
Course on Mobility

Daniel.Hirschkoff@ens-lyon.fr

1

dAbout this course

• focus on the π-calculus: a calculus of mobile processes based

on naming (cf. R. Milner, Turing award lecture)

2

dAbout this course

• focus on the π-calculus: a calculus of mobile processes based

on naming (cf. R. Milner, Turing award lecture)

• π as a
specification
programming

language

2

dAbout this course

• focus on the π-calculus: a calculus of mobile processes based

on naming (cf. R. Milner, Turing award lecture)

• π as a
specification
programming

language

• more a panorama than a precise technical study of a particular point

2

dAbout this course

• focus on the π-calculus: a calculus of mobile processes based

on naming (cf. R. Milner, Turing award lecture)

• π as a
specification
programming

language

• more a panorama than a precise technical study of a particular point

• outline:

π: definition - types - λ in π - behavioural equivalences

2

dOrigins and sources

• predecessors: other process algebras – CSP, CCS

3

dOrigins and sources

• predecessors: other process algebras – CSP, CCS

• books:
R. Milner, Communication and Concurrency, Prentice Hall

R. Milner, Communicating and Mobile Systems: the π-calculus, CUP

D. Sangiorgi, D. Walker, The π-calculus, a Theory of Mobile Computation, CUP

3

dOrigins and sources

• predecessors: other process algebras – CSP, CCS

• books:
R. Milner, Communication and Concurrency, Prentice Hall

R. Milner, Communicating and Mobile Systems: the π-calculus, CUP

D. Sangiorgi, D. Walker, The π-calculus, a Theory of Mobile Computation, CUP

• notes for the course:
not a tutorial, more to be used as a reference with the slides

3

dNames and Processes

• nominal calculus:

an infinite set of names (channels, links, ports)

a, b, . . . , p, q, r, . . . , x, y, . . .

• we define terms (processes)

A, B, . . . , P, Q, . . .

4

dInteraction, reduction, communication

P = a〈v〉.b(x).0 | a(y).
(
c〈y〉.0 | d〈y〉.0

)

5

dInteraction, reduction, communication

P = a〈v〉.b(x).0 | a(y).
(
c〈y〉.0 | d〈y〉.0

)
↓

b(x).0 | c〈v〉.0 | d〈v〉.0

5

dInteraction, reduction, communication

P = a〈v〉.b(x).0 | a(y).
(
c〈y〉.0 | d〈y〉.0

)
↓

b(x).0 | c〈v〉.0 | d〈v〉.0

competition for a resource:

Q = a(x).Q1 | a(x).Q2 | a〈v〉.0

5

dInteraction, reduction, communication

P = a〈v〉.b(x).0 | a(y).
(
c〈y〉.0 | d〈y〉.0

)
↓

b(x).0 | c〈v〉.0 | d〈v〉.0

competition for a resource:

Q = a(x).Q1 | a(x).Q2 | a〈v〉.0
↙ ↘

Q1{x←v} | a(x).Q2 | 0 a(x).Q1 | Q2{x←b} | 0
non confluence

5

dA single entity: names

• prefixes:

a(b). reception, a〈b〉. emission

{
a: subject
b: object

6

dA single entity: names

• prefixes:

a(b). reception, a〈b〉. emission

{
a: subject
b: object

• communication:
. synchronisation on a channel
. substitution of a name with a name (6= λ)

6

dA single entity: names

• prefixes:

a(b). reception, a〈b〉. emission

{
a: subject
b: object

• communication:
. synchronisation on a channel
. substitution of a name with a name (6= λ)

• often use names like x, y in input object (bound name)

6

dA single entity: names

• prefixes:

a(b). reception, a〈b〉. emission

{
a: subject
b: object

• communication:
. synchronisation on a channel
. substitution of a name with a name (6= λ)

• often use names like x, y in input object (bound name)

