The m-calculus, syntax and semantics
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|Structural congruence

= is the least congruence satisfying the following axioms:

parallel composition: commutative monoid
Plo=P P|Q=Q|P P|(QIR) = (P|Q)I|R

restriction
(vn)0 =0 (vn)(vm) P = (vm)(vn) P
(vn) (P|Q) = P|(vn)Q if n¢ fn(P)
(restrictions “float around’)

replication
'\P =1P|P
Remarks: (vx) P = P if x ¢ fn(P)
P = (wz)(M1|...|Mp|'R1|...|'Rn)
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|Evolution of states: reduction

let — be the smallest relation satisfying the following axioms:

P — P P=@Q P =q
Q — Q

P — P P — P
(vn) P — (vn) P’ PlQ — PQ

— reduction based presentation of the operational semantics
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|Derivations: an example

Notation: Z(y) = (vy)z{y).0
z(z) w(z) | 'z(y)
= x(z)w(z) | z(y) | 'z(y) unfold !
= (vy) (z(2)wz | Z(y)) | 'z(y) scope v
— (vy) (w(y) | 0) | 'Z(y) communication 4+ congr.
= w(y) | '7(y) GC

hence z(2)w(z) | Zz(y) — w(y) | 'Z2(y)

G. Berry, G. Boudol: “The chemical abstract machine”, POPL’'90
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What is = intented to say?

why should’'nt we include (vc)¢{a).P =0 7
= laws talk about state, as opposed to behavioural laws

what about other laws then?
connections with the issue of decidability of =

(PIQ) =P |1Q P =IP 10=0
(ve) M.P = M.(vx) P ifx ¢ fn(M)

cf. works by Engelfriet & Gelsema
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| Choice operator

the operator of choice is inherited from CCS
P + @ behaves like P or @

pile(v) + face(v) | pile(z).P | face(z).Q
/ N\
P | face(x).Q pile(x).P | Q

N.B.: 4+ has greater priority than |



| Exercise: adding choice

What modifications should be made to the reduction-based pre-
sentation of the operational semantics of the w-calculus to in-
clude choice in the language?



| “Example”:

alternating bit protocol

Send
Wait

Receive

Noise

System

Specif

Isend(b).acc.trans(—b).wait(—b)
lwait(b).(ackn(d').send(d’)
+ loss.trans(b).wait(b))
lrec(b).trans(b').if b1 = b}
then ackn(b) | rec(b)
else deli.(ackn{=b) | rec{—b))

Inoise.( trans(b).loss.noise + ackn(b).loss.noise )

(v trans, ackn, send, wait, rec, loss, noise, b)
(Send | Wait | Receive | Noise | btrue |
| send(b) | rec(b) | noise)

(vc) (‘c.acc.delic | €)



| Choice and definitions

the choice operator is useful for specification purposes

recursive definitions can be used instead of replication: write
Alz] = P,
where P may contain subterms of the form Aly]
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|Recursive definitions: exercises

a specification (using mutually recursive definitions):

Bolz,y, 2]
B]. [x7 y? z? w:

B2[x7 y? Z? w) U:
what's that?

def
def

def

y(w).Bilx,y, z,w] + x(u).Bglz,u, z]

y(v).Balz,y, z,w,v] + Z{w).Bglx,y, 2]

zZ{w).B1|[x,y, z, V]
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|Recursive definitions: exercises

a specification (using mutually recursive definitions):

Bolz,y, 2]
B]. [x7 y? z? w:

B2[x7 y? Z? w) U:
what's that?

déf y(w).Bl[Qj,’y,Z,’w] + ZC(’LL).BO[CE,’LL,Z]
def y(v).Balz,y, 2z, w,v] + Z(w).Bolz,y, 2]

L 2(w).Bilz,y, 2]

how can we encode recursive definitions in a w-calculus

with replication?

11



