Program analysis — intro

http://perso.ens-1yon.fr/daniel.hirschkoff/cap/

Abstract Interpretation

With material from the courses by A. Miné and P. Roux

Analysing programs

» typical questions we want to ask / bugs we want to avoid

x = a/b make sure b# 0
x = t[i] make sure i is within the bounds of t
i= i+l make sure there is no overflow

» Abstract Interpretation can also be used to perform more
refined analyses

Know everything about all possible runs of the program

» annotate nodes of (some kind of) Control Flow Graphs with
labels ¢ € L

» during execution, a program state (¢,) consists of

> a control state ¢ € £ and
> an environment (memory state) o € V — Z

» concrete semantics (meaning) of the program

write a recursive equation involving sets of environments
we are interested in the least fixpoint of some operator
acting on P(V—Z)

> this fixpoint yields a function of type L — P(V — Z)

vy

associating a set of possible stores (memory states) to every
label in the program

the least fixpoit exists (Knaster-Tarski's theorem)
but there is no hope of computing it

(either impossible/undecidable or too costly)

Program analysis

» in CAP, we discuss programs manipulating programs

compute something with a program as an input
> another program

> a property of the program what it does (not)

<> accept/reject, transform the initial program
» we shall focus on smaller scale languages

1. small imperative language: IMP
1.1 Abstract Interpretation (automatic, the program is the only
input)
1.2 Hoare triples (interaction with the user)
2. small functional language: FuN

2.1 type inference
2.2 abstract machines and compilation
2.3 intermediate representations

> in breadth rather than in depth
> few proofs (see references on the www page)

> prerequisites: order theory, semantics

1. The method

Runs of a program

an example of a program and its runs

demo-concrete.pdf

> we want to know what values a variable can have at a given
point of the program

» we would like to compute this (without any input from the user)

Computing an abstraction

"l took a speed reading course and read War and Peace
in twenty minutes.

It involves Russia.”

Let's get rough

> instead of computing the concrete semantics,
compute an abstract semantics

Exemples de caicul des efforts interes

> be less precise, and more computable
scale down our ambitions, and strike a balance

> rough but sound

the abstract semantics
contains the concrete semantics

some examples of abstractions

demo-signs.pdf demo-cstes.pdf

The general method: D and Dt via v

the concretisation function v : DF — D
» ~ should be monotone
» a € D' is a sound abstraction of c € D if ¢ C ~(a) N
13

» g: D! = D'is a sound abstraction of f : D — D %
if Yae D, (for)(a) C (vog)(a)

move from the concrete semantics to the abstract semantics:
from Ry = U(jﬁc,Z)EA [c] Rj to op = UEJ',CJ)\;A HC]]j g

> O'g, J}‘: abstract environments

» [-]¢: abstract transfer function

Insuring that an answer is provided

we want effective computations

» everything should be computable in D*
> representation of elements of Df
» CF Uf L
» computing the abstract semantics
» computing O'g
relies on the definition of abstract operators +%, —f, ...
» computing the least fixpoint

> Kleene iterations L, F(L), F(F(L)),...
> a finite number of them: stabilisation

. ok if the lattice is of finite height

. otherwise. ..

TP next week

» you will be given a program that computes the abstract
semantics according to a given value abstract domain

» you will define several value abstract domains, and see how
the analysis of programs is affected

you might want to write down equations
before coding C! +f —f . ..

» all this in OCaml

you don't need to be an expert OCaml programmer

basically, define (simple) types, and (simple) functions acting
on such types

» install OCaml on your laptop

2. How it works
(and why — a glance at the mathematical justification)

The answers of Abstract Interpretation

Theorem (Soundness): V(€ L, Ry C 'y(ag).
because we use sound operators (Uf, +F, ...) in D, we keep
over-approximating when computing the abstract semantics

cf. talking with toddlers

Abstract Interpretation: compute the abstract semantics, and
check the required condition

» if the answer is “ok”, then it is “ok”

for example, 0 is not among the possible values for X at
that point in the program

» if the answer is "no”, then work needs to be done

Widening

> the analysis must be able to answer in reasonable time
> in some cases, the abstract domain D" is of unbounded height

to guarantee convergence of the computation of the least
fixpoint, we use a widening operator V : D x D? — DF
satisfying:

» UxE oyt xEUEyE CF xEVyt soundness
» for any sequence (y/)i>o,

the sequence Xg = yg, X?Jrl = x}iVy}tr1 satisfies

3n. xﬁH = x£. stablilisation

V “extrapolates”
1 _ b 2
ot = 0" v Ul(ij,c,é)eAIIC]Iu a;"
for some nodes ¢ belonging to cycles in the CFG
< convergence of the iteration

> a narrowing operator can also be used to make the analysis
more precise after applying widening

Further notions in Abstract Interpretation

References Galois connections

» course by Pierre Roux
Al in 3 lessons

» course by Antoine Miné (and others)

. . o monotone abstraction function
much more detailed and in depth (M2)

v "

see links from the course webpage (D,C) S (P9 ’
« ~

a(x)C7 yf = xCy(y) >

> any x € D has a best abstraction a(x)

> many thanks to Antoine and Pierre for allowing me to use
their material

> a peculiarity in terminology:

. prefixpoint f(x) C x

. postfixpoint x C f(x) as seen, e.g., in L3IF

...they use the converse

Relational abstract domains

> the concrete semantics is given by a function (which is
difficult to compute) in £ = P(V — Z)

associating a set of possible memory states to every label in the program
> we have described non relational analyses

P(V—Z) is abstracted into V — P(Z),
and then P(Z) is abstracted into some D*

> a relational abstract domain is some D" which is an
abstraction of P(V—Z)
express that certain combinations of x and y are impossible

(polyhedra, octagons)