• notation: a〈b〉.0 is often written a〈b〉
6

dAnother process

a〈c〉.c〈v〉.0

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0
↓

0 | r〈v〉.0

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0
↓

0 | r〈v〉.0

• a form of reference passing
. object ↪→ subject: a〈c〉.c〈v〉, a(x).x(t).r〈t〉

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0
↓

0 | r〈v〉.0

• a form of reference passing
. object ↪→ subject: a〈c〉.c〈v〉, a(x).x(t).r〈t〉
. name passing: the king of France, Google

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0
↓

0 | r〈v〉.0

• a form of reference passing
. object ↪→ subject: a〈c〉.c〈v〉, a(x).x(t).r〈t〉
. name passing: the king of France, Google

• we have added a context: a〈c〉.c〈v〉.0

7

dAnother process

a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
↓

c〈v〉.0 | c(t).r〈t〉.0
↓

0 | r〈v〉.0

• a form of reference passing
. object ↪→ subject: a〈c〉.c〈v〉, a(x).x(t).r〈t〉
. name passing: the king of France, Google

• we have added a context: a〈c〉.c〈v〉.0 | a(x).x(t).r〈t〉.0
this is the way we reason on π-calculus terms

7

dλ versus π

λ: functions that are applied to their arguments (β-reduction)

π: names being exchanged (' β0-reduction)

8

dλ versus π

λ: functions that are applied to their arguments (β-reduction)

π: names being exchanged (' β0-reduction)

λ: a term being reduced, an evaluation that is going on

π: a term in a context

8

dλ versus π

λ: functions that are applied to their arguments (β-reduction)

π: names being exchanged (' β0-reduction)

λ: a term being reduced, an evaluation that is going on

π: a term in a context

λ: several kinds of reduction

. strategies (call-by-name, call-by-value,. . .)

. computing everywhere in the term (rule ξ)

π: reduction only “at top-level”, non deterministically

8

dExercise: matching

• some π-calculi include a matching operator:

[n = m]P behaves like P if n = m, is stuck otherwise

examples:

. a(x).b(y).[x = y] c〈x〉 forwards a name if received twice

. (νy) a(x).[x = y]P is equivalent to 0

9

dExercise: matching

• some π-calculi include a matching operator:

[n = m]P behaves like P if n = m, is stuck otherwise

examples:

. a(x).b(y).[x = y] c〈x〉 forwards a name if received twice

. (νy) a(x).[x = y]P is equivalent to 0

• is matching encodable in a π-calculus without matching

operator?

9

dRestriction operator, ν

(νa)P : the process P in which name a is private
(unknown to any other process, unknown to the context)

10

dRestriction operator, ν

(νa)P : the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

10

dRestriction operator, ν

(νa)P : the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (νa) (a〈v〉 | a(x).Q1) | a(y).Q2

→ no communication with “Q2”

10

dRestriction operator, ν

(νa)P : the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (νa) (a〈v〉 | a(x).Q1) | a(y).Q2

→ no communication with “Q2”

Remarks:
• ν is a binder: T is α-equivalent to

(νa′)
(
a′〈v〉 | a′(x).Q1{a←a′}

)
| a(y).Q2 (a′ fresh name)

10

dRestriction operator, ν

(νa)P : the process P in which name a is private
(unknown to any other process, unknown to the context)

other interpretation: create a new name a, then execute P

Example: T = (νa) (a〈v〉 | a(x).Q1) | a(y).Q2

→ no communication with “Q2”

Remarks:
• ν is a binder: T is α-equivalent to

(νa′)
(
a′〈v〉 | a′(x).Q1{a←a′}

)
| a(y).Q2 (a′ fresh name)

• ν has greater priority than |
10

dName extrusion

the object of an output is a restricted name

(νc) (P | a〈c〉.Q) | a(x).R → (νc) (P | Q | R{x←c}) ≡ (νc) (P |R{x←c}) | Q

if c /∈ fn(Q)

P P P

Q Q Q

RR R

→ ‘network topology’ is changing along computation

11

dExercise: localised π

• grammar so far: P ::= 0 | P1 |P2 | a(b).P | a〈b〉.P | (νn)P

12

dExercise: localised π

• grammar so far: P ::= 0 | P1 |P2 | a(b).P | a〈b〉.P | (νn)P

• localised π: in a(b).P , b can only be used in output

↪→ why the name “localised π”?

