
Aussois 2003

Notes for the course on Mobility

Daniel.Hirschkoff@ens-lyon.fr

Foreword. The purpose of these notes is to serve as a counterpart of the more
informal explanations recorded on the course’s slides. They should be useful
when looking for the precise definition of a notion (e.g. to work on an exercise),
and possibly, after the course, to look for a reference on a particular topic.

1 π-Calculi

1.1 The monadic π-calculus

1.1.1 Syntax

Our referential calculus will be the monadic synchronous π-calculus, which is
built upon an infinite set of names (also called channels or links; sometimes also
ports), over which we range with small letters: a, b, . . . ,m, n, o, p, q, . . . , x, y,

Terms of the π-calculus are also called processes, and are ranged over with
big letters: A,B, . . . , P,Q,R, S, They designate a state in the evolution of a
system, or rather of a subsystem, in the sense that a π-calculus term is regarded
as interacting with a context.

n, m, . . . names P ::= processes
0 inactive process

| P1 |P2 parallel composition
| !P replication
| (νn) P restriction
| n(m).P input prefix
| n〈m〉.P output prefix

Figure 1: Syntax of the monadic π-calculus

Bound and free names of a process P (written respectively bn(P) and fn(P))

1

are defined by saying that name n is bound in a(n).Q and (νn)Q, other occur-
rences defining free names.

0 is the terminated process, that does nothing. The parallel composition of
processes P1 and P2 is written P1 |P2 and lets P1 and P2 interact together (and
with the context). The operator of replication can be thought of as making an
unbounded number of copies of a process available: !P stands for P |P |
Restriction, written ν, has the effect of making the usage of a name private to a
process; alternatively, (νn) P can be seen as the process allocating a fresh name
(different from all names possibly used by any other process in the context) and
proceeding as P . Input (n(m)) and output (n〈m〉) prefixes are the elementary
constituents of interaction, as expressed by the central reduction rule:

n〈a〉.P | n(b).Q −→ P | Q{b←a}
Here Q{b←a} stands for the capture-avoiding substitution of name b by name a
in Q.

Both kinds of prefix are made of a subject, the name over which communica-
tion happens (n in the example above), and an object, which is the name being
transmitted.
Variables. It can be remarked that there is no distinct syntactic notion of
variable in the π-calculus: in n(m).P , m is a name used as a placeholder for the
name to be transmitted upon reception on n. To enhance readability, we shall
often use names x, y, z to designate the object of receptions, and prefer n(x).P
to n(m).P (although this is only a matter of α-conversion). Note also that some
authors prefer to explicitely introduce two different sets of names and variables,
which turns out to be more tractable in some situations.
Frequently used notations. Some common abbreviations are used when writ-
ing π-calculus processes. A trailing inactive process is often left implicit (thus
writing e.g. a(x).b〈x〉 instead of a(x).b〈x〉.0). Associativity of parallel composi-
tion (see below) will allow us to write processes of the form P1 | . . . |Pk without
parentheses. Consecutive restrictions may be grouped using the tuple notation:
we shall write ñ = (n1, . . . , nk), and (ν (̃n))P stands for (νn1) . . . (νnk)P . We
shall also write a().P for an input process in which the received value is not
used in the continuation P .

1.1.2 Reduction-based operational semantics

The reduction-based presentation of the operational semantics of π originates
in Berry and Boudol’s Chemical Abstract Machine. It is based on the definition
of two relations between processes:

- Structural congruence is the least congruence relation satisfying the rules of
Fig. 2. The important rule in the third line describes name extrusion.

- Reduction is the least relation satisfying the rules of Fig. 3.

It can be noted that the last three rules for replication in Fig. 2 are not
included in all presentations of structural congruence for the π-calculus (in par-
ticular not in Milner’s original presentation).

