

Principe

on veut, étant donné un programme implicitement typé, être capable de dire s'il est typable...et, en général, en donner le type ...le ou un type, suivant les cas.

Remarque: des langages comme Pascal, C ou Java demandent que les arguments et le résultat des fonctions soient explicitement typés

on s'intéresse au typage statique (avant l'exécution du programme)

Premier exemple

```
let rec f x = fun y ->
    if x then (string_of_int (9*y)) else f (y>11) (y-3)
f : bool->int->string
    ingrédients:
```

- on part des valeurs constantes
- on manipule des contraintes entre types

Inférence – esquisse

étapes de la méthode:

- partir du programme (un terme), et le parcourir en écrivant des contraintes de typage qui doivent être satisfaites suivant les différentes constructions du langage
 - ► constantes (3, +, >, ...)
 - constructions du langage if then else
 - fonctions: définition, application
- "raisonner" sur les contraintes
 - propager l'information
 - arrêter en cas de conflit

```
\left( \texttt{p.ex. int} = \texttt{int} \to \texttt{int, ou} \quad \text{`a} \to \texttt{bool} = \texttt{int, ...} \right)
```


Récolter l'information

- on écrit des contraintes (égalités entre types) qui doivent être satisfaites pour que l'expression soit typable
- exemple:

let f g x = if
$$(x > 0)$$
 then $(x > 0)$ then $(x >$

 \triangleright A_i : types pour toutes les sous-expressions

(il en manque ci-dessus)

contraintes:
$$A_3 = \text{int}$$
, $A_x = \text{int}$,
$$A_1 = \text{bool}$$
, $A_0 = A_3 = A_2$, $A_g = A_x \rightarrow A_2$, $A_0 = \text{int}$, ...

et le type de f?
$$A_1 = \text{fun} \quad g \rightarrow \text{fun} \quad x \rightarrow A_2$$

$$A_4 = A_x \rightarrow A_0$$
, $A_f = A_g \rightarrow A_4$

Engendrer les contraintes

- on associe une 'inconnue de type' (variable de type) à chaque sous-expression (ou sous-arbre)
- contraintes = équations entre types

```
\begin{array}{llll} \texttt{m} = \texttt{e1+e2} & & & & & & & & \\ \texttt{m} = \texttt{if} \ \texttt{e1} \ \texttt{then} \ \texttt{e2} \ \texttt{else} \ \texttt{e3} & & & & & & \\ \texttt{m} = \texttt{e1} \ \texttt{e2} & & & & & & & \\ \texttt{m} = \texttt{e1} \ \texttt{e2} & & & & & & \\ \texttt{m} = \texttt{fun} \ \texttt{x} \ \texttt{->} \ \texttt{e} & & & & & & \\ \texttt{T}_{\texttt{m}} = T_{\texttt{m}} \rightarrow T_{\texttt{m}} & & & & \\ \texttt{T}_{\texttt{m}} = T_{\texttt{x}} \rightarrow T_{\texttt{e}} & & & \\ \end{array}
```

ainsi, pour fun x -> e, on engendre T_x , et (en principe) à chaque occurrence de x dans e, on engendre T_i et on écrit $T_i = T_x$

autant associer directement T_x à toutes les occurrences

parcours récursif de l'arbre en appliquant ces règles

Engendrer les contraintes – exemples

▶ exemple: let f = fun g → fun x → (g (x*2))-3 $A_f = A_g \rightarrow A_0, \ A_0 = A_x \rightarrow A_1, \ A_1 = \text{int}, \ A_2 = \text{int}, \ A_g = A_3 \rightarrow A_2, \ A_3 = \text{int}, \ A_x = \text{int}$ $T_f = T_x \rightarrow T_u \qquad T_v = T_f \rightarrow T_u \qquad T_0 = T_x \rightarrow T_v$ (ce qui se résoud en $T_0 = T_x \rightarrow (T_x \rightarrow T_u) \rightarrow T_u$)

Variables et environnements

- évaluateur du premier TP pour évaluer let x = e1 in e2
 - ▶ évaluer e1 ~> v1
 - évaluer e2, à chaque fois qu'on tombe sur x, renvoyer v1

environnement: on associe aux variables (x) des valeurs (v1)

