
CAP — Catch up course

Today: browse through several topics that will be useful in the
second part of the CAP course

1. Imp and Hoare logic

2. Caml

3. Partial orders and fixpoints

4. Operational semantics for Imp and Fun
more inference rules



1. Imp, a small imperative programming language



A first example

everybody should be able to read the following program, and
understand what each command does:

Q := 0;

R := X;

while R >= Y do (

Q := Q+1;

R := R-Y;

)



The grammar of Imp

an infinite set V of variable identifiers X ,Y ,Z , . . .

arithmetical expressions
a ::= X

∣∣ a1 + a2
∣∣ a1 ∗ a2

∣∣ − a
∣∣ 1, 2, 3, . . .

programs
p ::= X := a

∣∣ p1; p2

∣∣ if a ≥ 0 then p1 else p2∣∣ while a ≥ 0 do p
∣∣ skip

I skip: program that does nothing (maybe it is X := X)

I we could have boolean expressions, and programs of the form
if b then p1 else p2, while b do p

b ::= a ≥ 0
∣∣ ¬b

∣∣ b1 ∧ b2



Reasoning about the execution of Imp programs:
Hoare logic

{A} p {B}

if the initial state satisfies assertion A, and if the
execution of program p terminates, then the final state
satisfies assertion B

example: {X ≥ 0 ∧ Y > 0}
Q := 0;

R := X;

while R >= Y do (

Q := Q+1;

R := R-Y;

)

{X = Y ∗ Q + R ∧ R < Y }



The rules of Hoare logic, and how to read them

inference rules

{A[a/X ]}X := a {A} {A} skip {A}

{A1} p1 {A2} {A2} p2 {A3}
{A1} p1; p2 {A3}

{A ∧ a ≥ 0} p1 {B} {A ∧ ¬(a ≥ 0)} p2 {B}
{A} if a ≥ 0 then p1 else p2 {B}

{AI ∧ a ≥ 0} p {AI}
{AI} while a ≥ 0 do p {AI ∧ ¬(a ≥ 0)}

A1 ⇒ A2 {A2} p {B2} B2 ⇒ B1

{A1} p {B1}



Building a derivation in Hoare logic

{X ≥ 0 ∧ Y > 0}
Q := 0;

R := X;

while R >= Y do (

Q := Q+1;

R := R-Y;

)

{X = Y ∗ Q + R ∧ R < Y }

on the board



Other examples

{true} while true do skip {false}

{X = N ∧ N > 0}
Y := 1;

while X>0 do (

Y := Y * X;

X := X - 1;

);

{Y = N!}



2. A real functional programming language: OCaml



Demo

file camlcatchup.ml

(will be made available from the www page of the course)



3. Fixpoints



Partial orders

I a partially ordered set (poset) is given by (S ,v), where
relation v is reflexive, transitive, antisymmetric

I examples: (N,≤) (P(S),⊆)
I Hasse diagrams

I let (S ,v) be a poset, and consider E ⊆ S (E is a subset of S)

I u ∈ S is an upper bound of E if ∀x ∈ E , x v u
I u ∈ S is a least upper bound (lub) of E if all upper bounds

of E are above u, that is, ∀u′ ∈ S , (∀x ∈ S , s v u′) ⇒ u v u′

a least upper bound of E is written ∪E
I symmetrically, lower bound and greatest lower bound (glb),

written ∩E

I NB: glbs and lubs do not always exist.
two remarkable such elements, when they exist, are

I ⊥ = ∩S , the least element of S , and
I > = ∪S , the greatest element of S
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Particular kinds of partial orders

I a complete lattice is a poset (S ,v) with “everything”:

I for any E ⊆ S , ∩E and ∪E exist
I so in particular, ⊥ and > also exist

examples:
I (P(S),⊆, ∅,S ,∪,∩)
I (Z ∪ {−∞,+∞}, ≤, −∞,∞,max,min)

I a complete partial order (cpo) is a poset (S ,v) such that
for every chain C ⊆ S , ∪C exists

I a chain is some {x1, x2, . . . } ⊆ S such that ∀i , xi v xi+1

I a cpo has a least element, which is ∪∅



Particular kinds of partial orders

I a complete lattice is a poset (S ,v) with “everything”:

I for any E ⊆ S , ∩E and ∪E exist
I so in particular, ⊥ and > also exist

examples:
I (P(S),⊆, ∅,S ,∪,∩)
I (Z ∪ {−∞,+∞}, ≤, −∞,∞,max,min)

I a complete partial order (cpo) is a poset (S ,v) such that
for every chain C ⊆ S , ∪C exists

I a chain is some {x1, x2, . . . } ⊆ S such that ∀i , xi v xi+1

I a cpo has a least element, which is ∪∅



Two theorems about fixpoints

I Knaster-Tarski: the set of fixpoints of a monotone function
f : L→ L, where L is a complete lattice, forms a complete
lattice.

I Kleene: if f is a continuous function on a complete partial
order, then

⋂
{⊥, f (⊥), f (f (⊥)), ..} is the least fixpoint of f

continuous: f (∪D) = ∪f (D) for D directed (i.e. ∀x, y ∈ D, x and y have an upper bound in D)

I these two theorems exist, and their proofs are rather
elementary

I frequently used tools when reasoning mathematically about
programs and their runs



Operational semantics of Imp and Fun



The operational semantics of Imp programs

I exists in several flavours,
we define here the big step operational semantics

σ, p ⇓ σ′

The execution of program p in initial state σ terminates and
yields final state σ′.

what’s a “state”?

I a memory state, an environment
I a map from variables to integers σ : V → Z

given some program p, σ is a partial mapping from a finite set
of variables to Z

I σ, p ⇓ σ′ is called a judgment

it is defined by inference rules on the board



A small functional programming language: Fun

grammar

an infinite set of Fun variables x,y,z,. . .

Fun programs (are expressions)

e ::= e1 e2
∣∣ fun x → e

∣∣ let x = e1 in e2
∣∣ x
∣∣ 1, 2, 3, . . .

big step operational semantics

e ⇓ v

I v is a value v ::= fun x → e
∣∣ 1, 2, 3, . . .

I no environment


