The π-calculus, syntax and semantics

「Let us make it a bit more formal

- we have written reductions (\longrightarrow), leading from one process to another one

「Let us make it a bit more formal

- we have written reductions (\longrightarrow), leading from one process to another one
- what is a process (a state of the system)?

「Let us make it a bit more formal

- we have written reductions (\longrightarrow), leading from one process to another one
- what is a process (a state of the system)?
a term? not exactly:
$\triangleright \quad P \mid(Q \mid R)$ " $=$ " $(Q \mid P) \mid R$
put subprocesses next to eachother so that they can interact

「Let us make it a bit more formal

- we have written reductions (\longrightarrow), leading from one process to another one
- what is a process (a state of the system)?
a term? not exactly:
$\triangleright \quad P \mid(Q \mid R)$ " $=$ " $(Q \mid P) \mid R$
put subprocesses next to eachother so that they can interact
$\triangleright P \mid \mathbf{0} "=" P$
erase 0 produced along transitions

「Let us make it a bit more formal

- we have written reductions (\longrightarrow), leading from one process to another one
- what is a process (a state of the system)? a term? not exactly:
$\triangleright \quad P \mid(Q \mid R)$ " $=$ " $(Q \mid P) \mid R$
put subprocesses next to eachother so that they can interact
$\triangleright \quad P \mid \mathbf{0} "=" P$
erase 0 produced along transitions
$\ldots "=" \rightarrow$, structural congruence

「Structural congruence
\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid

$$
P|\mathbf{0} \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R
$$

「Structural congruence
\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid $P|\mathbf{0} \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R$
restriction

$$
(\boldsymbol{\nu} n) 0 \equiv 0 \quad(\boldsymbol{\nu} n)(\boldsymbol{\nu} m) P \equiv(\boldsymbol{\nu} m)(\boldsymbol{\nu} n) P
$$

「Structural congruence
\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid $P|\mathbf{0} \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R$
restriction

$$
\begin{gathered}
(\boldsymbol{\nu} n) \mathbf{0} \equiv \mathbf{0} \quad(\boldsymbol{\nu} n)(\boldsymbol{\nu} m) P \equiv(\boldsymbol{\nu} m)(\boldsymbol{\nu} n) P \\
(\nu n)(P \mid Q) \equiv P \mid(\boldsymbol{\nu} n) Q \text { if } n \notin \operatorname{fn}(P)
\end{gathered}
$$

「Structural congruence
\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid $P|\mathbf{0} \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R$
restriction

$$
\begin{aligned}
&(\boldsymbol{\nu} n) 0 \equiv 0 \quad(\boldsymbol{\nu} n)(\boldsymbol{\nu} m) P \equiv(\boldsymbol{\nu} m)(\boldsymbol{\nu} n) P \\
&(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q \text { if } n \notin \mathrm{fn}(P) \\
& \text { (restrictions "float around") }
\end{aligned}
$$

「Structural congruence
\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid $P|0 \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R$
restriction

$$
\begin{aligned}
&(\nu n) 0 \equiv 0 \quad(\nu n)(\nu m) P \equiv(\boldsymbol{\nu} m)(\boldsymbol{\nu} n) P \\
&(\nu n)(P \mid Q) \equiv P \mid(\nu n) Q \text { if } n \notin \mathrm{fn}(P) \\
& \text { (restrictions "float around") }
\end{aligned}
$$

replication

$$
!P \equiv!P \mid P
$$

「Structural congruence

\equiv is the least congruence satisfying the following axioms:
parallel composition: commutative monoid

$$
P|0 \equiv P \quad P| Q \equiv Q|P \quad P|(Q \mid R) \equiv(P \mid Q) \mid R
$$

restriction

$$
\begin{array}{r}
(\boldsymbol{\nu} n) \mathbf{0} \equiv \mathbf{0} \quad(\boldsymbol{\nu} n)(\boldsymbol{\nu} m) P \equiv(\boldsymbol{\nu} m)(\boldsymbol{\nu} n) P \\
(\boldsymbol{\nu} n)(P \mid Q) \equiv P \mid(\boldsymbol{\nu} n) Q \text { if } n \notin \mathrm{fn}(P) \\
\text { (restrictions "float around") }
\end{array}
$$

replication

$$
!P \equiv!P \mid P
$$

Remarks: $\quad(\boldsymbol{\nu} x) P \equiv P$ if $x \notin \mathrm{fn}(P)$

$$
P \equiv(\boldsymbol{\nu} \tilde{x})\left(M_{1}|\ldots| M_{k}\left|!R_{1}\right| \ldots \mid!R_{n}\right)
$$

「Evolution of states: reduction
let \longrightarrow be the smallest relation satisfying the following axioms:

$$
\bar{n}\langle a\rangle . P|n(b) \cdot Q \longrightarrow P| Q_{\{b \leftarrow a\}}
$$