(consider a term of the form (νn)P)

12

dThe polyadic π-calculus

• possibility of exchanging name tuples:

a〈u, v〉.P | a(x, y).Q −→ P | Q{x,y←u,v}

13

dThe polyadic π-calculus

• possibility of exchanging name tuples:

a〈u, v〉.P | a(x, y).Q −→ P | Q{x,y←u,v}

• remark: “type” errors

a〈u, v, w〉.P | a(x, y).Q −→ ??

13

dThe polyadic π-calculus

• possibility of exchanging name tuples:

a〈u, v〉.P | a(x, y).Q −→ P | Q{x,y←u,v}

• remark: “type” errors

a〈u, v, w〉.P | a(x, y).Q −→ ??

• notation:

a().P (resp. a〈〉.P) is written a.P (resp. a.P): cf. CCS

13

dBooleans in the polyadic π-calculus

• an abstraction: true
def
= (t, f).t

cf. Milner’s tutorial on π, abstractions and concretions

14

dBooleans in the polyadic π-calculus

• an abstraction: true
def
= (t, f).t

cf. Milner’s tutorial on π, abstractions and concretions

• the value true located at b: true b
def
= b(t, f).t

14

dBooleans in the polyadic π-calculus

• an abstraction: true
def
= (t, f).t

cf. Milner’s tutorial on π, abstractions and concretions

• the value true located at b: true b
def
= b(t, f).t

• test:

if b then P else Q
def
= b〈t, f〉.(t.P | f.Q)

14

dBooleans in the polyadic π-calculus

• an abstraction: true
def
= (t, f).t

cf. Milner’s tutorial on π, abstractions and concretions

• the value true located at b: true b
def
= b(t, f).t

• test:

if b then P else Q
def
= b〈t, f〉.(t.P | f.Q)

better 7→ def
= (νt)(νf) b〈t, f〉.(t.P | f.Q)

14

dExercises

• write π-calculus terms for boolean ¬ and ∧ operators

15

dExercises

• write π-calculus terms for boolean ¬ and ∧ operators

• how can we ‘program’ the diadic π-calculus in the

monadic π-calculus?

a〈u, v〉.P | a(x, y).Q −→ P | Q{x,y←u,v}

15

dReplication

• to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

16

dReplication

• to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

• replication: !P

stands for as many copies of P as you wish in parallel
(!P “=” P |P |P | . . .)

16

dReplication

• to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

• replication: !P

stands for as many copies of P as you wish in parallel
(!P “=” P |P |P | . . .)

• examples:
. a〈v〉.P | !a(x).Q −→ P | Q{x←v} | !a(x).Q

16

dReplication

• to have a Turing-complete model (and in particular to be
able to define a programming language), one has to have a form
of recursion

• replication: !P

stands for as many copies of P as you wish in parallel
(!P “=” P |P |P | . . .)

• examples:
. a〈v〉.P | !a(x).Q −→ P | Q{x←v} | !a(x).Q

. let T
def
= !c〈x〉 | !c(y) , T −→ T

→ the replication operator brings persistence

16

dReplication and persistence

• persistent data

true b
def
= !b(t, f).t

17

dReplication and persistence

• persistent data

true b
def
= !b(t, f).t

• a resource: server for boolean ∨

!l(b1, b2, r).(νb)
(
!b(t, f).(νf ′)

(
b1〈t, f ′〉 | f ′.b2〈t, f〉

)
| r〈b〉

)

17

dThe language so far

P ::= 0 | P1 |P2 | !P | a(b).P | a〈b〉.P | (νa)P

this π-calculus is:

• monadic

• synchronous

• with replication

but there exist several other variations/extensions

18

