$$

competition for a resource:

$$
Q=a(x) \cdot Q_{1}\left|a(x) \cdot Q_{2}\right| \bar{a}\langle v\rangle \cdot 0
$$

「Interaction, reduction, communication

$$
\begin{array}{rrr}
P \quad \bar{a}\langle v\rangle . b(x) .0 & \mid & a(y) .(\bar{c}\langle y\rangle .0 \mid \bar{d}\langle y\rangle .0) \\
& & \downarrow \\
b(x) .0 & \mid & \bar{c}\langle v\rangle .0
\end{array} \quad \bar{d}\langle v\rangle .0 \quad 4 .
$$

competition for a resource:

$$
\begin{gathered}
Q=a(x) \cdot Q_{1}\left|a(x) \cdot Q_{2}\right| \bar{a}\langle v\rangle \cdot 0 \\
\swarrow \\
Q_{1\{x \leftarrow v\}}\left|a(x) \cdot Q_{2}\right| \mathbf{0} \quad a(x) \cdot Q_{1}\left|Q_{2\{x \leftarrow b\}}\right| \mathbf{0} \\
\begin{array}{r}
\text { non confluence } \\
\text { non }
\end{array}
\end{gathered}
$$

「A single entity: names

- prefixes:
$a(b)$. reception, $\bar{a}\langle b\rangle$. emission $\left\{\begin{array}{l}a: \text { subject } \\ b: \text { object }\end{array}\right.$

「A single entity: names

- prefixes:
$a(b)$. reception, $\bar{a}\langle b\rangle$. emission $\left\{\begin{array}{l}a: \text { subject } \\ b: \text { object }\end{array}\right.$
- communication:
\triangleright synchronisation on a channel
\triangleright substitution of a name with a name $(\neq \lambda)$

「A single entity: names

- prefixes:

$$
a(b) . \text { reception, } \bar{a}\langle b\rangle . \text { emission }\left\{\begin{array}{l}
a: \text { subject } \\
b: \text { object }
\end{array}\right.
$$

- communication:
\triangleright synchronisation on a channel
\triangleright substitution of a name with a name $(\neq \lambda)$
- often use names like x, y in input object (bound name)

「A single entity: names

- prefixes:

$$
a(b) . \text { reception, } \bar{a}\langle b\rangle . \text { emission }\left\{\begin{array}{l}
a: \text { subject } \\
b: \text { object }
\end{array}\right.
$$

- communication:
\triangleright synchronisation on a channel
\triangleright substitution of a name with a name $(\neq \lambda)$
- often use names like x, y in input object (bound name)
- notation: $\bar{a}\langle b\rangle .0$ is often written $\bar{a}\langle b\rangle$

「Another process

$$
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0
$$

「Another process

$$
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle . \mathbf{0} \mid a(x) \cdot x(t) . \bar{r}\langle t\rangle . \mathbf{0}
$$

「Another process

$$
\begin{aligned}
& \bar{a}\langle c\rangle . \bar{c}\langle v\rangle . \mathbf{0} \mid a(x) . x(t) . \bar{r}\langle t\rangle .0 \\
& \downarrow \\
& \bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle . \mathbf{0}
\end{aligned}
$$

「Another process

$$
\begin{gathered}
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0 \mid a(x) . x(t) . \bar{r}\langle t\rangle .0 \\
\downarrow \\
\bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\mathbf{0} \mid \bar{r}\langle v\rangle . \mathbf{0}
\end{gathered}
$$

「Another process

$$
\begin{gathered}
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0 \mid \\
\quad a(x) . x(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\mathbf{0} \mid \\
\mid \bar{r}\langle v\rangle . \mathbf{0}
\end{gathered}
$$

- a form of reference passing
\triangleright object \hookrightarrow subject: $\bar{a}\langle c\rangle \cdot \bar{c}\langle v\rangle, a(x) \cdot x(t) \cdot \bar{r}\langle t\rangle$

「Another process

$$
\begin{gathered}
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0 \mid \\
\quad a(x) . x(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\mathbf{0} \mid \\
\mid \bar{r}\langle v\rangle . \mathbf{0}
\end{gathered}
$$

- a form of reference passing
\triangleright object \hookrightarrow subject: $\bar{a}\langle c\rangle \cdot \bar{c}\langle v\rangle, a(x) \cdot x(t) \cdot \bar{r}\langle t\rangle$
\triangleright name passing: the king of France, Google