- ▶ pour *typer* fun x → e2
 - créer une nouvelle variable de type T_x
 - à chaque fois qu'on tombe sur x dans e2, renvoyer comme type T_x

environnement: on associe aux variables (x) des types (T_x)

à chaque fois, un environnement pour savoir gérer les variables libres de l'expression que l'on examine

Le système de types

 la manière dont les contraintes sont engendrées découle de la définition du système de types, qui à son tour est décrit par des règles de typage

on définit la relation $\Gamma \vdash e: T$, où Γ est une liste d'*hypothèses de typage* de la forme $x: T_x$, "pour x variable libre de e"

Dérivation de typage

- ces règles permettent de construire des dérivations de typage (arbres dont la conclusion est un jugement de typage)
- typage du λ-calcul: la dernière ligne
 un λ-terme typable par ces règles est terminant
- exemple:

```
\emptyset \vdash \text{fun g -> fun x -> (g (x*2))-3}: (int->int)->int->int} 
 \overbrace{\text{D\'{E}MO}} au tableau
```

- une règle par construction du langage
 - → pour l'inférence, on raisonne par cas

Retour de l'unification

engendrer des contraintes en se fondant sur les règles de typage (qui définissent "être bien typé")

"telle expression est typable à condition que $T_x
ightarrow T_1 = T_2$ "

 les contraintes engendrées sont vues comme un problème d'unification

on résoud des équations symboliques sur les types de Caml

p.ex.
$$A_1 o (\operatorname{int} o A_2) \stackrel{?}{=} (A_3 o \operatorname{bool}) o A_1$$
 ou si on préfère

$$fleche(A_1, fleche(int, A_2)) \stackrel{?}{=} fleche(fleche(A_3, bool), A_1)$$

- ▶ si le processus d'unification aboutit à une substitution S, on renvoie le type $S(A_f)$ (on est en train de typer let f = ...)
- ► sinon, on proteste (Caml raconte où l'unification a planté)
- et voilà

Inférence de types – propriétés

programme m \to système d'équations $\mathcal{C}(\mathtt{m}) \xrightarrow{\text{unification}} \text{unificateur } \mathcal{S}$

Propriétés:

• correction: un unificateur S de C(m) permet d'inférer $\emptyset \vdash m : S(A_m)$

 A_m : variable de type associée à m

• complétude: si l'on peut dériver $\emptyset \vdash m : T$, alors $\mathcal{C}(m)$ admet une solution \mathcal{S} t.q. $\mathcal{S}(A_m) = T$

Déroulons un exemple

```
let h = \text{fun } f b \rightarrow \text{if } b \text{ then } 52 \text{ else } (f b) + 32
 on engendre le problème d'unification
A_b \stackrel{?}{=} A_f \rightarrow A_1. A_1 \stackrel{?}{=} A_b \rightarrow A_2. A_2 \stackrel{?}{=} \text{int}, A_b \stackrel{?}{=} \text{bool}, A_3 \stackrel{?}{=} \text{int}, A_f \stackrel{?}{=} A_b \rightarrow A_3
 \Rightarrow A_1 \stackrel{?}{=} A_b \rightarrow A_2, A_2 \stackrel{?}{=} \text{int. } A_b \stackrel{?}{=} \text{bool. } A_2 \stackrel{?}{=} \text{int. } A_b \stackrel{?}{=} A_b \rightarrow A_3, \{A_b \leftrightarrow A_b \rightarrow A_1\}
             \Rightarrow A_2 \stackrel{?}{=} int, A_b \stackrel{?}{=} bool, A_3 \stackrel{?}{=} int, A_f \stackrel{?}{=} A_b \rightarrow A_3
               \{A_b \longleftrightarrow A_f \to (A_b \to A_2), A_1 \longleftrightarrow A_b \to A_2\}
 \Rightarrow A_b \stackrel{?}{=} bool, A_3 \stackrel{?}{=} int, A_f \stackrel{?}{=} A_b \rightarrow A_3.
                 \{A_b \longleftrightarrow A_f \to (A_b \to int), A_1 \longleftrightarrow A_b \to int, A_2 \longleftrightarrow int\}
 \Rightarrow A_3 \stackrel{?}{=} int, A_f \stackrel{?}{=} bool \rightarrow A_3,
                 \{A_h \longleftrightarrow A_f \to (bool \to int), A_1 \longleftrightarrow bool \to int, A_2 \longleftrightarrow int, A_h \longleftrightarrow bool\}
 \Rightarrow A_{\epsilon} \stackrel{?}{=} bool \rightarrow int
               \{A_h \longleftrightarrow A_f \to (bool \to int), A_1 \longleftrightarrow bool \to int, A_2 \longleftrightarrow int, A_h \longleftrightarrow bool, A_3 \longleftrightarrow int\}
                 \{A_h \leftarrow (bool \rightarrow int) \rightarrow (bool \rightarrow int), A_1 \leftarrow bool \rightarrow int, A_2 \leftarrow int, A_h \leftarrow bool, A_1 \leftarrow bool, A_2 \leftarrow int, A_h \leftarrow bool, A_1 \leftarrow bool, A_2 \leftarrow int, A_3 \leftarrow int, A_4 \leftarrow int, A_4 \leftarrow int, A_5 \leftarrow 
                                                                                                                                                                                                                                                                                                                                                                                                     A_3 \leftarrow \text{int}, A_f \leftarrow \text{bool} \rightarrow \text{int}
```

