
Functional languages

Arithmetic expressions and functions

32*(51+1)

⊗
32 ⊕

51 1

let f x = (3*x)

let f = fun x -> (3*x)

f(12)+2

⊕
@ 2

f 12

let g x y = 3*x+y

let g = fun x -> (fun y -> 3*x+y)

8 + (g 33 5)

⊕
8 @

@ 5

g 33

Functions on the right (functions as arguments)

let g = fun f -> f 3

let h = fun x -> x+5

g h @

g h

@

fun f fun x

@ ⊕
f 3 x 5

let p = fun x y -> x+y

let q = fun z -> z+2

g p 8

p 7 (q 3)

@

@ 8

g p

@

@ @

p 7 q 3

Typical programs we want to execute, and how we write
them

I notation for applications: g 3
I in maths: g(3)
I sometimes g@3 to stress that application is a binary operator

I using the let construct
I a program is a sequence of lets,

possibly followed by an expression (the “main”)

I let x = 3 in let y = 4 in let z = 5 in (x+y*z)

will also be written

let x = 3

let y = 4

let z = 5

(x+y*z)

I a nested let..in

let f = fun x →
let y = g (x*x) in

if y>0 then y else x ←− here is f’s return (y or x)

Fun, a small functional programming language

I syntax

e ::= fun x → e
∣∣ e1 e2

∣∣ x core functional∣∣ let x = e1 in e2 language∣∣ e1 + e2
∣∣ 1, 2, 3, . . . if you insist

x , y , z , . . . ∈ V variable identifiers

I two versions of the operational semantics

on the board

I first version: e ⇓ v no environment

I second version: σ, e ⇓ v

Demo see also the (flawed) implementation

Compiling to an Abstract Machine

on the board

Program transformations in Fun

The reason for closures

I recall the example that motivated the introduction of closures

let h = fun t -> t+t

let g = fun y -> 30 + (h y)

let h = 12

g 5

I hence the Abstract Machine transition

Closure(x,c’); c σ s c σ (x,c’)[σ].s

notice the duplication of the environment

Free and bound variables in programs
I a Fun program

let x1 = e1 in

let t = 3 let x2 = e2 in

let u = fun x -> x*2 ...

let v = fun z -> z + u (2*z) let xk = ek in

v t + u 12 e

let g = fun x y ->

let z = x+2*t in

z + (f y)

a definition (like the one for g above) makes sense provided the variables

it uses make sense in the environment where the definition occurs

I in let x = e1 in e2, x is bound in e2

in fun x -> e, x is bound in e

a variable is free if it is not bound “free”, or “non local”

• nota: let x = e1 in e2 behaves like (fun x -> e2) e1

• let x = e1 in e2 and fun x -> e are binders,
the scope of x is e2 (resp. e)

scope is dope / static scope is extatic dope

Handling closures

I back to the example

let h = fun t -> t+t

let g = fun y -> 30 + (h y) g = (fun y -> 30 + (h y))[(h, fun t -> t)]

let h = 12

g 5

I in compilers for functional languages, closures are typically
represented by a pair

1. pointer to the code for the body

2. pointer to the environment Demo clos.ml
I has to be allocated in the heap
I not the whole environment
I may contain, recursively, other pointers to environments

Representing closures: closure conversion

I represent explicitly closures in the language

Fun extended with tuples/records/structs

I modify functions:
- when they are defined

[fun x -> e] = let code = fun (c,x) ->

let (,x1,...,xn) = c in [e]

in (code, x1,...,xn)

where x1,...,xn are the free variables of fun x -> e

I ”let (,x1,...,xn) = c in [e]”: the function
reconstructs the environment before executing [e]

- and when they are called

[e1 e2] = let c = [e1] in

let code = proj0(c) in

code (c,[e2])

Lambda lifting: a transformation from Fun to Fun

I transforming the program in order to obtain a flat structure
for functions

I pulling out functions defined within other functions
(in the “e” of a fun x -> e))

example:

let f x =

let g y = x+y in

g 5*x + g 3*x

let g’ y x = x+y

let f’ x = g’ x 5*x + g’ x 3*x

I modifying the definition and the calls to these functions
(g above)

I we obtain a set of recursive definitions of functions,
- with no free variable
- all at the same level

Continuations

Introducing continuations

I replace “returns” with function calls

from let f x y = x+2*y

to let f x y k = k (x+2*y)

k is the “future” of the computation

I calling a function let f x y = y + (g (2*x))

I first compute g (2*x)
I then (return inside f and) add y

let f x y k =

let k’ = fun u -> k (y + u) in

g (2*x) k’ (k’ is the future of the computation of g (2*x))

I recursive functions let rec fact n = if n<2

then 1 else n*(fact (n-1))

let rec fact n k = if n<2 then k 1

else let k’ = fun u -> k (n*u) in fact (n-1) k’

Making it systematic: the CPS translation
CPS: Continuation Passing Style

I every value is translated into a program that waits for a
receiver for this value

[12] = fun k -> k 12 k: the receiver

NB: using “k” for continuations is rather standard,
let’s forget about using k for integers (∈ Z)

I accordingly, define a translation from Fun to Fun,

I written [e]
I obeying the CPS convention: [e] = fun k -> ..

on the board

Continuations and control

CPS yields a style in which function calls express all forms of
control-flow

I the flow is explicit

I “fun v -> ..” insures sequentialisation
I for instance, you know which summand you evaluate first

I while loops Demo do while cont.ml

but also: return, break, continue, for

I exceptions

I try with / raise, try catch / throw
I it is possible to translate Fun+exceptions into Fun

Properties of the CPS translation

on the board

Tail calls

I consider let f x = g(h(x))
I first call h, then return in f
I then call g ←− tail call
I then return in f, and exit from f

I tail calls can be compiled in a specialised way, so that we exit
from f when calling g

I no push on the stack

I tail recursive functions: recursive calls are tail calls
I the stack does not grow along recursion

Demo append.ml, term.ml

CPS as an intermediate representation
the target language of the transformation
is almost an intermediate language

I every call is terminal
in principle, no need for a stack (always one function alive)

I refining the CPS transform to yield simpler programs
I “administrative” reductions
I treatment of arithmetical expressions

when there are no function calls

I treating n-ary functions as such

do not translate fun x1 -> fun x2 -> fun x3 -> e

to fun x1 -> fun k1 -> fun x2 -> fun k2

-> fun x3 -> fun k3 -> [e]

but to fun x1 x2 x3 k -> [e]

or maybe to fun (x1, x2, x3, k) -> [e]

I distinguishing “true functions” from continuations (jumps)

I backwards transformation (out of CPS)
I in order to compile using a stack
I CPS form used for optimisation purposes

CPS vs SSA

I the CPS transform yields programs which
I are rather difficult to read
I involve elementary operations

I arithmetic operations and function calls only on atoms
(variables,constants)

I function calls are terminal

I CPS form (and its refinements/variations/improvements) is
used as an intermediate representation for functional compilers

I CPS: the functional counterpart of SSA
I unique assignment to variables
I dominators ↔ scope
I ϕ nodes correspond to (some) continuations

I join point in the CFG ↔ continuation
I transfer of control and expressing ϕ ↔ calling a continuation