「Another process

$$
\begin{gathered}
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0 \mid \\
\quad a(x) . x(t) . \bar{r}\langle t\rangle .0 \\
\downarrow \\
\bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle . \mathbf{0} \\
\downarrow \\
\mathbf{0} \mid \\
\left|\begin{array}{rl}
r
\end{array} v\right\rangle . \mathbf{0}
\end{gathered}
$$

- a form of reference passing
\triangleright object \hookrightarrow subject: $\bar{a}\langle c\rangle \cdot \bar{c}\langle v\rangle, a(x) \cdot x(t) \cdot \bar{r}\langle t\rangle$
\triangleright name passing: the king of France, Google
- we have added a context: $\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0$

「Another process

$$
\begin{gathered}
\bar{a}\langle c\rangle . \bar{c}\langle v\rangle .0 \mid \\
\quad a(x) . x(t) . \bar{r}\langle t\rangle .0 \\
\downarrow \\
\bar{c}\langle v\rangle . \mathbf{0} \mid c(t) . \bar{r}\langle t\rangle .0 \\
\downarrow \\
\mathbf{0} \mid \\
\hline r\langle v\rangle . \mathbf{0}
\end{gathered}
$$

- a form of reference passing
\triangleright object \hookrightarrow subject: $\bar{a}\langle c\rangle \cdot \bar{c}\langle v\rangle, a(x) \cdot x(t) \cdot \bar{r}\langle t\rangle$
\triangleright name passing: the king of France, Google
- we have added a context: $\bar{a}\langle c\rangle . \bar{c}\langle v\rangle . \mathbf{0} \mid a(x) \cdot x(t) . \bar{r}\langle t\rangle . \mathbf{0}$ this is the way we reason on π-calculus terms
$\lceil\underline{\lambda}$ versus π
λ : functions that are applied to their arguments (β-reduction) π : names being exchanged ($\simeq \beta_{0}$-reduction)
$\lceil\underline{\lambda}$ versus π
λ : functions that are applied to their arguments (β-reduction) π : names being exchanged ($\simeq \beta_{0}$-reduction)
λ : a term being reduced, an evaluation that is going on
π : a term in a context
$\lceil\underline{\lambda}$ versus π
λ : functions that are applied to their arguments (β-reduction)
π : names being exchanged ($\simeq \beta_{0}$-reduction)
λ : a term being reduced, an evaluation that is going on
π : a term in a context
λ : several kinds of reduction
\triangleright strategies (call-by-name, call-by-value,...)
\triangleright computing everywhere in the term (rule ξ)
π : reduction only "at top-level", non deterministically

「Exercise: matching

- some π-calculi include a matching operator:
[$n=m$] P behaves like P if $n=m$, is stuck otherwise
examples:
$\triangleright a(x) \cdot b(y) \cdot[x=y] \bar{c}\langle x\rangle$ forwards a name if received twice
$\triangleright \quad(\boldsymbol{\nu} y) a(x) \cdot[x=y] P$ is equivalent to 0

「Exercise: matching

- some π-calculi include a matching operator: [$n=m$] P behaves like P if $n=m$, is stuck otherwise

examples:

$\triangleright a(x) \cdot b(y) \cdot[x=y] \bar{c}\langle x\rangle$ forwards a name if received twice
$\triangleright \quad(\boldsymbol{\nu} y) a(x) \cdot[x=y] P$ is equivalent to 0

- is matching encodable in a π-calculus without matching operator?

「Restriction operator, $\boldsymbol{\nu}$
($\boldsymbol{\nu} a$) P : the process P in which name a is private (unknown to any other process, unknown to the context)

「Restriction operator, $\boldsymbol{\nu}$
($\boldsymbol{\nu} a$) P : the process P in which name a is private (unknown to any other process, unknown to the context) other interpretation: create a new name a, then execute P

「Restriction operator, $\boldsymbol{\nu}$

(νa) P : the process P in which name a is private (unknown to any other process, unknown to the context) other interpretation: create a new name a, then execute P

Example: $\quad T=(\boldsymbol{\nu} a)\left(\bar{a}\langle v\rangle \mid a(x) \cdot Q_{1}\right) \mid a(y) \cdot Q_{2}$
\rightarrow no communication with " Q_{2} "