2

P |0 ≡ P P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R
(νn)0 ≡ 0 (νn)(νm) P ≡ (νm)(νn)P

(νn) (P |Q) ≡ P | (νn) Q if n /∈ fn(P)
!P ≡ !P |P !0 ≡ 0 !!P ≡ !P !(P |Q) ≡ !P | !Q

Figure 2: Structural congruence

n〈a〉.P | n(b).Q −→ P | Q{b←a}

P −→ P ′

(νn) P −→ (νn) P ′
P −→ P ′

P |Q −→ P ′ |Q

P −→ P ′ P ≡ Q P ′ ≡ Q′

Q −→ Q′

Figure 3: Reduction

1.1.3 Labelled Transition System

We present the labelled transition system for the π-calculus early semantics
in Fig. 4. A labelled transition system consists of a set of processes P, a set
of actions A, and a transition relation included in P × A × P. Actions label
the evolutions that a process can have, either through an interaction with its
context or via some internal computation.
Actions.

µ ::= a(n) | a〈n〉 | a(n)ν | τ .
There are four kinds of actions: input, free output, bound output1 and a special
action τ to denote internal computation.

The bound and free names of an action µ (written respectively bn(µ) and
fn(µ)) are defined by saying that name n is bound in a(n)ν , other occurrences
of names in actions defining free names. We also set n(µ) def= bn(µ) ∪ fn(µ).
Proposition. −→ = τ−→≡.

This presentation corresponds to an early transition semantics because the
1The ν in subscript in a bound output action is rarely found in the literature. We use it

here to stress the (slight) typographical difference between a〈n〉 (free output of n at a) and
a(n) (bound output).

3

Inp a(m).P
a(n)−−−→ P{m←n} Out a〈n〉.P a〈n〉−−−→ P

Comml

P
a(n)−−−→ P ′ Q

a〈n〉−−−→ Q′

P |Q τ−→ P ′ |Q′

Parl
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Res
P

µ−→ P ′

(νn) P
µ−→ (νn) P ′

n /∈ n(µ)

Bang
!P |P µ−→ P ′

!P
µ−→ P ′

Open
P

a〈n〉−−−→ P ′

(νn)P
a(n)ν−−−→ P ′

n 6= a

Closel

P
a(n)−−−→ P ′ Q

a(n)ν−−−→ Q′

P |Q τ−→ (νn) (P ′ |Q′)
n /∈ fn(P)

Figure 4: Early labelled transition system
Nota: symmetrical versions of rules Comml, Parl and Closel have been omitted.

transmitted name is substituted as soon as possible, namely in rule Inp. We
refer to the literature for other labelled transition systems for π, in particular the
late semantics, where substitution is employed at the point where a τ action (a
synchronisation) is derived. This difference has consequences on the behavioural
properties of processes (see e.g. [SW01]).

1.2 Related calculi

CCS.
The Calculus of Communicating Systems is an important predecessor of the

π-calculus. It can be seen as a restriction of π in which only a dummy name
w is exchanged in communications, and w cannot be used in subject position.
Here is an example:

a〈w〉.b(w).(c〈w〉 | c′〈w〉) | a(w).b〈w〉
would be written in CCS:

a.b.(c | c) | a.b
In CCS, interaction is made of pure synchronisation on channels, with no trans-
mission of values (in the context of the polyadic π-calculus – see below – we could

4

say that CCS processes only exchange empty tuples of names). This makes CCS
less expressive than π; in particular, name extrusion is a distinguishing feature
of π w.r.t. CCS. As a consequence, only immutable connection patterns can be
modeled in CCS.
Reference: R. Milner, Communication and Concurrency, Prentice Hall.

Polyadicity.
In the polyadic π-calculus, communication involves the transmission of tuples

of names. Tuples are possibly empty, which corresponds to CCS-like synchro-
nisation.

P ::= 0 | P1 |P2 | !P | (νn) P | n〈m̃〉.P | n(m̃).P
The definition of the operational semantics of the polyadic π-calculus involves
some technicalities. Output actions have the general form (νm̃) a〈ñ〉 with
m̃ ⊆ ñ, the tuple of extruded names being possibly empty. It has to be stressed
that an overloaded notation is commonly used here: m̃ is treated as having a
set structure (instead of a tuple structure), which is also necessary when writing
the inclusion between sets m̃ ⊆ ñ above.