「Evolution of states: reduction
let \longrightarrow be the smallest relation satisfying the following axioms:

$$
\begin{gathered}
\bar{n}\langle a\rangle . P|n(b) \cdot Q \longrightarrow P| Q_{\{b \leftarrow a\}} \\
\frac{P \longrightarrow P^{\prime} \quad P \equiv Q \quad P^{\prime} \equiv Q^{\prime}}{Q \longrightarrow Q^{\prime}}
\end{gathered}
$$

「Evolution of states: reduction

let \longrightarrow be the smallest relation satisfying the following axioms:

$$
\begin{gathered}
\bar{n}\langle a\rangle . P|n(b) \cdot Q \longrightarrow P| Q_{\{b \leftarrow a\}} \\
P \longrightarrow P^{\prime} P \equiv Q \quad P^{\prime} \equiv Q^{\prime} \\
Q \longrightarrow Q^{\prime} \\
\frac{P \longrightarrow P^{\prime}}{(\boldsymbol{\nu} n) P \longrightarrow(\boldsymbol{\nu} n) P^{\prime}} \quad \frac{P \longrightarrow P^{\prime}}{P\left|Q \longrightarrow P^{\prime}\right| Q}
\end{gathered}
$$

\rightarrow reduction based presentation of the operational semantics

「Derivations: an example

Notation: $\quad \bar{x}(y)=(\nu y) \bar{x}\langle y\rangle .0$
[Derivations: an example
Notation: $\quad \bar{x}(y)=(\nu y) \bar{x}\langle y\rangle .0$

$$
\begin{array}{rll}
& x(z) \cdot \bar{w}\langle z\rangle \mid!\bar{x}(y) & \\
\equiv & x(z) \cdot \bar{w}\langle z\rangle|\bar{x}(y)|!\bar{x}(y) & \text { unfold ! } \\
\equiv & (\boldsymbol{\nu} y)(x(z) \cdot \bar{w} z \mid \bar{x}\langle y\rangle) \mid!\bar{x}(y) & \text { scope } \nu \\
\longrightarrow & (\boldsymbol{\nu} y)(\bar{w}\langle y\rangle \mid 0) \mid!\bar{x}(y) & \text { communication + congr. } \\
\equiv \bar{w}(y) \mid!\bar{x}(y) & \text { GC }
\end{array}
$$

「Derivations: an example

Notation: $\quad \bar{x}(y)=(\nu y) \bar{x}\langle y\rangle .0$

$$
\begin{array}{rll}
& x(z) \cdot \bar{w}\langle z\rangle \mid!\bar{x}(y) & \\
\equiv & x(z) \cdot \bar{w}\langle z\rangle|\bar{x}(y)|!\bar{x}(y) & \text { unfold ! } \\
\equiv & (\boldsymbol{\nu} y)(x(z) \cdot \bar{w} z \mid \bar{x}\langle y\rangle) \mid!\bar{x}(y) & \text { scope } \nu \\
\longrightarrow & (\nu y)(\bar{w}\langle y\rangle \mid 0) \mid!\bar{x}(y) & \text { communication + congr. } \\
\equiv & \bar{w}(y) \mid!\bar{x}(y) & \\
\text { hence } & x(z) \cdot \bar{w}\langle z\rangle \mid!\bar{x}(y) \longrightarrow & \bar{w}(y) \mid!\bar{x}(y)
\end{array}
$$

G. Berry, G. Boudol: "The chemical abstract machine", POPL'90

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu} c) \bar{c}\langle a\rangle . P \equiv$

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu c)} \bar{c}\langle a\rangle . P \equiv 0$?

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu c} \boldsymbol{c} \bar{c}\langle a\rangle . P \equiv 0$?
\equiv laws talk about state, as opposed to behavioural laws

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu c}) \bar{c}\langle a\rangle . P \equiv 0$?
\equiv laws talk about state, as opposed to behavioural laws
- what about other laws then?
connections with the issue of decidability of \equiv

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu c} \boldsymbol{c} \bar{c}\langle a\rangle . P \equiv 0$?

三 laws talk about state, as opposed to behavioural laws

- what about other laws then?
connections with the issue of decidability of \equiv

$$
!(P \mid Q) \equiv!P \mid!Q \quad!!P \equiv!P \quad!0 \equiv 0
$$

「What is \equiv intented to say?

