Functional languages

Functions on the right (functions as arguments)

FUN, a small functional programming language

syntax

$$e ::= \int \operatorname{fun} x \to e \mid e_1 \mid e_2 \mid x$$
 core functional language $\mid e_1 + e_2 \mid 1, 2, 3, \dots$ if you insist

 $x, y, z, \ldots \in \mathcal{V}$ variable identifiers

▶ two versions of the operational semantics

on the board

- ▶ first version: $e \Downarrow v$ no environment
- $\begin{array}{ccc} \blacktriangleright & \text{second version:} & \sigma, e \Downarrow v \\ \hline \hline DEMO & \text{see also the (flawed) implementation} \\ \end{array}$

Program transformations in Fun

Arithmetic expressions and functions

Typical programs we want to execute, and how we write them

- ▶ notation for applications: g 3
 - ▶ in maths: g(3)
 - ▶ sometimes g@3 to stress that application is a binary operator
- ▶ using the let construct
 - ► a program is a sequence of lets, possibly followed by an expression (the "main")
 - ▶ let x = 3 in let y = 4 in let z = 5 in (x+y*z)

 will also be written $\begin{cases}
 let x = 3 \\
 let y = 4 \\
 let z = 5
 \end{cases}$
 - ▶ a nested let..in
 let f = fun x →
 let y = g (x*x) in
 if y>0 then y else x ← here is f's return (y or x)

Compiling to an Abstract Machine

on the board

The reason for closures

recall the example that motivated the introduction of closures

▶ hence the Abstract Machine transition

Closure(x,c'); c
$$\mid \sigma \mid$$
 s $\mid c \mid \sigma \mid (x,c')[\sigma].s$

notice the duplication of the environment

Free and bound variables in programs

► a Fun program

```
let x_1 = e_1 in

let u = fun \times - \times x \times 2

let u = fun \times - \times x \times 2

let v = fun \times - \times x \times 2

v + u = 12

let z = fun \times y - x \times 2

let z = fun \times y - x \times 2

let z = fun \times y - x \times 2

z + (f y)
```

a definition (*like the one for g above*) makes sense provided the variables it uses make sense in the environment where the definition occurs

▶ in let x = e1 in e2, x is bound in e2
 in fun x -> e, x is bound in e

a variable is **free** if it is not bound "free", or "non local"

 nota: let x = e1 in e2 behaves like (fun x -> e2) e1
 let x = e1 in e2 and fun x -> e are binders, the scope of x is e2 (resp. e)

scope is dope / static scope is extatic dope

Representing closures: closure conversion

- \blacktriangleright represent <code>explicitly</code> closures in the language $$\mathrm{Fun}$$ extended with tuples/records/structs
- ▶ modify functions:
 - when they are defined

```
[fun x -> e] = let code = fun (c,x) ->
let (_,x1,...,xn) = c in [e]
in (code, x1,...,xn)
```

where x1, ..., xn are the free variables of fun $x \rightarrow e$

- "let (_,x1,...,xn) = c in [e]": the function reconstructs the environment before executing [e]
- and when they are called

```
[e1 e2] = let c = [e1] in
    let code = proj<sub>0</sub>(c) in
    code (c,[e2])
```

Continuations

Making it systematic: the CPS translation

CPS: Continuation Passing Style

every value is translated into a program that waits for a receiver for this value

```
\lceil 12 \rceil = \text{fun } k \rightarrow k \mid 12 k: the receiver
```

NB: using "k" for continuations is rather standard, let's forget about using k for integers $(\in \mathbb{Z})$

- ▶ accordingly, define a translation from Fun to Fun,
 - written [e]
 - ▶ obeying the CPS convention: [e] = $fun k \rightarrow ...$

on the board

Handling closures

back to the example

- in compilers for functional languages, closures are typically represented by a pair
 - 1. pointer to the code for the body
 - 2. pointer to the environment
- DEMO clos.ml
- ▶ has to be allocated in the heap
- not the whole environment
- may contain, recursively, other pointers to environments

Lambda lifting: a transformation from Fun to Fun

- transforming the program in order to obtain a flat structure for functions
- pulling out functions defined within other functions

```
(in the "e" of a fun x \rightarrow e))
```

```
let f x =
    let g y = x+y in
example:

g 5*x + g 3*x

let g' y x = x+y
let f' x = g' x 5*x + g' x 3*x
```

► modifying the definition and the calls to these functions

(g above)

- ▶ we obtain a set of recursive definitions of functions,
 - with no free variable
 - all at the same level

Introducing continuations

```
▶ replace "returns" with function calls
```

```
from let f x y = x+2*y
to let f x y \mathbf{k} = \mathbf{k} (x+2*y)
\mathbf{k} \text{ is the "future" of the computation}
```

- ▶ calling a function let f x y = y + (g (2*x))
 - ▶ first compute g (2*x)
 - ► then (return inside f and) add y

```
let f x y k =

let k' = fun u -> k (y + u) in

g (2*x) k' (k' is the future of the computation of g (2*x))
```

► recursive functions let rec fact n = if n<2 then 1 else n*(fact (n-1))

```
let rec fact n k = if n<2 then k 1
else let k' = fun u -> k (n*u) in fact (n-1) k'
```

Continuations and control

CPS yields a style in which function calls express all forms of control-flow

- ▶ the flow is explicit
 - ▶ "fun v → .." insures sequentialisation
 - ▶ for instance, you know which summand you evaluate first
- ► while loops DEMO do_while_cont.ml

but also: return, break, continue, for

- exceptions
 - ▶ try with / raise, try catch / throw
 - ▶ it is possible to translate FUN+exceptions into FUN

on the board

CPS as an intermediate representation

the target language of the transformation is almost an intermediate language

every call is terminal

in principle, no need for a stack (always one function alive)

- ▶ refining the CPS transform to yield simpler programs
 - "administrative" reductions
 - treatment of arithmetical expressions when there are no function calls
 - ▶ treating n-ary functions as such

```
do not translate fun x1 -> fun x2 -> fun x3 -> e to fun x1 -> fun k1 -> fun x2 -> fun k2 -> fun x3 -> fun k3 -> [e] but to fun x1 x2 x3 k -> [e] or maybe to fun (x1, x2, x3, k) -> [e]
```

- distinguishing "true functions" from continuations (jumps)
- ▶ backwards transformation (out of CPS)
 - ▶ in order to compile using a stack
 - ▶ CPS form used for optimisation purposes

```
▶ consider let f x = g(h(x))
```

- ▶ first call h, then return in f
- ► then call g ← tail call
- ► then return in f, and exit from f
- $\,\blacktriangleright\,$ tail calls can be compiled in a specialised way, so that we exit from ${\tt f}$ when calling g
 - ▶ no push on the stack
- ▶ tail recursive functions: recursive calls are tail calls
 - ▶ the stack does not grow along recursion

```
DEMO append.ml, term.ml
```

CPS vs SSA

- ▶ the CPS transform yields programs which
 - ► are rather difficult to read
 - involve elementary operations
 - arithmetic operations and function calls only on atoms (variables,constants)
 - ▶ function calls are terminal
- ► CPS form (and its refinements/variations/improvements) is used as an intermediate representation for functional compilers
- ► CPS: the functional counterpart of SSA
 - ▶ unique assignment to variables
 - ▶ dominators ↔ scope
 - $\blacktriangleright \ \varphi$ nodes correspond to (some) continuations
 - \blacktriangleright join point in the CFG \leftrightarrow continuation
 - \blacktriangleright transfer of control and expressing $\varphi\leftrightarrow$ calling a continuation