Because of possible arity conflicts between emissions and reception on a given
channel, the polyadic π-calculus is intrinsically typed.
Reference: [SW01]

Other operators. Some versions of the π-calculus include additional operators,
among which we can mention:

choice (+) A term of the form P +Q may evolve either as P or as Q, depending
on the interactions offered by the context. This operator is ‘inherited’ from
CCS, and is most commonly used with prefixed π-calculus processes (see
in particular works by Nestmann, Pierce – see also the paragraph about
asynchronous π below).

matching The operator of matching allows a process to compare names: a
term of the form [n = m]P evolves as P if n and m denote the same
name. Mismatching as well as an ‘if-then-else’ version of matching can
also be found in the literature.

recursive definitions Infinite behaviours can be introduced in the π-calculus by
using recursive definitions instead of the replication operator. These have
the form

A[x̃] def= P ,
where x̃ is a tuple of names, and P may contain occurrences of A (in-
stanciated with the corresponding parameters). Recursive definitions are
easier to manipulate when using π as a specification language; on the
other hand, they bring more technicalities in the calculus. At the level of
expressiveness, replication and recursive definitions are equivalent.

higher-order communications The Higher-Order π-calculus (HOπ) allows chan-
nels to carry process abstractions (which can be seen as non-located input

5

processes). It has been shown that HOπ can be faitfully encoded in the
π-calculus, thus suggesting that name mobility is enough (at least from a
theoretical point of view) to represent code mobility.

Asynchronous π.
The asynchronous π-calculus is an important subcalculus of π, both from

practical and theoretical points of view. This calculus is obtained by forbidding
continuations after outputs, that thus become asynchronous: an emission is of
the form a〈b〉, and is interpreted as dropping a message ‘in the soup’.

P ::= P1 |P2 | !P | (νn) P | n〈m〉 | n(m).P
We may remark the absence of the terminal 0 process, which is encodable (up
to any reasonable behavioural equivalence) as νn.n〈n〉.

Adopting asynchronous output can be justified from an implementation
point of view (indeed, programming language implementations based on π such
as PICT or JoCaml work with an asynchronous language). Moreover, asyn-
chronous contexts make several distinctions between various notions of bisimu-
lation collapse, and give rise to simple and useful proof techniques.

The problem of implementing the operator of choice (mentioned above) has
led to a series of work about the separation between full π and its asynchronous
version (see works by Palamidessi).
Reference: [SW01]

Localised π.
The localised π-calculus (which is closely related to the Join calculus) is

defined by imposing a commonly used discipline in the usage of names2: in a
term of the form

a(n).P ,
the name n can only be used in output in the continuation P , that is P can either
send something on channel n or transmit n on another channel, but cannot make
an input on n. In other words, n should not occur free in input position in P .

The ‘localised discipline’ can be ensured via a type system, but is such a
common idiom that it is worth studying a calculus where this discipline is wired
in the syntax.

In localised π, every subterm listening on some channel is local to the process
that created this channel. This kind of information can be relevant when writing
a distributed implementation of π, in order to find where messages sent on a
given channel should be routed to.

An interesting analogy is with object-oriented systems: intuitively, the dis-
cipline of localised π is suited for the representation of objects, in the sense that
communicating the name of an object lets an agent interact (by invoking some
methods) with it, but precludes the creation of a different object having the
same name (in this approach, the interface of an object would be represented
by a process listening on a corresponding channel).

2In particular, do not get misled by this terminology: localised π does not introduce an
explicit notion of locality to be manipulated at the level of syntax, but rather enforces some
kind of local usage of names.

6

Reference: [SW01]

The Join calculus.
The Join calculus serves as the basis of a programming language for mobile

and distributed systems called JoCaml. It uses a “local π” discipline for the use
of names (only output capability is transmitted), and is based on the notion
of join definition, which concentrates in one construct π’s operators for input,
restriction and replication. Communications are asynchronous in Join.

A typical join definition looks like
a(x) | b(y) | c(z) . P

and consists in the introduction of:

- names a, b and c;

- the (persistent) definition associating the pattern a(x) | b(y) | c(z) with process
P (in which x, y and z can only be used in output).

Join allows for the simultaneous introduction of several definitions, that use
the same input names according to different synchronisation patterns. This
programming idiom turns out to be very convenient to specify concurrent be-
haviours, and is somehow reminiscent of Petri Nets.

