Program analysis — intro

http://perso.ens-lyon.fr/daniel.hirschkoff/cap/
Program analysis

- in CAP, we discuss programs manipulating programs
 - compute something with a program as an input
 - another program
 - a property of the program \textit{what it does (not)}
 \rightarrow accept/reject, transform the initial program

- we shall focus on smaller scale languages
 1. small imperative language: IMP
 1.1 Abstract Interpretation (automatic, the program is the only input)
 1.2 Hoare triples (interaction with the user)
 2. small functional language: FUN
 2.1 type inference
 2.2 abstract machines and compilation
 2.3 intermediate representations

- in breadth rather than in depth
 - few proofs (see references on the www page)

- prerequisites: order theory, semantics
Abstract Interpretation

With material from the courses by A. Miné and P. Roux
1. The method
Analysing programs

- typical questions we want to ask / bugs we want to avoid
 - \(x = \frac{a}{b} \) make sure \(b \neq 0 \)
 - \(x = t[i] \) make sure \(i \) is within the bounds of \(t \)
 - \(i = i+1 \) make sure there is no overflow

- Abstract Interpretation can also be used to perform more refined analyses
Runs of a program

an example of a program and its runs
demo-concrete.pdf

- we want to know what values a variable can have at a given point of the program
- we would like to compute this (without any input from the user)

on the board
Know everything about all possible runs of the program

- annotate nodes of (some kind of) Control Flow Graphs with labels \(\ell \in \mathcal{L} \)
- during execution, a program state \((\ell, \sigma)\) consists of
 - a control state \(\ell \in \mathcal{L} \) and
 - an environment (memory state) \(\sigma \in \mathcal{V} \rightarrow \mathbb{Z} \)

- **concrete semantics** (meaning) of the program
 - write a recursive equation involving sets of environments
 - we are interested in **the least fixpoint** of some operator acting on \(\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z}) \)
 - this fixpoint yields a function of type \(\mathcal{L} \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z}) \)
 - associating a set of possible stores (memory states) to every label in the program

the least fixpoint exists
(Knaster-Tarski’s theorem)

... **but there is no hope of computing it**
(either impossible/undecidable or too costly)
Computing an abstraction

“I took a speed reading course and read War and Peace in twenty minutes.

It involves Russia.”
Let's get rough

▶ instead of computing the **concrete semantics**, compute an **abstract semantics**

▶ be less precise, and more computable
scale down our ambitions, and strike a balance

▶ rough but sound

the abstract semantics **contains** the concrete semantics

some examples of abstractions

demo-signs.pdf *demo-cstes.pdf*
2. How it works
(and why — a glance at the mathematical justification)
The general method: \mathcal{D} and $\mathcal{D}^\#$, via γ

the concretisation function $\gamma : \mathcal{D}^\# \rightarrow \mathcal{D}$

- γ should be monotone
- $a \in \mathcal{D}^\#$ is a sound abstraction of $c \in \mathcal{D}$ if $c \subseteq \gamma(a)$
- $g : \mathcal{D}^\# \rightarrow \mathcal{D}^\#$ is a sound abstraction of $f : \mathcal{D} \rightarrow \mathcal{D}$ if $\forall a \in \mathcal{D}^\#, (f \circ \gamma)(a) \subseteq (\gamma \circ g)(a)$

move from the concrete semantics to the abstract semantics:

from $R_\ell = \bigcup_{(j,c,\ell) \in A} \llbracket c \rrbracket R_j$ to $\sigma_\ell^\# = \bigcup_{(j,c,\ell) \in A} \llbracket c \rrbracket^\# \sigma_j^\#

- $\sigma_\ell^\#, \sigma_j^\#$: abstract environments
- $\llbracket \cdot \rrbracket^\#$: abstract transfer function
The answers of Abstract Interpretation

Theorem (Soundness): \(\forall \ell \in \mathcal{L}, R_\ell \subseteq \gamma(\sigma^\#_\ell) \).