「Restriction operator, $\boldsymbol{\nu}$

($\boldsymbol{\nu} a$) P : the process P in which name a is private (unknown to any other process, unknown to the context)
other interpretation: create a new name a, then execute P
Example: $\quad T=(\boldsymbol{\nu} a)\left(\bar{a}\langle v\rangle \mid a(x) \cdot Q_{1}\right) \mid a(y) \cdot Q_{2}$
\rightarrow no communication with " Q_{2} "
Remarks:

- $\boldsymbol{\nu}$ is a binder: T is α-equivalent to

$$
\left(\boldsymbol{\nu} a^{\prime}\right)\left(\overline{a^{\prime}}\langle v\rangle \mid a^{\prime}(x) \cdot Q_{1\left\{a \leftarrow a^{\prime}\right\}}\right) \mid a(y) \cdot Q_{2} \quad\left(a^{\prime} \text { fresh name }\right)
$$

「Restriction operator, $\boldsymbol{\nu}$

($\boldsymbol{\nu} a$) P : the process P in which name a is private (unknown to any other process, unknown to the context) other interpretation: create a new name a, then execute P

Example: $\quad T=(\boldsymbol{\nu} a)\left(\bar{a}\langle v\rangle \mid a(x) \cdot Q_{1}\right) \mid a(y) \cdot Q_{2}$
\rightarrow no communication with " Q_{2} "
Remarks:

- $\boldsymbol{\nu}$ is a binder: T is α-equivalent to

$$
\left(\boldsymbol{\nu} a^{\prime}\right)\left(\overline{a^{\prime}}\langle v\rangle \mid a^{\prime}(x) \cdot Q_{1\left\{a \leftarrow a^{\prime}\right\}}\right) \mid a(y) \cdot Q_{2} \quad\left(a^{\prime} \text { fresh name }\right)
$$

- $\boldsymbol{\nu}$ has greater priority than |

「Name extrusion

the object of an output is a restricted name

\rightarrow 'network topology' is changing along computation

「Exercise: localised π

- grammar so far: $P::=\mathbf{0}\left|P_{1}\right| P_{2}|a(b) . P| \bar{a}\langle b\rangle . P \mid(\boldsymbol{\nu} n) P$

「Exercise: localised π

- grammar so far: $P::=\mathbf{0}\left|P_{1}\right| P_{2}|a(b) . P| \bar{a}\langle b\rangle . P \mid(\boldsymbol{\nu} n) P$
- localised π : in $a(b) . P, b$ can only be used in output
\hookrightarrow why the name "localised π "?
(consider a term of the form $(\boldsymbol{\nu} n) P$)

「The polyadic π-calculus

- possibility of exchanging name tuples:

$$
\bar{a}\langle u, v\rangle . P|a(x, y) . Q \quad \longrightarrow \quad P| Q_{\{x, y \leftarrow u, v\}}
$$

「The polyadic π-calculus

- possibility of exchanging name tuples:

$$
\bar{a}\langle u, v\rangle . P|a(x, y) \cdot Q \quad \longrightarrow \quad P| Q_{\{x, y \leftarrow u, v\}}
$$

- remark: "type" errors

$$
\bar{a}\langle u, v, w\rangle \cdot P \mid a(x, y) \cdot Q \quad \longrightarrow \quad ? ?
$$

「The polyadic π-calculus

- possibility of exchanging name tuples:

$$
\bar{a}\langle u, v\rangle . P|a(x, y) \cdot Q \quad \longrightarrow \quad P| Q_{\{x, y \leftarrow u, v\}}
$$

- remark: "type" errors

$$
\bar{a}\langle u, v, w\rangle \cdot P \mid a(x, y) \cdot Q \quad \longrightarrow \quad ? ?
$$

- notation:
$a() . P($ resp. $\bar{a}\langle \rangle . P)$ is written $a . P($ resp. $\bar{a} . P)$: cf. CCS

「Booleans in the polyadic π-calculus

- an abstraction: true $\stackrel{\text { def }}{=}(t, f) . \bar{t}$
cf. Milner's tutorial on π, abstractions and concretions

「Booleans in the polyadic π-calculus

- an abstraction: true $\stackrel{\text { def }}{=}(t, f) . \bar{t}$
cf. Milner's tutorial on π, abstractions and concretions
- the value true located at $b: \quad \operatorname{true}_{b} \stackrel{\text { def }}{=} b(t, f) \cdot \bar{t}$

