Program analysis — intro
http://perso.ens-lyon.fr/daniel.hirschkoff/cap/

Abstract Interpretation

With material from the courses by A. Miné and P. Roux

Analysing programs

- typical questions we want to ask / bugs we want to avoid

$$
\begin{array}{ll}
x=a / b & \\
x=t[i] & \text { make sure } b \neq 0 \\
\mathrm{x}=\mathrm{m}=\mathrm{m} \text { me sure } \mathrm{i} \text { is within the bounds of } \mathrm{t} \\
\mathrm{i}=\mathrm{l} & \text { make sure there is no overflow }
\end{array}
$$

- Abstract Interpretation can also be used to perform more refined analyses

Know everything about all possible runs of the program

- annotate nodes of (some kind of) Control Flow Graphs with labels $\ell \in \mathcal{L}$
- during execution, a program state (ℓ, σ) consists of

> a control state $\ell \in \mathcal{L}$ and
> an environment (memory state) $\sigma \in \mathcal{V} \rightarrow \mathbb{Z}$

- concrete semantics (meaning) of the program
- write a recursive equation involving sets of environments
- we are interested in the least fixpoint of some operator acting on $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
- this fixpoint yields a function of type $\quad \mathcal{L} \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
associating a set of possible stores (memory states) to every label in the program
- in CAP, we discuss programs manipulating programs
compute something with a program as an input
- another program
- a property of the program what it does (not)
\hookrightarrow accept/reject, transform the initial program
- we shall focus on smaller scale languages

1. small imperative language: Imp
1.1 Abstract Interpretation (automatic, the program is the only input)
1.2 Hoare triples (interaction with the user)
2. small functional language: FUN
2.1 type inference
2.2 abstract machines and compilation
2.3 intermediate representations

- in breadth rather than in depth
- few proofs (see references on the www page)
- prerequisites: order theory, semantics

1. The method

an example of a program and its runs

demo-concrete.pdf

- we want to know what values a variable can have at a given point of the program
- we would like to compute this (without any input from the user)
he least fixpoit exists (Knaster-Tarski's theorem)
. . . but there is no hope of computing it

Let's get rough

- instead of computing the concrete semantics, compute an abstract semantics

- be less precise, and more computable
scale down our ambitions, and strike a balance
- rough but sound

the abstract semantics contains the concrete semantics
some examples of abstractions
demo-signs.pdf demo-cstes.pdf
the concretisation function $\gamma: \mathcal{D}^{\sharp} \rightarrow \mathcal{D}$
- γ should be monotone
- $a \in \mathcal{D}^{\sharp}$ is a sound abstraction of $c \in \mathcal{D}$ if $c \subseteq \gamma(a)$
- $g: \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ is a sound abstraction of $f: \mathcal{D} \rightarrow \mathcal{D}$
if $\forall a \in \mathcal{D}^{\sharp},(f \circ \gamma)(a) \subseteq(\gamma \circ g)(a)$

move from the concrete semantics to the abstract semantics:
from $R_{\ell}=\bigcup_{(j, c, \ell) \in A} \llbracket c \rrbracket R_{j}$
to $\quad \sigma_{\ell}^{\sharp}=\bigcup_{(j, c, \ell) \in A}^{\sharp} \llbracket c \rrbracket^{\sharp} \sigma_{j}^{\sharp}$
- $\sigma_{\ell}^{\sharp}, \sigma_{j}^{\sharp}$: abstract environments
- $\llbracket \cdot \rrbracket^{\sharp}:$ abstract transfer function

Insuring that an answer is provided

we want effective computations

- everything should be computable in \mathcal{D}^{\sharp}
- representation of elements of \mathcal{D}^{\sharp}
- ․ $^{\sharp}, \cup^{\sharp}, \ldots$
- computing the abstract semantics
- computing σ_{ℓ}^{\sharp}
relies on the definition of abstract operators $\quad t^{\sharp},-\sharp, \ldots$
- computing the least fixpoint
- Kleene iterations $\perp, F(\perp), F(F(\perp)), \ldots$
- a finite number of them: stabilisation
ok if the lattice is of finite height otherwise. .