Typage des termes "purs"

```
un type pour g = fun x f \rightarrow (f x)?
```

- ▶ si on déroule l'algorithme d'inférence, on trouve $A_g = A_1 \rightarrow (A_2 \rightarrow A_3)$ avec la contrainte $A_2 = A_1 \rightarrow A_3$, d'où le type $A_1 \rightarrow (A_1 \rightarrow A_3) \rightarrow A_3$
- ▶ qui sont ces A₁ et A₃ qui 'restent'?
 - des variables de type non contraintes
 exemple encore plus évident:
 let f = fun x y → y, Ax → Ay → Ay
 - si g avait été appliqué à des arguments, A₁ et A₃ auraient pu subir d'autres contraintes

Limites du typage envisagé

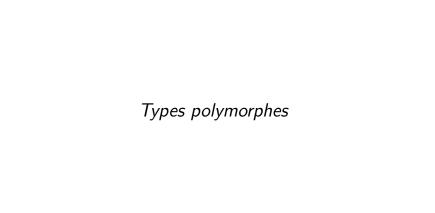
intéressons-nous à

$$(\text{fun f} \rightarrow (\underbrace{f}_{T_1}(32,\text{"hop"}))*(\underbrace{f}_{T_2}(52,\text{false}))) \quad \underbrace{(\text{fun } (u,v) \rightarrow u)}_{T_0}$$

on engendre les contraintes, on mélange un peu:

$$T_1 = \text{int} * \text{string-} > \text{int}$$
 $T_1 = T_0$ $T_2 = \text{int} * \text{bool-} > \text{int}$ $T_2 = T_0$ $T_0 = T_u * T_v \rightarrow T_u$

- ightharpoonup conflit de ressource: T_1 et T_2 'veulent' instancier T_u et T_v
- d'ailleurs ça ne type pas en Caml
- on voudrait avoir le droit de donner un type générique que l'on puisse instancier plusieurs fois
 - une instanciation par utilisation de f sur l'exemple
- jusque là les types étaient monomorphes, on veut le polymorphisme



Schémas de types

- ▶ pour donner un sens générique au typage, on veut disposer de schémas de types

 ∀a.T
 - ▶ ainsi $\forall a. \forall b. (a*b) \rightarrow a$ (noté ('a * 'b) -> 'a en Caml) peut s'instancier en un nombre infini de types
 - ▶ (int*bool)->int, (bool*string)->bool,...
 - ▶ ∀ est un lieur
- ajouter les schémas de types aux types?

$$T ::= int \mid bool \mid T \rightarrow T' \mid \forall a. T \mid a$$

- a: variable de type
- ▶ non, on impose une restriction: forme prénexe pour les ∀

$$T ::=$$
 int $|$ bool $|$ $T \to T'$ $|$ a types $\tau ::=$ $T \mid \forall a. \, \tau$ schémas de types on n'a pas droit p.ex. à $\forall b. \, b \to \forall a. \, (a \to b)$

Polymorphisme et let

les schémas de types n'apparaissent que dans une situation bien particulière: dans un let...in... pour typer let x = e1 in e2

