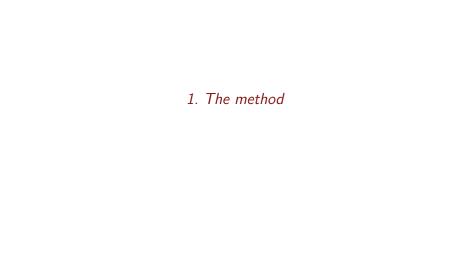


Program analysis

- in CAP, we discuss programs manipulating programs compute something with a program as an input
 - another program
 - ► a property of the program what it does (not)
 - \hookrightarrow accept/reject, transform the initial program
- we shall focus on smaller scale languages
 - 1. small imperative language: IMP
 - 1.1 Abstract Interpretation (automatic, the program is the only input)
 - 1.2 Hoare triples (interaction with the user)
 - 2. small functional language: FUN
 - 2.1 type inference
 - 2.2 abstract machines and compilation
 - 2.3 intermediate representations
- ▶ in breadth rather than in depth
 - ▶ few proofs (see references on the www page)
- prerequisites: order theory, semantics

Abstract Interpretation



Analysing programs

typical questions we want to ask / bugs we want to avoid

```
x = a/b make sure b \neq 0

x = t[i] make sure i is within the bounds of t

i = i+1 make sure there is no overflow
```

► Abstract Interpretation can also be used to perform more refined analyses

Runs of a program

an example of a program and its runs

demo-concrete.pdf

- we want to know what values a variable can have at a given point of the program
- we would like to compute this

(without any input from the user)

on the board

Know everything about all possible runs of the program

- \blacktriangleright annotate nodes of (some kind of) Control Flow Graphs with labels $\ell \in \mathcal{L}$
- lacktriangle during execution, a program state (ℓ,σ) consists of
 - ightharpoonup a control state $\ell \in \mathcal{L}$ and
 - ▶ an environment (memory state) $\sigma \in \mathcal{V} \to \mathbb{Z}$
- ▶ concrete semantics (meaning) of the program
 - write a recursive equation involving sets of environments
 - we are interested in **the least fixpoint** of some operator acting on $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
 - ▶ this fixpoint yields a function of type $\mathcal{L} \to \mathcal{P}(\mathcal{V} \to \mathbb{Z})$

associating a set of possible stores (memory states) to every label in the program

```
the least fixpoit exists (Knaster-Tarski's theorem)
```

 but there is no hope of computing it (either impossible/undecidable or too costly)

Computing an abstraction

"I took a speed reading course and read War and Peace in twenty minutes.

It involves Russia."

Let's get rough

instead of computing the concrete semantics, compute an abstract semantics

- be less precise, and more computable scale down our ambitions, and strike a balance
- rough but sound

the abstract semantics contains the concrete semantics

some examples of abstractions

demo-signs.pdf demo-cstes.pdf

2. How it works (and why — a glance at the mathematical justification)

on the board

The general method: ${\cal D}$ and ${\cal D}^{\sharp}$, via γ

the concretisation function $\gamma: \mathcal{D}^{\sharp} \to \mathcal{D}$

- $ightharpoonup \gamma$ should be monotone
- ▶ $a \in \mathcal{D}^{\sharp}$ is a *sound abstraction* of $c \in \mathcal{D}$ if $c \subseteq \gamma(a)$
- ▶ $g: \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ is a sound abstraction of $f: \mathcal{D} \to \mathcal{D}$ if $\forall a \in \mathcal{D}^{\sharp}$, $(f \circ \gamma)(a) \subseteq (\gamma \circ g)(a)$

move from the concrete semantics to the abstract semantics:

from
$$R_\ell = \bigcup_{(j,c,\ell) \in A} \llbracket c \rrbracket R_j$$
 to $\sigma_\ell^\sharp = \bigcup_{(j,c,\ell) \in A}^\sharp \llbracket c \rrbracket^\sharp \sigma_j^\sharp$

- $ightharpoonup \sigma_{\ell}^{\sharp}, \ \sigma_{i}^{\sharp}$: abstract environments
- ▶ [•][‡]: abstract transfer function