The join calculus has also been enriched with a notion of locality and of
movement of localities, to support distributed programming.
Reference: http://join.inria.fr

Applied π.
The mechanism of name passing turns out to bring considerable expressive

power. However, working in the pure π-calculus can quickly become tedious
when manipulating even simple datastructures or writing elementary (sequen-
tial) operations – like writing programs in λ with Church’s integers. The applied
π-calculus offers a framework to study enriched versions of π, where program-
ming languages primitives can be ‘plugged’ into the calculus. Complex proofs
about realistic systems have been conducted within applied π.
Reference: Work by Abadi Fournet and Gonthier.

Distributed π.
Although the π-calculus has enough expressiveness to describe mobile com-

putation, it does not have an explicit notion of locality, which can be needed
when reasoning about distributed forms of computation. The distributed π-
calculus (Dπ) is an extension of the π-calculus in which processes are located
at sites. More precisely, the ‘toplevel’ consists in a parallel composition of sites
where threads (given as π-calculus processes) are running. The language is also
enriched with a goto primitive to let code migrate between sites. Type systems
to address some properties of mobile and distributed computation have been
introduced for Dπ.
Reference: Work by Hennessy and Yoshida.

7

Mobile Ambients.
The calculi of Mobile Ambients really form a tribe, starting from Cardelli and

Gordon’s original calculus. They are nominal calculi (in the sense, roughly, that
terms are built out of names), like π, but the primitive notion of interaction is
movement of locations (as opposed to name passing). In Ambients, computation
consists in the reconfiguration of a spatial structure, which is given by a tree of
locations. A location is an Ambient: n[P] represents the process P running at
location n (or in Ambient n).

The core of Cardelli and Gordon’s calculus is Pure Mobile Ambients:
P ::= 0 | P1|P2 | !P | n[P] | inn.P | outn.P | openn.P

The first four constructs are used to describe a spatial configuration, while the
in, out and open capabilities are used to make a configuration evolve, accoding
to the following rules:

n[inm.P |Q] | m[R] −→ m[n[P |Q] |R]
m[n[outm.P |Q] |R] −→ n[P |Q] | m[R]

openn.P | n[Q] −→ P | Q

Movements are subjective in Ambients: in the rules for in and out, a process
inside an ambient takes the control over it to let it move. The presence of the
open capability is quite controversial, but pure movement capabilities do not
seem to be enough to ‘program’ in Ambients. Pure Mobile Ambients can be
enriched with a form of communication, which is local to an ambient.

Variations As it is, the calculus of Mobile Ambients is “very permissive”:
it has powerful primitives, that can be used in a very distributed and asyn-
chronous fashion. Variations on the calculus have attempted to provide a better
control on Ambients, in order to make their behaviour more predictable, and
programmable. These include most notably Safe Ambients (where cocapabilities
impose a form of synchronisation to trigger movements) and Boxed Ambients
(where the open capability is dropped in favour of more complex communication
patterns).
Reference: For Mobile Ambients: Cardelli and Gordon’s work – Safe Ambients: Levi

and Sangiorgi – Boxed Ambients: Bugliesi, Castagna, Crafa et al.

Fusions.
The π-calculus has two binders: reception (input), and restriction. While

an input-bound name is instanciated upon communication with the transmitted
value, a restricted name is never substituted. Combining output with restriction,
we get a construction which is quite similar to input: consider the synchronisa-
tion:

a(q).P | (νp) a〈p〉.Q −→ (νp) (P{q←p} |Q) .
In this transition, the participants can agree, using α-conversion, on a name n
before synchronisation, which illustrates the symmetry. We thus write:

a(n). P{q←n}︸ ︷︷ ︸
P1

| (νn) a〈n〉. Q{p←n}︸ ︷︷ ︸
Q1

−→ (νn) (P1 |Q1) .

This idea is central in the definition of the fusion calculus, where fusions denote
the identifications between names that result from interactions. Fusions have

8

notably been used to encode constraints in the π-calculus, and also to study
implementation patterns for π-calculus-based languages.
Reference: Works by Parrow, Victor, Gardner, Wischik – see
http://www.wischik.com/lu/research/fusions.html

See also πI (the π-calculus where only emission of fresh names is allowed, which

corresponds to internal mobility), the Chi calculus (Fu), Solos (Laneve, Victor).