- 1. inférer le type de e1 \rightsquigarrow T_1
- 2. généraliser $t_1 \rightsquigarrow \forall \vec{a}. T_1$
- 3. inférer le type de e2, environnement enrichi avec \mathbf{x} : $\forall \vec{a}$. T_1 ce faisant, dans e2, quand on rencontre \mathbf{x} , on a le droit d'instancier $\forall \vec{a}$. T_1 (en $T_1[\vec{U_i}/\vec{a}]$)
- remarques
 - le polymorphisme arrive par les let et s'en va dans les variables
 - le contexte de typage (Γ) est enrichi
 - ▶ par x: $\forall \vec{a}$. T_{e1} lorsqu'on type let x = e1 in e2,
 - par x: a lorsqu'on type fun x -> e

Généralisation – exemples

▶ le typage de let g = fun x f → (f x) renvoie un type $a_1 \rightarrow (a_1 \rightarrow a_3) \rightarrow a_3$, que l'on peut généraliser en $\forall a_1 \forall a_3. a_1 \rightarrow (a_1 \rightarrow a_3) \rightarrow a_3$

ainsi, pour typer

let
$$m = let f x = x in (f f)$$

- ▶ il suffit d'associer à f le schéma de type $\forall a.a \rightarrow a$,
- que l'on instancie avec $b \rightarrow b$ et $(b \rightarrow b) \rightarrow (b \rightarrow b)$,
- et l'on trouve m : $b \rightarrow b$ puis m: $\forall b.b \rightarrow b$ (oui enfin bon,...cf. + tard)
- reste que pour espérer typer

$$(\text{fun f } \rightarrow ((\text{f 1}), (\text{f "un"})))$$
 (fun t->t)

il faut pouvoir "généraliser en cours de route" pour pouvoir donner à f les types int->int et string->string

- ▶ donner le type $\forall a_0.a_0 \rightarrow a_0$ à (fun t->t)
- ▶ et donner le type $(\forall a_0.a_0 \rightarrow a_0)$ →int*string à (fun f -> ((f 1),(f "un")))
 - → pas possible

Inférence, suite

- ▶ inférence de types
 - on engendre des *contraintes de typage* en explorant un terme
 - on résoud ces contraintes par *unification*
 - ▶ types: T ::= int | bool | $T_1 \rightarrow T_2$ | a a variable de type
- polymorphisme: quantifier sur les variables de type
 - types en ML: quantification prénexe

$$T ::= int \mid bool \mid T_1 \rightarrow T_2 \mid a \qquad \tau ::= T \mid \forall a. \tau$$

- le polymorphisme va de pair avec la construction let...in let x = e1 in e2:
 - ▶ on infère le type de e1
 T
 - on généralise $\forall \tilde{a}.T$
 - on infère le type de e2 avec l'hypothèse x: ∀ã. T chaque x qui apparaît dans e2: une instanciation de ∀ã. T
- ▶ système F: T ::= int | bool | $T_1 \rightarrow T_2$ | $a \mid \forall a. T$
 - nécessaire pour typer

(fun f -> ((f 1),(f "un"))) (fun t->t) car on veut donner le type
$$(\forall a_0.a_0 \rightarrow a_0) \rightarrow \text{int*string}$$

- à la fonction de gauche
- ▶ interdit en ML: pas d'arguments polymorphes
 let f = fun t → t in ((f 1), (f "un")) : c

Polymorphisme: typage

```
\frac{\Gamma \vdash \mathbf{m} : T \to T' \qquad \Gamma \vdash \mathbf{n} : T}{\Gamma \vdash (\mathbf{m} \ \mathbf{n}) : T'} \qquad \frac{\Gamma, \mathbf{x} : T \vdash \mathbf{m} : T'}{\Gamma \vdash \mathbf{fun} \ \mathbf{x} \to \mathbf{m} : T \to T'}
\frac{\Gamma \vdash \mathbf{m} : T \qquad \Gamma, \mathbf{x} : \mathbf{Gen}(T, \Gamma) \vdash \mathbf{n} : T'}{\Gamma \vdash \mathbf{let} \ \mathbf{x} = \mathbf{m} \ \mathbf{in} \ \mathbf{n} : T'}
\overline{\Gamma, \mathbf{x} : \forall \vec{a} . T \vdash \mathbf{x} : T[\vec{T'}/\vec{a}]}
```

- ▶ $Gen(T, \Gamma)$: généralisation de T (dépend de Γ)
- ▶ dans les règles de typage, Г associe des schémas de types aux variables
- ▶ le système de types avec polymorphisme est défini pour un langage *incluant let...in*