「Booleans in the polyadic π-calculus

- an abstraction: true $\stackrel{\text { def }}{=}(t, f) \cdot \bar{t}$
cf. Milner's tutorial on π, abstractions and concretions
- the value true located at $b: \quad \operatorname{true}_{b} \stackrel{\text { def }}{=} b(t, f) \cdot \bar{t}$
- test:
if b then P else $Q \stackrel{\text { def }}{=} \bar{b}\langle t, f\rangle .(t . P \mid f . Q)$

「Booleans in the polyadic π-calculus

- an abstraction: true $\stackrel{\text { def }}{=}(t, f) \cdot \bar{t}$
cf. Milner's tutorial on π, abstractions and concretions
- the value true located at $b: \quad \operatorname{true}_{b} \stackrel{\text { def }}{=} b(t, f) \cdot \bar{t}$
- test:

$$
\begin{array}{cl}
\text { if } b \text { then } P \text { else } Q & \stackrel{\text { def }}{=} \bar{b}\langle t, f\rangle .(t . P \mid f . Q) \\
\text { better } \mapsto & \stackrel{\text { def }}{=}(\boldsymbol{\nu} t)(\boldsymbol{\nu} f) \bar{b}\langle t, f\rangle .(t . P \mid f . Q)
\end{array}
$$

「Exercises

- write π-calculus terms for boolean \neg and \wedge operators

「Exercises

- write π-calculus terms for boolean \neg and \wedge operators
- how can we 'program' the diadic π-calculus in the monadic π-calculus?

$$
\bar{a}\langle u, v\rangle \cdot P|a(x, y) \cdot Q \quad \longrightarrow \quad P| Q_{\{x, y \leftarrow u, v\}}
$$

「Replication

- to have a Turing-complete model (and in particular to be able to define a programming language), one has to have a form of recursion

「Replication

- to have a Turing-complete model (and in particular to be able to define a programming language), one has to have a form of recursion
- replication: $\quad!P$
stands for as many copies of P as you wish in parallel

$$
(!P \text { " }=" P|P| P \mid \ldots)
$$

「Replication

- to have a Turing-complete model (and in particular to be able to define a programming language), one has to have a form of recursion
- replication: ! \quad P
stands for as many copies of P as you wish in parallel

$$
(!P \text { " }=" P|P| P \mid \ldots)
$$

- examples:
$\triangleright \bar{a}\langle v\rangle . P|!a(x) \cdot Q \quad \longrightarrow \quad P| Q_{\{x \leftarrow v\}} \mid!a(x) \cdot Q$

「Replication

- to have a Turing-complete model (and in particular to be able to define a programming language), one has to have a form of recursion
- replication: ! P
stands for as many copies of P as you wish in parallel

$$
(!P \text { " }=" P|P| P \mid \ldots)
$$

- examples:
$\triangleright \bar{a}\langle v\rangle . P|!a(x) \cdot Q \quad \longrightarrow \quad P| Q_{\{x \leftarrow v\}} \mid!a(x) \cdot Q$
\triangleright let $T \stackrel{\text { def }}{=}!\bar{c}\langle x\rangle \mid!c(y), \quad T \longrightarrow T$ \rightarrow the replication operator brings persistence

「Replication and persistence

- persistent data

$$
\operatorname{true}_{b} \stackrel{\text { def }}{=}!b(t, f) \cdot \bar{t}
$$

「Replication and persistence

- persistent data

$$
\operatorname{true}_{b} \stackrel{\text { def }}{=}!b(t, f) \cdot \bar{t}
$$

- a resource: server for boolean \vee

$$
!l\left(b_{1}, b_{2}, r\right) \cdot(\boldsymbol{\nu} b)\left(!b(t, f) \cdot\left(\boldsymbol{\nu} f^{\prime}\right)\left(\overline{b_{1}}\left\langle t, f^{\prime}\right\rangle \mid f^{\prime} \cdot \overline{b_{2}}\langle t, f\rangle\right) \mid \bar{r}\langle b\rangle\right)
$$

「The language so far

$$
P::=0\left|P_{1}\right| P_{2}|!P| a(b) . P|\bar{a}\langle b\rangle . P|(\nu a) P
$$

this π-calculus is:

- monadic
- synchronous
- with replication
but there exist several other variations/extensions