- why should'nt we include ($\boldsymbol{\nu c}) \bar{c}\langle a\rangle . P \equiv 0$?
\equiv laws talk about state, as opposed to behavioural laws
- what about other laws then?
connections with the issue of decidability of \equiv

$$
\begin{aligned}
& !(P \mid Q) \equiv!P \mid!Q \quad!!P \equiv!P \quad!0 \equiv 0 \\
& (\boldsymbol{\nu} x) M \cdot P \equiv M \cdot(\boldsymbol{\nu} x) P \quad \text { if } x \notin \mathrm{fn}(M)
\end{aligned}
$$

cf. works by Engelfriet \& Gelsema

「Choice operator
the operator of choice is inherited from CCS
$P+Q$ behaves like P or Q

「Choice operator
the operator of choice is inherited from CCS
$P+Q$ behaves like P or Q

$$
\begin{array}{c|c}
\overline{\mathrm{pile}}\langle v\rangle+\overline{\mathrm{face}}\langle v\rangle|\operatorname{pile}(x) \cdot P| \operatorname{face}(x) \cdot Q \\
P \mid \text { face }(x) \cdot Q & \text { pile }(x) \cdot P \mid Q
\end{array}
$$

N.B.: + has greater priority than |

「Exercise: adding choice

What modifications should be made to the reduction-based presentation of the operational semantics of the π-calculus to include choice in the language?

「"Example": alternating bit protocol

$$
\begin{aligned}
& \text { Send } \stackrel{\text { def }}{=} \text { !send }(b) \text {.acc. } \overline{\operatorname{trans}}\langle\neg b\rangle . \overline{\text { wait }}\langle\neg b\rangle \\
& \text { Wait } \stackrel{\text { def }}{=} \text { !wait }(b) \text {.(ackn }\left(b^{\prime}\right) \cdot \overline{\text { send }}\left\langle b^{\prime}\right\rangle \\
& + \text { Ioss. } \overline{\text { trans }}\langle b\rangle . \overline{\text { wait }}\langle b\rangle) \\
& \text { Receive } \stackrel{\text { def }}{=} \operatorname{lrec}(b) \cdot \operatorname{trans}\left(b^{\prime}\right) . \text { if } b_{1}=b_{1}^{\prime} \\
& \text { then } \overline{\operatorname{ackn}}\langle b\rangle \mid \overline{\mathrm{rec}}\langle b\rangle \\
& \text { else } \overline{\mathrm{deli}} .(\overline{\operatorname{ackn}}\langle\neg b\rangle \mid \overline{\mathrm{rec}}\langle\neg b\rangle) \\
& \text { Noise } \stackrel{\text { def }}{=} \text { !noise.(trans }(b) . \overline{\text { loss }} \cdot \overline{\text { noise }}+\operatorname{ackn}(b) \cdot \overline{\text { Ioss }} \cdot \overline{\text { noise }}) \\
& \text { System } \stackrel{\text { def }}{=} \text { (} \nu \text { trans, ackn, send, wait, rec, loss, noise, } b \text {) } \\
& \text { (Send | Wait | Receive | Noise | ! btrue | } \\
& \overline{\text { send }}\langle b\rangle|\overline{\text { rec }}\langle b\rangle| \overline{\text { noise }} \text {) } \\
& \text { Specif } \stackrel{\text { def }}{=}(\boldsymbol{\nu} c)(!c . \text { acc. } \overline{\text { deli }} . \bar{c} \mid \bar{c})
\end{aligned}
$$

「Choice and definitions

- the choice operator is useful for specification purposes
- recursive definitions can be used instead of replication: write

$$
\begin{gathered}
\qquad A[\tilde{x}]=P \\
\text { where } P \text { may contain subterms of the form } A[\tilde{y}]
\end{gathered}
$$

「Recursive definitions: exercises

- a specification (using mutually recursive definitions):

$$
\begin{aligned}
B_{0}[x, y, z] & \stackrel{\text { def }}{=} y(w) \cdot B_{1}[x, y, z, w]+x(u) \cdot B_{0}[x, u, z] \\
B_{1}[x, y, z, w] & \stackrel{\text { def }}{=} y(v) \cdot B_{2}[x, y, z, w, v]+\bar{z}\langle w\rangle \cdot B_{0}[x, y, z] \\
B_{2}[x, y, z, w, v] & \stackrel{\text { def }}{=} \bar{z}\langle w\rangle \cdot B_{1}[x, y, z, v]
\end{aligned}
$$

what's that?

「Recursive definitions: exercises

- a specification (using mutually recursive definitions):

$$
\begin{aligned}
B_{0}[x, y, z] & \stackrel{\text { def }}{=} y(w) \cdot B_{1}[x, y, z, w]+x(u) \cdot B_{0}[x, u, z] \\
B_{1}[x, y, z, w] & \stackrel{\text { def }}{=} y(v) \cdot B_{2}[x, y, z, w, v]+\bar{z}\langle w\rangle \cdot B_{0}[x, y, z] \\
B_{2}[x, y, z, w, v] & \stackrel{\text { def }}{=} \bar{z}\langle w\rangle \cdot B_{1}[x, y, z, v]
\end{aligned}
$$

what's that?

- how can we encode recursive definitions in a π-calculus with replication?