Spi.
The Spi calculus has been introduced to specify and analyze cryptographic

protocols, by writing protocols as processes. It is an enrichment of the π-calculus
with some constructs to represent cryptographic primitives such as various forms
of encryption and decryption. The main difference between π and Spi is in the
shape of messages that are communicated: a value like 〈ñ〉k represents the
encryption of tuple ñ with name k (interpreted as key k). Creation of nounces
(which are ubiquitous in cryptographic protocols) is represented in Spi using
the restriction operator.

The theory of the π-calculus has been adapted to Spi, in order to express and
prove security properties using bisimulation-based equivalences or type systems.
Reference: Papers by Abadi and Gordon. See also Gordon’s Cryptic project.

Another related reference is the work on cryptographc protocols and multiset

rewriting (see Mitchell, Cervesato, . . .).

2 Encoding λ in π

We define encodings of the call-by-name and call-by-value λ-calculus in the
polyadic synchronous π-calculus. We only give here the definitions of the en-
codings as an illustration of how functions can be programmed in the π-calculus.
We do not enter the details of the correspondence results that validate these en-
codings (see [SW01]).

A λ-term M is translated into a process [[M]]p, where p is a name, that is
the encoding is parametric on some name that represents the channel where the
‘value’ corresponding to M will be made available.

The definition of the encodings is given on Fig. 5. The names introduced
in every clause (restricted or bound names) are supposed to be fresh. The
encodings use two kinds of names, that are ranged over using different letters:
p, q, r, r′ denote a location where the result of an evaluation is made available,
while x, y are names that are used to access values.

In the π-calculus, terms cannot be passed in a communication. Therefore,
the translations of λ in π make use of an indirection, and an evaluation returns
a pointer to its result. This discipline suggests an analogy with continuation
passing style (CPS) transformations in the λ-calculus. [SW01] gives a systematic
description of π-calculus encodings of λ via a compilation in three steps: first
a CPS translation, then a translation from the CPS version of a term into the
Higher-Order π-calculus, and finally a compilation from HOπ into π.

9

abstraction
[[λx.M]]p

def= (νv) p〈v〉.!v(x, q).[[M]]q
variable

[[x]]p
def= x〈p〉

application: call-by-name
[[M N]]p

def= (νq)
(
[[M]]q | q(v).(νx) v〈x, p〉.!x(r).[[N]]r

)
application: call-by-value
[[M N]]p

def= (νq)
(
[[M]]q | q(v).(νr)

(
[[N]]r | r(w).(νx) v〈x, p〉.!x(r′).r′〈w〉

))

Figure 5: π-calculus encodings of the λ-calculus

Theorem [Adequacy]. Given a λ-term M , M converges to a value (for a
strategy, be it call-by-name or call-by-value) iff for any p, [[M]]p −→∗ ↓η for
some η.

The correspondence between λ-terms and their encodings can be made more
precise than the statement above, in the sense the encodings validate the λ-
theory. These results are based on notions of typed behavioural equivalence,
which we will not discuss here.

Call-by-name is the strategy that is most naturally rendered in the π-calculus.
An accurate study of the equality on λ-terms induced by the π-calculus encod-
ing of call-by-name is made in [SW01]. It is shown that this relation coincides
with the equality of the corresponding Lévy-Longo trees. Moreover, this re-
lation does not correspond exactly to applicative bisimilarity, the reason being
intuitively that the π-calculus is not confluent. Full abstraction can be obtained
by enriching the λ-calculus with certain non-confluent operators.

Encodings of the typed λ-calculus into the I/O π-calculus have also been
studied. The translation of arrow types is rendered quite naturally in terms of
I/O types. These are also needed to prove certain behavioural properties of pro-
cesses resulting from the translation of a function, to enforce the programming
discipline associated to the encoding.

3 Typed π-calculus

We present here type systems for the polyadic π-calculus. The difference with
types for monadic π is minor. Moreover, historically, types for the π-calculus
have been introduced in a polyadic context (the polyadic π-calculus is hardly
manipulated in an untyped context).

Types are a distinguishing feature of the π-calculus w.r.t. CCS. They are

10

used to check statically some properties of processes, and also to help in estab-
lishing behavioural properties of processes (the latter being out of the scope of
these notes).

