
Program analysis — intro

http://perso.ens-lyon.fr/daniel.hirschkoff/cap/

Program analysis

I in CAP, we discuss programs manipulating programs

compute something with a program as an input
I another program
I a property of the program what it does (not)

↪→ accept/reject, transform the initial program

I we shall focus on smaller scale languages

1. small imperative language: Imp

1.1 Abstract Interpretation (automatic, the program is the only
input)

1.2 Hoare triples (interaction with the user)

2. small functional language: Fun

2.1 type inference
2.2 abstract machines and compilation
2.3 intermediate representations

I in breadth rather than in depth
I few proofs (see references on the www page)

I prerequisites: order theory, semantics

Abstract Interpretation

With material from the courses by A. Miné and P. Roux

1. The method

Analysing programs

I typical questions we want to ask / bugs we want to avoid

x = a/b make sure b6= 0
x = t[i] make sure i is within the bounds of t
i = i+1 make sure there is no overflow

I Abstract Interpretation can also be used to perform more
refined analyses

Runs of a program

an example of a program and its runs

demo-concrete.pdf

I we want to know what values a variable can have at a given
point of the program

I we would like to compute this (without any input from the user)

on the board

Know everything about all possible runs of the program

I annotate nodes of (some kind of) Control Flow Graphs with
labels ` ∈ L

I during execution, a program state (`, σ) consists of
I a control state ` ∈ L and
I an environment (memory state) σ ∈ V → Z

I concrete semantics (meaning) of the program

I write a recursive equation involving sets of environments
I we are interested in the least fixpoint of some operator

acting on P(V→Z)
I this fixpoint yields a function of type L → P(V → Z)

associating a set of possible stores (memory states) to every
label in the program

the least fixpoit exists (Knaster-Tarski’s theorem)

. . . but there is no hope of computing it
(either impossible/undecidable or too costly)

Computing an abstraction

“I took a speed reading course and read War and Peace

in twenty minutes.

It involves Russia.”



Let’s get rough

I instead of computing the concrete semantics,
compute an abstract semantics

I be less precise, and more computable
scale down our ambitions, and strike a balance

I rough but sound

the abstract semantics
contains the concrete semantics

some examples of abstractions

demo-signs.pdf demo-cstes.pdf

2. How it works
(and why — a glance at the mathematical justification)

on the board

The general method: D and D], via γ

the concretisation function γ : D] → D
I γ should be monotone

I a ∈ D] is a sound abstraction of c ∈ D if c ⊆ γ(a)

I g : D] → D] is a sound abstraction of f : D → D
if ∀a ∈ D], (f ◦ γ)(a) ⊆ (γ ◦ g)(a)

move from the concrete semantics to the abstract semantics:

from R` =
⋃

(j ,c,`)∈A [[c]] Rj to σ]` =
⋃]

(j ,c,`)∈A [[c]]] σ]j

I σ]`, σ
]
j : abstract environments

I [[ · ]]]: abstract transfer function

The answers of Abstract Interpretation

Theorem (Soundness): ∀` ∈ L, R` ⊆ γ(σ]`).
because we use sound operators (∪], +], . . . ) in D], we keep
over-approximating when computing the abstract semantics

cf. talking with toddlers

Abstract Interpretation: compute the abstract semantics, and
check the required condition

I if the answer is “ok”, then it is “ok”

for example, 0 is not among the possible values for X at
that point in the program

I if the answer is “no”, then work needs to be done

Insuring that an answer is provided

we want effective computations

I everything should be computable in D]
I representation of elements of D]

I v], ∪], . . .

I computing the abstract semantics
I computing σ]

`

relies on the definition of abstract operators +],−], . . .
I computing the least fixpoint

I Kleene iterations ⊥, F (⊥), F (F (⊥)), . . .
I a finite number of them: stabilisation

. ok if the lattice is of finite height

. otherwise. . .

Widening

I the analysis must be able to answer in reasonable time

I in some cases, the abstract domain D] is of unbounded height

to guarantee convergence of the computation of the least
fixpoint, we use a widening operator ∇ : D] ×D] → D]
satisfying:

I ∀x], y ], x] ∪] y ] v] x]∇y ]. soundness
I for any sequence (y ]

i )i≥0,

the sequence x]
0 = y ]

0 , x]
i+1 = x]

i ∇y ]
i+1 satisfies

∃n. x]
n+1 = x]

n. stablilisation

∇ “extrapolates”

I σ]`
n+1 = σ]`

n ∇ ⋃]
(j ,c,`)∈A[[c]]] σ]j

n

for some nodes ` belonging to cycles in the CFG

↪→ convergence of the iteration

I a narrowing operator can also be used to make the analysis
more precise after applying widening

TP next week

I you will be given a program that computes the abstract
semantics according to a given value abstract domain

I you will define several value abstract domains, and see how
the analysis of programs is affected

you might want to write down equations
before coding v] +] −] . . .

I all this in OCaml

you don’t need to be an expert OCaml programmer

basically, define (simple) types, and (simple) functions acting
on such types

I install OCaml on your laptop

Further notions in Abstract Interpretation



References

I course by Pierre Roux
AI in 3 lessons

I course by Antoine Miné (and others)

much more detailed and in depth (M2)

see links from the course webpage

I many thanks to Antoine and Pierre for allowing me to use
their material

I a peculiarity in terminology:

. prefixpoint f (x) v x

. postfixpoint x v f (x) as seen, e.g., in L3IF

. . . they use the converse

Galois connections

α: monotone abstraction function

(D,v)
γ

�
α

(D],v])

α(x)v] y ] ⇐⇒ xvγ(y ])

I any x ∈ D has a best abstraction α(x)

Relational abstract domains

I the concrete semantics is given by a function (which is
difficult to compute) in L → P(V → Z)
associating a set of possible memory states to every label in the program

I we have described non relational analyses

P(V→Z) is abstracted into V → P(Z),
and then P(Z) is abstracted into some D]

I a relational abstract domain is some D] which is an
abstraction of P(V→Z)

express that certain combinations of x and y are impossible

(polyhedra, octagons)