TP next week

- you will be given a program that computes the abstract semantics according to a given value abstract domain
- you will define several value abstract domains, and see how the analysis of programs is affected

> you might want to write down equations
> before coding $\sqsubseteq^{\sharp} \quad+^{\sharp}-\sharp \ldots$

- all this in OCaml
you don't need to be an expert OCaml programmer basically, define (simple) types, and (simple) functions acting on such types
- install OCaml on your laptop

2. How it works
(and why - a glance at the mathematical justification)

on the board

The answers of Abstract Interpretation

Theorem (Soundness): $\forall \ell \in \mathcal{L}, R_{\ell} \subseteq \gamma\left(\sigma_{\ell}^{\sharp}\right)$.
because we use sound operators $\left(\cup^{\sharp},+^{\sharp}, \ldots\right)$ in \mathcal{D}^{\sharp}, we keep over-approximating when computing the abstract semantics

Abstract Interpretation: compute the abstract semantics, and check the required condition

- if the answer is "ok", then it is "ok"
for example, 0 is not among the possible values for X at that point in the program
- if the answer is "no", then work needs to be done

Widening

- the analysis must be able to answer in reasonable time
- in some cases, the abstract domain \mathcal{D}^{\sharp} is of unbounded height
to guarantee convergence of the computation of the least fixpoint, we use a widening operator $\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ satisfying:
- $\forall x^{\sharp}, y^{\sharp}, \quad x^{\sharp} \cup^{\sharp} y^{\sharp} \sqsubseteq^{\sharp} x^{\sharp} \nabla y^{\sharp}$. soundness
- for any sequence $\left(y_{i}^{\sharp}\right)_{i \geq 0}$,
the sequence $x_{0}^{\sharp}=y_{0}^{\sharp}, \quad x_{i+1}^{\sharp}=x_{i}^{\sharp} \nabla y_{i+1}^{\sharp}$ satisfies
$\exists n \cdot x_{n+1}^{\sharp}=x_{n}^{\sharp}$.
stablilisation
∇ "extrapolates"

$$
-\sigma_{\ell}^{\sharp n+1}=\sigma_{\ell}^{\sharp n} \nabla \bigcup_{(j, c, \ell) \in A}^{\sharp} \llbracket c \rrbracket^{\sharp} \sigma_{j}^{\sharp n}
$$

> for some nodes ℓ belonging to cycles in the CFG
> \hookrightarrow convergence of the iteration

- a narrowing operator can also be used to make the analysis more precise after applying widening
- course by Pierre Roux

Al in 3 lessons

- course by Antoine Miné (and others)
much more detailed and in depth (M2)
see links from the course webpage
- many thanks to Antoine and Pierre for allowing me to use their material
- a peculiarity in terminology:

$$
\begin{aligned}
& \text { - prefixpoint } f(x) \sqsubseteq x \\
& \text { postfixpoint } x \sqsubseteq f(x)
\end{aligned}
$$

as seen, e.g., in L3IF
... they use the converse

Relational abstract domains

- the concrete semantics is given by a function (which is difficult to compute) in $\mathcal{L} \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
associating a set of possible memory states to every label in the program
- we have described non relational analyses
$\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$ is abstracted into $\mathcal{V} \rightarrow \mathcal{P}(\mathbb{Z})$,
and then $\mathcal{P}(\mathbb{Z})$ is abstracted into some \mathcal{D}^{\sharp}
- a relational abstract domain is some \mathcal{D}^{\sharp} which is an abstraction of $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
express that certain combinations of x and y are impossible (polyhedra, octagons)
α : monotone abstraction function

$$
\begin{gathered}
(\mathcal{D}, \sqsubseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\left(\mathcal{D}^{\sharp}, \sqsubseteq^{\sharp}\right) \\
\alpha(x) \sqsubseteq y^{\sharp} \Longleftrightarrow x \sqsubseteq \gamma\left(y^{\sharp}\right)
\end{gathered}
$$

- any $x \in \mathcal{D}$ has a best abstraction $\alpha(x)$