because we use *sound* operators (\(\cup^\#, +^\#, \ldots \)) in \(D^\# \), we keep over-approximating when computing the abstract semantics

cf. talking with toddlers

Abstract Interpretation: *compute* the abstract semantics, and check the required condition

- if the answer is “ok”, then it is “ok”
 - for example, 0 is *not among the possible values for X at that point in the program*

- if the answer is “no”, then work needs to be done
Insuring that an answer is provided

we want effective computations

- everything should be computable in $D\dagger$
 - representation of elements of $D\dagger$
 - $\sqsubseteq\dagger$, $\sqcup\dagger$, . . .

- computing the abstract semantics
 - computing σ_{ℓ}^\dagger
 - relies on the definition of abstract operators $+\dagger$, $-\dagger$, . . .

- computing the least fixpoint
 - Kleene iterations \perp, $F(\perp)$, $F(F(\perp))$, . . .
 - a finite number of them: stabilisation
 - ok if the lattice is of finite height
 - otherwise . . .
Widening

- the analysis must be able to answer in *reasonable time*
- in some cases, the abstract domain $D^\#$ is of unbounded height to guarantee convergence of the computation of the least fixpoint, we use a **widening operator** $\triangledown : D^\# \times D^\# \rightarrow D^\#$ satisfying:
 - $\forall x^\#, y^\#, x^\# \cup^\# y^\# \sqsubseteq^\# x^\# \triangledown y^\#$. *(soundness)*
 - for any sequence $(y_i^\#)_{i \geq 0}$, the sequence $x_0^\# = y_0^\#$, $x_{i+1}^\# = x_i^\# \triangledown y_{i+1}^\#$ satisfies $\exists n. x_{n+1}^\# = x_n^\#$. *(stabilisation)*

- $\sigma_{\ell}^{\#n+1} = \sigma_{\ell}^{\#n} \triangledown \bigcup_{(j, c, \ell) \in A[C]^{\#}} \sigma_{j}^{\#n}$ for some nodes ℓ belonging to cycles in the CFG

\(\leftarrow \) **convergence** of the iteration

- a **narrowing operator** can also be used to make the analysis more precise after applying widening
TP next week

- you will be given a program that computes the abstract semantics according to a given value abstract domain
- you will define several value abstract domains, and see how the analysis of programs is affected

 you might want to write down equations before coding \[\preceq\#\#\#\#\#\cdots\]

- all this in OCaml

 you don’t need to be an expert OCaml programmer
 basically, define (simple) types, and (simple) functions acting on such types

- install OCaml on your laptop
Further notions in Abstract Interpretation
References

- course by Pierre Roux
 AI in 3 lessons
- course by Antoine Miné (and others)
 much more detailed and in depth (M2)

 see links from the course webpage

- many thanks to Antoine and Pierre for allowing me to use their material

- a peculiarity in terminology:
 - prefixpoint $f(x) \sqsubseteq x$
 - postfixpoint $x \sqsubseteq f(x)$

 ...they use the converse
Galois connections

α: monotone abstraction function

\[
(D, \sqsubseteq) \leftrightarrow (D^\#, \sqsubseteq^\#) \\
\alpha(x) \sqsubseteq^\# y^\# \iff x \sqsubseteq \gamma(y^\#)
\]

- any $x \in D$ has a best abstraction $\alpha(x)$
Relational abstract domains

- the **concrete semantics** is given by a function (which is difficult to compute) in $\mathcal{L} \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$

 associating a set of possible memory states to every label in the program

- we have described **non relational analyses**

 $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$ is abstracted into $\mathcal{V} \rightarrow \mathcal{P}(\mathbb{Z})$, and then $\mathcal{P}(\mathbb{Z})$ is abstracted into some $\mathcal{D}^\#$

- a **relational abstract domain** is some $\mathcal{D}^\#$ which is an abstraction of $\mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})$

 express that certain combinations of x and y are impossible

 (polyhedra, octagons)