3.1 Simple types

Simple types are ranged over using T,U and are defined by the following gram-
mar:

T ::= #T̃ ,
where T̃ is a notation for (possibly empty) tuples of types. Note that in this
presentation, the only base type is given by taking an empty tuple in T̃ (and
corresponds to the type of CCS-like channels). Basic datatypes like booleans
or integers can smoothly be integrated in this system, as well as programming
languages constructions like variant types and records (see [SW01]). The syntax
of terms is modified by associating explicit type annotations with the creation of
new names: we shall write (νn : T) P . Note that input-bound names (or name
tuples) do not require such annotations, since the type of the expected param-
eters can be deduced from the type of the subject of the input. Technically,
working in a typed language also requires the redefinition of the operational
semantics, which amounts to make some simple changes, that we shall not de-
scribe here. We adopt in what follows a reduction-based presentation of the
operational semantics.

Typing contexts, ranged over with Γ, are lists of hypotheses of the form n : T ,
where n is a name and T is a type. For n a name and T a type, Γ, n : T stands
for the context obtained by adding hypothesis n : T to Γ, hiding a possible
previous hypothesis on n in Γ. We write Γ(n) for the type associated to name
n in Γ. If ñ = (n1, . . . , nk), where the nis are pairwise distinct names, and
T̃ = (T1, . . . , Tk), we write Γ, ñ : T̃ for Γ, n1 : T1, . . . , nk : Tk.

The typing rules for simple types are given in Fig. 6. They define two type
judgments, one of the form Γ ` ñ : T̃ , to associate type tuples to tuples of
names, and one of the form Γ ` P , to assert that a process is well-typed.
Properties of the type system.
Lemma [Strengthening and Weakening]. For any P , n, T and Γ,

- if Γ, n : T ` P and n does not occur free in P , then Γ ` P ;

- if Γ ` P , then Γ, n : T ` P if Γ does not contain a typing hypothesis on n.

Lemma [Substitution]. For any P , n, m, T and Γ, if Γ ` P , Γ ` n : S, and
Γ ` m : S, then Γ ` P{n←m}.

We now formally state the fact that simple types are aimed at controlling
the arity of channels.
Theorem [Correctness of arity checking]. For any P and Γ, if we can write
P ≡ (νñ)

(
a〈m1, . . . ,mk〉.P1 | a(x1, . . . , xl).P2 | P3

)
, then k = l.

Correctness of the type system follows from the following key result:
Theorem [Subject reduction]. For any P, P ′ and Γ, Γ ` P and P −→ P ′

implies Γ ` P ′.

11

Γ(n) = T

Γ ` n : T

Γ ` ni : Ti

Γ ` (n1, . . . , nk) : 〈T1, . . . , Tk〉

Γ ` P Γ ` n : #T̃ Γ ` m̃ : T̃

Γ ` n〈m̃〉.P
Γ, x̃ : T̃ ` P Γ ` n : #T̃

Γ ` n(x̃).P

Γ, x : T ` P

Γ ` (νx : T) P

Γ ` P Γ ` Q

Γ ` P |Q
Γ ` P

Γ ` !P
Γ ` 0

Figure 6: Simple types for the polyadic π-calculus

3.2 Types and capabilities: I/O types and subtyping

In the system of Input-Output types (I/O types), a channel type can be decom-
posed into capabilities, for input and output. The grammar for types becomes:

T ::= iT̃ | oT̃ | #T̃ .
Capabilities naturally give rise to a notion of subtyping. The subtyping relation,
written T ≤ U , is defined on Fig. 7, that also gives the typing rules that are
different from those of Fig. 6, as well as the additional subsumption rule.

T ≤ T
T ≤ T ′ T ′ ≤ T ′′

T ≤ T ′′
T1 ≤ U1 · · · Tk ≤ Uk

(T1, . . . , Tk) ≤ (U1, . . . , Uk)

#T ≤ oT

#T ≤ iT

T ≤ U

iT ≤ iU
T ≤ U

oU ≤ oT

T ≤ U U ≤ T

#T ≤ #U

Γ ` n : T T ≤ U

Γ ` n : U

Γ ` P Γ ` n : oT̃ Γ ` m̃ : T̃

Γ ` n〈m̃〉.P
Γ, x̃ : T̃ ` P Γ ` n : iT̃

Γ ` n(x̃).P

Figure 7: Input-Output types: subtyping and modified typing rules

The π-calculus with Input-Output types enjoys basically the same properties
as the simply typed system.