Typage avec polymorphisme – exemple

```
\frac{\Gamma \vdash m : T \to T' \qquad \Gamma \vdash n : T}{\Gamma \vdash (m \; n) : T'} \qquad \frac{\Gamma, x : T \vdash m : T'}{\Gamma \vdash \text{fun} \; x \to m : T \to T'}
\frac{\Gamma \vdash m : T \qquad \Gamma, x : \text{Gen}(T, \Gamma) \vdash n : T'}{\Gamma \vdash \text{let} \; x = m \; \text{in} \; n : T'}
\overline{\Gamma, x : \forall \vec{a} . T \vdash x : T[\vec{T'}/\vec{a}]}
```

$$\begin{array}{c}
 \text{id}: \forall a. \ a \rightarrow a \vdash \text{id}: (b \rightarrow b) \rightarrow (b \rightarrow b) \\
 \text{et} \quad \text{id}: \forall a. \ a \rightarrow a \vdash \text{id}: b \rightarrow b \\
 \hline
 \text{id}: \forall a. \ a \rightarrow a \vdash \text{id}: b \rightarrow b
\end{array}$$

 $\emptyset \vdash \text{let id} = \text{fun t} \rightarrow \text{t in id id} : b \rightarrow b$

$\Gamma \vdash \mathbf{m} : T$ $\Gamma, \mathbf{x} : \operatorname{Gen}(T, \Gamma) \vdash \mathbf{n} : T'$ Typer les let $\Gamma \vdash \text{let } x = m \text{ in } n : T'$

comment calcule-t-on Gen(T, Γ)?

```
considérons fun u \rightarrow let x = u in x
\mathbf{u}: \mathbf{a} \vdash \mathbf{u}: \mathbf{a} \quad \mathbf{u}: \mathbf{a}, \mathbf{x}: \forall \mathbf{a}.\mathbf{a} \vdash \mathbf{x}: \mathbf{b}
                                                                                 le type a \rightarrow b n'est
         u: a \vdash let x = u in x: b
                                                                                  pas
 fun u \rightarrow let x = u in x : a \rightarrow b
                                                                                  correct!
```

cf.

```
\mathtt{t} : \mathtt{a} \vdash \mathtt{t} : \mathtt{a} \qquad \qquad \mathtt{id} : \forall \mathtt{a}. \, \mathtt{a} \to \mathtt{a} \vdash \mathtt{id} : (\mathtt{b} \to \mathtt{b}) \to (\mathtt{b} \to \mathtt{b}) \qquad \mathtt{id} : \forall \mathtt{a}. \, \mathtt{a} \to \mathtt{a} \vdash \mathtt{id} : \mathtt{b} \to \mathtt{b}
\emptyset \vdash \text{fun t} \rightarrow \text{t} : a \rightarrow a
                                                                                                                                                    id: \forall a, a \rightarrow a \vdash id id: b \rightarrow b
```

 $\emptyset \vdash \text{let id} = \text{fun t} \rightarrow \text{t in id id} : b \rightarrow b$

on généralise par rapport aux variables libres de T qui ne sont pas dans [

Typer les let (2)

$$\frac{\Gamma \vdash \mathtt{m} : T \qquad \Gamma, x : \operatorname{Gen}(T, \Gamma) \vdash \mathtt{n} : T'}{\Gamma \vdash \mathtt{let} \ x = \mathtt{m} \ \mathtt{in} \ \mathtt{n} : T'}$$

on ne peut pas résoudre les contraintes dans n'importe quel ordre:

$$\vdash \text{ let } x = \overbrace{\text{fun } y}^{a_v} \rightarrow \underbrace{y}_{a_u} \text{ in } (x \ 1) : ?$$

on obtient en particulier les contraintes:

$$(1) a_x = \operatorname{Gen}(a_v, \emptyset) \qquad (2) a_v = a_y \to a_u \qquad (3) a_u = a_y$$

- ▶ si on commence par (1), on trouve $a_x = \forall a_v. a_v$: ça ne va pas, puisque x a forcément un type fonctionnel
- ▶ l'ensemble de contraintes que l'on manipule pour l'inférence est donc plus structuré que dans le cas monomorphe
 - on unifie 'bout par bout'
 - on intercale des généralisations et des instanciations
 - du contrôle dans l'inférence: ce n'est plus une grande soupe de contraintes ('goulots d'étranglement' dans la procédure d'inférence)
- lacktriangle algorithme ${\mathcal W}$, dû à Damas et Milner (1982) (cf. aussi Hindley)