The answers of Abstract Interpretation

Theorem (Soundness): $\forall \ell \in \mathcal{L}, \ R_{\ell} \subseteq \gamma(\sigma_{\ell}^{\sharp}).$

because we use *sound* operators $(\cup^{\sharp}, +^{\sharp}, \dots)$ in \mathcal{D}^{\sharp} , we keep over-approximating when computing the abstract semantics

cf. talking with toddlers

Abstract Interpretation: *compute* the abstract semantics, and check the required condition

- ▶ if the answer is "ok", then it is "ok" for example, 0 is not among the possible values for X at that point in the program
- if the answer is "no", then work needs to be done

Insuring that an answer is provided

we want effective computations

- everything should be computable in D[‡]
 - ightharpoonup representation of elements of \mathcal{D}^{\sharp}
- computing the abstract semantics
 - computing σ_ℓ^\sharp relies on the definition of abstract operators $+^\sharp, -^\sharp, \dots$
 - computing the least fixpoint
 - ▶ Kleene iterations \bot , $F(\bot)$, $F(F(\bot))$, . . .
 - ▶ a finite number of them: stabilisation
 - . ok if the lattice is of finite height
 - . otherwise...

Widening

- ▶ the analysis must be able to answer in reasonable time
- ▶ in some cases, the abstract domain \mathcal{D}^{\sharp} is of unbounded height to guarantee convergence of the computation of the least fixpoint, we use a widening operator $\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ satisfying:

soundness

• for any sequence $(y_i^{\sharp})_{i\geq 0}$, the sequence $x_0^{\sharp} = y_0^{\sharp}$, $x_{i+1}^{\sharp} = x_i^{\sharp} \nabla y_{i+1}^{\sharp}$ satisfies $\exists n. x_{n+1}^{\sharp} = x_n^{\sharp}$.

stablilisation

 ∇ "extrapolates"

$$\blacktriangleright \ \sigma_\ell^{\sharp n+1} \ = \ \sigma_\ell^{\sharp n} \ \nabla \ \bigcup_{(j,c,\ell) \in A}^{\sharp} \llbracket c \rrbracket^{\sharp} \ \sigma_j^{\sharp n}$$

for some nodes ℓ belonging to cycles in the CFG

- ▶ a narrowing operator can also be used to make the analysis more precise after applying widening

TP next week

- you will be given a program that computes the abstract semantics according to a given value abstract domain
- you will define several value abstract domains, and see how the analysis of programs is affected

```
you might want to write down equations before coding \sqsubseteq^{\sharp} +^{\sharp} -^{\sharp} \dots
```

all this in OCaml

you don't need to be an expert OCaml programmer basically, define (simple) types, and (simple) functions acting on such types

▶ install OCaml on your laptop

References

- course by Pierre RouxAI in 3 lessons
- course by Antoine Miné (and others)
 much more detailed and in depth (M2)

see links from the course webpage

- many thanks to Antoine and Pierre for allowing me to use their material
- ▶ a peculiarity in terminology:

```
. prefixpoint f(x) \sqsubseteq x
. postfixpoint x \sqsubseteq f(x) as seen, e.g., in L3IF
```

... they use the converse

Galois connections

α : monotone abstraction function

$$(\mathcal{D},\sqsubseteq) \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} (\mathcal{D}^{\sharp},\sqsubseteq^{\sharp})$$
$$\alpha(x)\sqsubseteq^{\sharp} y^{\sharp} \iff x\sqsubseteq\gamma(y^{\sharp})$$

▶ any $x \in \mathcal{D}$ has a best abstraction $\alpha(x)$

Relational abstract domains

- ▶ the **concrete semantics** is given by a function (which is difficult to compute) in $\mathcal{L} \to \mathcal{P}(\mathcal{V} \to \mathbb{Z})$ associating a set of possible memory states to every label in the program
- we have described **non relational analyses** $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$ is abstracted into $\mathcal{V} \rightarrow \mathcal{P}(\mathbb{Z})$, and then $\mathcal{P}(\mathbb{Z})$ is abstracted into some \mathcal{D}^{\sharp}
- ▶ a **relational abstract domain** is some \mathcal{D}^{\sharp} which is an abstraction of $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$
 - express that certain combinations of x and y are impossible (polyhedra, octagons)