12

Other type systems. Several other kinds of type systems have been proposed
to analyse π-calculus terms. Linear types are used to isolate some channels that
are used at most once (in input and in output); this kind of information vali-
dates some optimisations in implementations of π (like the PICT programming
language).

Similarly, receptive channels are also frequently used in π-calculus program-
ming. They intuitively correspond to the location of resources, that are always
available at toplevel.

Polymorphism is also present in the π-calculus, like in the classical following
process:

a(v, r).v〈r〉 .
The polymorphic π-calculus is also integrated in PICT, together with a type
inference procedure.

Other more complex type systems involving session types or various forms
of graph types have not been integrated in an implementation of π. Work has
also been done on types to insure termination of a subclass of processes. The
Behave project addresses the question of model checking the π-calculus, and
proposes to use CCS terms to type π-calculus processes.

4 Reasoning about the behaviour of processes

We sketch here (a small part of) the theory of contextual equivalence in the
π-calculus. Some of the notions presented below correspond to a direct adap-
tation of the corresponding concepts in CCS, the results and proof techniques
being sometimes more complex due to the greater expressive power of π. Useful
references for this Section include Milner’s book on CCS (Communication and
Concurrency, Prentice Hall) and [SW01].

4.1 Reduction-based contextual equivalence

We first introduce a behavioural equivalence based on observability predicates
that we call barbs.
Definition [Barb]. Given a name n and a process P , P exhibits barb n
(resp. n, written P ↓n (resp. P ↓n) iff P ≡ (νm̃) (n(x).P1 | P2) (resp. P ≡
(νm̃) (n〈v〉.P1 | P2)) with n /∈ m̃.

Definition [Barbed bisimilarity, barbed equivalence]. A symmetric re-
lation R between processes is a strong barbed bisimulation iff for any P,Q,
whenever P RQ:

- P ↓η implies Q ↓η (η being of the form n or n);

- if P −→ P ′ then there exists Q′ such that Q −→ Q′ and P ′RQ′.

Strong barbed bisimilarity, written ∼̇, is the greatest strong barbed bisimula-
tion.

13

Two processes P and Q are strong barbed equivalent, written P ' Q, iff
for any R, P |R ∼̇ Q |R.

The pattern we have followed to introduce barbed bisimilarity belongs to
a very general approach: it is only based on a notion of reduction (internal
computation) and a notion of observable (here, barbs). Barbed equivalence has
then been obtained from barbed bisimilarity by closing w.r.t. a simple form
of contexts. One can also define barbed congruence, by taking all contexts into
account.

4.2 Bisimulation and bisimilarity

Definition [(Strong) Bisimulation]. Given a labelled transition system

written
µ−→, a symmetric relation R between processes is a bisimulation iff for

any P,Q, P ′ and µ, whenever P RQ and P
µ−→ P ′, there exists Q′ such that

Q
µ−→ Q′ and P ′RQ′.

Definition [Bisimilarity]. Bisimilarity is the greatest bisimulation.

In the π-calculus, the labelled transition system of Fig. 4 gives rise to the
notion of strong early bisimilarity (in short strong bisimilarity, or even simply
bisimilarity) written ∼.

A context (ranged over with C) is a π-calculus term containing an occurrence
of a special term, [], called the hole. If C is a context and P is a process, C[P]
denotes the process obtained by replacing the hole in C with P .

A relation R is a congruence if it is preserved by all contexts, i.e. if for any
P,Q, P RQ implies that for any C, C[P]RC[Q]. A non-input congruence is a
relation that is preserved by all contexts in which the hole does not occur under
an input construct.
Theorem. In the π-calculus, strong bisimilarity is a non-input congruence.

