
The π-calculus, syntax and semantics
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dLet us make it a bit more formal

• we have written reductions (−→), leading from one process
to another one

• what is a process (a state of the system)?
a term? not exactly:

. P | (Q | R) “=” (Q | P ) | R

put subprocesses next to eachother so that they can interact
. P | 0 “=” P

erase 0 produced along transitions

. . . “=” → ≡ , structural congruence
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dStructural congruence

≡ is the least congruence satisfying the following axioms:

parallel composition: commutative monoid
P | 0 ≡ P P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R
restriction

(νn) 0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

(νn) (P |Q) ≡ P | (νn)Q if n /∈ fn(P )
(restrictions “float around”)

replication
!P ≡ !P |P

Remarks: (νx)P ≡ P if x /∈ fn(P )
P ≡ (νx̃) (M1 | . . . |Mk | !R1 | . . . | !Rn)

3



dEvolution of states: reduction

let −→ be the smallest relation satisfying the following axioms:

n〈a〉.P | n(b).Q −→ P | Q{b←a}

4



dEvolution of states: reduction

let −→ be the smallest relation satisfying the following axioms:

n〈a〉.P | n(b).Q −→ P | Q{b←a}

P −→ P ′ P ≡ Q P ′ ≡ Q′

Q −→ Q′

4



dEvolution of states: reduction

let −→ be the smallest relation satisfying the following axioms:

n〈a〉.P | n(b).Q −→ P | Q{b←a}

P −→ P ′ P ≡ Q P ′ ≡ Q′

Q −→ Q′

P −→ P ′

(νn)P −→ (νn)P ′
P −→ P ′

P |Q −→ P ′ |Q

→ reduction based presentation of the operational semantics
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dDerivations: an example

Notation: x(y) = (νy)x〈y〉.0

x(z).w〈z〉 | !x(y)
≡ x(z).w〈z〉 | x(y) | !x(y) unfold !
≡ (νy) (x(z).wz | x〈y〉) | !x(y) scope ν
−→ (νy) (w〈y〉 | 0) | !x(y) communication + congr.
≡ w(y) | !x(y) GC

hence x(z).w〈z〉 | !x(y) −→ w(y) | !x(y)

G. Berry, G. Boudol: “The chemical abstract machine”, POPL’90
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dWhat is ≡ intented to say?

• why should’nt we include (νc) c〈a〉.P ≡ 0 ?

≡ laws talk about state, as opposed to behavioural laws

• what about other laws then?

connections with the issue of decidability of ≡

!(P |Q) ≡ !P | !Q !!P ≡ !P !0 ≡ 0

(νx)M.P ≡ M.(νx)P if x /∈ fn(M)

cf. works by Engelfriet & Gelsema
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dChoice operator

the operator of choice is inherited from CCS

P + Q behaves like P or Q
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dChoice operator

the operator of choice is inherited from CCS

P + Q behaves like P or Q

pile〈v〉+ face〈v〉 | pile(x).P | face(x).Q
↙ ↘

P | face(x).Q pile(x).P | Q

N.B.: + has greater priority than |
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dExercise: adding choice

What modifications should be made to the reduction-based pre-

sentation of the operational semantics of the π-calculus to in-

clude choice in the language?
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d“Example”: alternating bit protocol

Send
def
= !send(b).acc.trans〈¬b〉.wait〈¬b〉

Wait
def
= !wait(b).(ackn(b′).send〈b′〉

+loss.trans〈b〉.wait〈b〉)

Receive
def
= !rec(b).trans(b′).if b1 = b′1

then ackn〈b〉 | rec〈b〉
else deli.(ackn〈¬b〉 | rec〈¬b〉)

Noise
def
= !noise.( trans(b).loss.noise + ackn(b).loss.noise )

System
def
= (ν trans, ackn, send,wait, rec, loss,noise, b)

(Send | Wait | Receive | Noise | !b true |
| send〈b〉 | rec〈b〉 | noise )

Specif
def
= (νc) (!c.acc.deli.c | c)

9



dChoice and definitions

• the choice operator is useful for specification purposes

• recursive definitions can be used instead of replication: write

A[x̃] = P ,

where P may contain subterms of the form A[ỹ]
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dRecursive definitions: exercises

• a specification (using mutually recursive definitions):

B0[x, y, z]
def
= y(w).B1[x, y, z, w] + x(u).B0[x, u, z]

B1[x, y, z, w]
def
= y(v).B2[x, y, z, w, v] + z〈w〉.B0[x, y, z]

B2[x, y, z, w, v]
def
= z〈w〉.B1[x, y, z, v]

what’s that?
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• a specification (using mutually recursive definitions):

B0[x, y, z]
def
= y(w).B1[x, y, z, w] + x(u).B0[x, u, z]

B1[x, y, z, w]
def
= y(v).B2[x, y, z, w, v] + z〈w〉.B0[x, y, z]

B2[x, y, z, w, v]
def
= z〈w〉.B1[x, y, z, v]

what’s that?

• how can we encode recursive definitions in a π-calculus

with replication?
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