Algorithme \mathcal{W} (esquisse)

- pour inférer le type de m dans Γ:
 - ▶ si m est fun x -> m', appel récursif sur m' avec Γ , x : $a \hookrightarrow s$ (a nouvelle variable de type)
 - ▶ si m est (m₁ m₂), deux appels récursifs (\leadsto T_1 et T_2), puis unifier T_1 et $T_2 \to a$, où a est nouvelle $\hookrightarrow s$
 - ▶ si m est let x = m_1 in m_2 , typer m_1 (renvoie T_1), calculer $T'_1 = \text{Gen}(T_1, \Gamma)$, et typer m_2 dans $\Gamma, x : T'_1 \hookrightarrow S$
 - ▶ si m est x, $(x : \forall \vec{a}.T) \in \Gamma$, instancier T avec des variables de type nouvelles $\underline{\longrightarrow} \underline{s}$
- ► ainsi, pour let id = fun x -> x in (id 1, id true)
 - ▶ on infère id: $\forall a. a \rightarrow a$ pour id = fun x -> x
 - puis on instancie (ici, deux fois): id:a₁ → a₁ pour id 1, et id:a₂ → a₂ pour id true → a₁ = int, a₂ = bool
 - chaque usage d'une variable dont le type a été généralisé a un type potentiellement différent

Propriétés de ${\mathcal W}$

correction:

```
si \mathcal{W}(\mathtt{m},\Gamma) retourne un type T et une substitution \mathcal{S}, alors \mathcal{S}(\Gamma) \vdash \mathtt{m} : T
```

complétude et principalité:

```
si \Gamma \vdash m : T, alors \mathcal W renvoie T' t.q. T = T'[\vec a \hookleftarrow \vec u]
```

▶ c'est la fête

Et si on expansait les let?

$$\frac{\Gamma \vdash M : t \quad \Gamma \vdash N[M/x] : t'}{\Gamma \vdash let \ x = M \ in \ N : t'}$$

(on doit typer M à cause de let x = (5 "toto") in 3) plus besoin de la généralisation, on retrouve le monomorphisme on a de plus:

Théorème: dans le langage avec polymorphisme,

```
\Gamma \vdash \text{let } x = \text{e1 in e2} : T ssi \exists T'. \Gamma \vdash \text{e1} : T' et \Gamma \vdash \text{e2}[\text{e1}/x] : T
```

 \dots oui mais $\mathcal W$ ne type e1 qu'une seule fois, alors qu'ici on le type autant de fois qu'il y a d'occurrences de x dans e2

technique de compilation ("inlining"): parfois utile pour avoir du code plus efficace (travailler avec des valeurs non boxées)

Le système F Girard 72, Reynolds 74

- ▶ en ML, les types polymorphes ont une quantification *prénexe*
 - ▶ $\forall \vec{a}.T$, et T ne contient pas de \forall
- ▶ système *F*: on mélange tout

$$T = a \mid T \rightarrow T' \mid \forall a.T$$

- un formalisme expressif:
 - ▶ on va au-delà de ML $(\forall a.a \rightarrow (\forall b.b \rightarrow a) \rightarrow a)$
 - les types de données usuels (entiers, listes, arbres,...) peuvent être définis
 - ▶ entiers: int= $\forall a. (a \rightarrow a) \rightarrow a \rightarrow a$ f : int->int...
 - ▶ listes: $\forall a. \forall b. a \rightarrow (a \rightarrow b \rightarrow a) \rightarrow a$
 - motivations à la fois informatiques et logiques
 - 1. le polymorphisme pour typer des fonctions génériques
 - toutes les fonctions prouvablement totales dans l'arithmétique de Peano du second ordre sont typables dans F