∼ is not a ‘full’ congruence in the π-calculus. The classical counterex-
ample is written in the π-calculus enriched with the operator of choice: take
P

def= a(x).b〈v〉 + b〈v〉.a(x) and Q
def= a(x) | b〈v〉, and consider the context

C
def= c(a).[].

Theorem [Characterisation of ']. For any P and Q, P ∼ Q iff P ' Q.

This result shows that ∼ can be seen as a proof technique for '. Historically,
labelled transition systems for the π-calculus have been proposed before the
notion of barbed equivalence was invented.

Weak case. The notion of weak (early) bisimulation is obtained by adapting
these definitions, taking the point of view that internal computations (τ steps)
are unobservable.
Definition [Weak transitions, weak bisimulation]. Take

µ−→ to be the
labelled transition system defined in Fig. 4. We let =⇒ be the reflexive transitive

closure of
τ−→, and define

µ̂
=⇒ def= =⇒ µ−→=⇒ if µ 6= τ , and

τ̂=⇒ def= =⇒.

14

A symmetric relation R between processes is a weak bisimulation iff for

any P,Q, P ′ and µ, whenever P RQ and P
µ−→ P ′, there exists Q′ such that

Q
µ̂

=⇒ Q′ and P ′RQ′.

Weak bisimilarity, written ≈, is the greatest weak bisimulation. Quite a
few other different notions of equivalences and preorders have been introduced
to reason about π-calculus processes (late and open bisimulation, expansion,
coupled bisimulation, . . .). There also exist weak versions of the barbed equiv-
alences described above.

4.3 Proof techniques

Bisimulation is the most commonly used technique to establish bisimilarity laws.
This method can be further developed through the use of up-to proof techniques,
that can be described using the following notion:
Definition [Up-to bisimulation]. We consider a function F from relations

(between processes) to relations and a labelled transition system
µ−→. A relation

R is a bisimulation up to F iff for any P,Q, P ′ and µ, whenever P RQ and

P
µ−→ P ′, there exists Q′ such that Q

µ−→ Q′ and P ′ F(R) Q′.

Of course, not any function F can be used. A function F on relations induces
a sound proof technique if (R is a bisimulation up to F) imples (R ⊆∼).

Examples of correct up-to proof techniques for ∼ in the π-calculus are:

- up to bisimilarity: F(R) def= ∼ R ∼ (we use here relation composition);

- up to parallel composition: F(R) def= {(P |R,Q|R). P RQ};

- up to restriction: F(R) def= {
(
(νn) P, (νn) Q

)
. P RQ};

- up to injective substitution:
F(R) def= {(Pσ,Qσ). P RQ and σ an injective substitution} .

In the weak case, it should be stressed that weak bisimulation up to strong
bisimilarity is sound, but weak bisimulation up to weak bisimilarity is not.

5 Sources

The references made along the text are rather rough. However, most of the
works should be easy to find on the WWW. Here is a list of valuable starting
points to look for information on the subjects mentioned above.
Books. There exist two books on the π-calculus, both published by Cambridge
University Press. The one by Milner (Communicating and Mobile Systems: the
π-calculus) is aimed at a rather broad audience, and gives an introduction to
the subject. Sangiorgi and Walker’s book (The π-calculus: a theory of mobile
processes) is a comprehensive exposition of the theory of π, sometimes going into

15

rather technical considerations. Milner’s book on CCS (Communication and
Concurrency, Prentice Hall) is also a useful reference, especially on bisimulation.
Survey papers.

J. Parrow’s chapter on the π-calculus in the Handbook of Process Algebra
(Elsevier, 2001) gives a good overview on the theory of π. S. Gay’s survey on
type systems for the π-calculus is also a good starting point on this particular
topic (and has been helpful in preparing these notes).
Web pages and related sources.

Some web pages collect links to researchers and projects in the field. The
most relevant are:

- mobility http://lamp.epfl.ch/mobility

- ambients http://xdguan.freezope.org/wiki/AmbientCalculiOnline

There are also mailing lists:

- moca (mobile calculi) http://www-sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/moca.html

- concurrency is also relevant http://www.cwi.nl/ bertl/concurrency/concurrency.html

Reference

[SW01] D. Sangiorgi and D. Walker, The π-calculus, a theory of mobile pro-
cesses, Cambridge University Press, 2001.

16