Mais surtout

- décidabilité du typage dans F?
 - J. Wells 1994: étant donné un terme m, on ne sait pas décider s'il existe Γ, T tels que Γ ⊢ m : T dans le système F
 - conséquence: pas d'inférence de type
 - \hookrightarrow d'où, après coup, la justification du fait qu'on travaille dans des sous-ensembles de F
- ▶ le polymorphisme à la ML, c'est bien
 - ▶ inférence *décidable* (algorithme *W*)
 - expressivité: le polymorphisme à la ML est dans bien des cas suffisant
- pour aller plus loin
 - ▶ B. Pierce, Types and Programming Languages, MIT Press (disponible à la bibliothèque)
 - ► Girard, Lafont, Taylor, *Proofs and Types*, Cambridge University Press (trouvable sur le net)
 - D. Le Botlan et D. Rémy, MLF

Polymorphisme du polymorphisme

polymorphisme: une valeur peut avoir plusieurs types

- polymorphisme de sous-typage

 - cf. modules (structures) et signatures
- polymorphisme paramétrique
 - une fonction peut être appliquée à des arguments de types différents (c'est les 'a de Caml)
 - c'est contraignant pour une fonction que d'avoir un type polymorphe
 - f: 'a -> ...: f n'inspecte pas son premier argument
 - cf. types abstraits, protection
 - fonction polymorphe en Caml: déplace des mots mémoire
- polymorphisme ad hoc, surcharge
 - ce n'est pas toujours le même code qui est exécuté lorsqu'une fonction est appelée
 - ▶ (=) en Caml, et C++ de manière intensive

on a été jusqu'ici purement fonctionnel

Mélanger fonctionnel et impératif

Vers le "vrai" ML: aspects impératifs

```
 \frac{\Gamma \vdash m : T}{\Gamma \vdash ref \ m : T \ ref} \qquad \frac{\Gamma \vdash m : T \ ref}{\Gamma \vdash l \ m : T} 
 \frac{\Gamma \vdash m : T \ ref}{\Gamma \vdash m : n : unit} \qquad \frac{\Gamma \vdash m : T \ ref}{\Gamma \vdash m : n : T}
```

Polymorphisme et références

jeux dangereux entre polymorphisme et références:

```
let r = ref (fun x -> x) in
r := (fun x -> x+1);
(!r) true;;
```

si on donnait le type ('a->'a) ref à r, on perdrait la sûreté du typage: on tombe sur (fun x -> x+1) true

(les deux r 'se parlent' à travers l'effet de bord)

- ainsi, lorsqu'on type let x = ref e1 in e2, on ne généralise pas le type trouvé pour ref e1
 - retour au monomorphisme DÉMO ref_mono.ml
 '_a: 'polymorphisme faible'
- premiére idée: avoir peur lorsque le type que l'on généralise contient ref

est-on sorti d'affaire?

Les applications

regardons le code suivant:

et maintenant:

```
let écrire,lire = ref_fonctionnelle (fun x->x) in
écrire (fun x -> x+1);
lire() true;;
```

...le danger, c'est de généraliser le type de ref_fonctionnelle (fun x -> x)

```
▶ les applications peuvent engendrer la création de références:
elles sont a priori dangereuses
```

Expressions non expansives

▶ dans let x = e1 in e2, la difficulté provient des références que pourrait créer l'évaluation de e1

dans le type de e1, on ne généralise pas si on craint que l'évaluation de e1 ne crée des références

```
▶ e1 = ref e est potentiellement dangereux
```

```
▶ e1 = (f e) aussi
```

 on introduit la notion d'expression non expansive, i.e. dont l'évaluation ne risque pas de créer une référence;

```
\hookrightarrow ne sont pas expansives:
```

- les constantes
- les variables
- les fonctions

(les valeurs: the value restriction)

Limites de l'analyse d'expansivité

l'analyse d'expansivité est une *approximation*: il peut arriver que l'on restreigne le type de certaines expressions non dangereuses

(mais pas dans l'autre sens)

une application peut cacher une valeur non expansive

```
# let g = let id = fun x -> x in (id id);;
val g : '.a -> '.a = <fun>
# g 3;;
- : int = 3
# g;;
- : int -> int = <fun>
# g true;;
This expression has type bool but is here used with type int
```

▶ mais on peut indiquer explicitement que l'on a affaire à une fonction $(\eta$ -expansion)

```
let id = fun x \rightarrow x in (fun z \rightarrow ((id id) z)) : 'a \rightarrow 'a
```

- ► autres phénomènes DÉMO monopoly.ml
- ► NB: en purement fonctionnel (Haskell), on a dans tous les cas un type polymorphe (pas de '_a)