Functional languages

Arithmetic expressions and functions

Functions on the right (functions as arguments)
let $g=$ fun $f \rightarrow f 3$
let $h=$ fun $x \rightarrow x+5$
g h

let $p=$ fun $x y->x+y$
let $q=$ fun $z->z+2$

g p 8
p 7 (q3)

- notation for applications: g 3
- in maths: g(3)
- sometimes g@3 to stress that application is a binary operator
- using the let construct
- a program is a sequence of lets, possibly followed by an expression (the "main")
- let $x=3$ in let $y=4$ in let $z=5$ in ($x+y * z$)

$$
\begin{aligned}
& \text { let } x=3 \\
& \text { let } y=4 \\
& \text { let } z=5 \\
& (x+y * z)
\end{aligned}
$$

will also be written

- a nested let..in

$$
\begin{aligned}
& \text { let } f=\text { fun } x \rightarrow \\
& \text { let } y=g(x * x) \text { in }
\end{aligned}
$$

$$
\text { if } \mathrm{y}>0 \text { then } \mathrm{y} \text { else } \mathrm{x} \quad \longleftarrow \text { here is f's return (} \mathrm{y} \text { or } \mathrm{x} \text {) }
$$

FUN, a small functional programming language

- syntax

$$
\begin{aligned}
& e::=\text { fun } x \rightarrow e\left|e_{1} e_{2}\right| x \quad \text { core functional } \\
& \text { let } x=e_{1} \text { in } e_{2} \\
& e_{1}+e_{2} \mid 1,2,3, \ldots \\
& \text { language } \\
& \text { if you insist }
\end{aligned}
$$

$x, y, z, \ldots \in \mathcal{V}$ variable identifiers

- two versions of the operational semantics

on the board

- first version: $\quad e \Downarrow v \quad$ no environment
- second version: $\quad \sigma, e \Downarrow v$

DEMO see also the (flawed) implementation

Compiling to an Abstract Machine

Program transformations in FUN

The reason for closures

- recall the example that motivated the introduction of closures

$$
\begin{aligned}
& \text { let } h=\text { fun } t \rightarrow t+t \\
& \text { let } g=\text { fun } y \rightarrow 30+(h y) \\
& \text { let } h=12 \\
& g 5
\end{aligned}
$$

- hence the Abstract Machine transition

$$
\text { Closure }\left(\mathrm{x}, \mathrm{c}^{\prime}\right) ; \mathrm{c}|\sigma| \mathrm{s} \quad \| \quad \mathrm{c}|\sigma|\left(\mathrm{x}, \mathrm{c}^{\prime}\right)[\sigma] . \mathrm{s}
$$

Free and bound variables in programs

- a FUN program

```
let t = 3
let u = fun x -> x*2
let v = fun z -> z + u (2*z)
    v t + u 12
```

```
let }\mp@subsup{x}{1}{}=\mp@subsup{e}{1}{}\mathrm{ in
let }\mp@subsup{x}{2}{}=\mp@subsup{e}{2}{}\mathrm{ in
let }\mp@subsup{\textrm{x}}{k}{}=\mp@subsup{\textrm{e}}{k}{}\mathrm{ in
e
```

$$
\begin{aligned}
& \text { let } g=\text { fun } x \text { y }-> \\
& \text { let } z=x+2 * t \text { in } \\
& z+(f y)
\end{aligned}
$$

a definition (like the one for g above) makes sense provided the variables it uses make sense in the environment where the definition occurs

- in let $x=e 1$ in e2, x is bound in e2
in fun $x \rightarrow e, \quad x$ is bound in e
a variable is free if it is not bound "free", or "non local"
- nota: let $x=e 1$ in e2 behaves like (fun x-> e2) e1
- let $\mathrm{x}=\mathrm{e} 1$ in e2 and fun $\mathrm{x} \rightarrow \mathrm{e}$ are binders, the scope of x is e2 (resp. e)
scope is dope / static scope is extatic dope

Handling closures

- back to the example

```
let h = fun t -> t+t
let g = fun y >> 30 + (h y) g = (fun y >> 30 + (h y))[(h, fun t -> t)]
let h = 12
    g 5
```

- in compilers for functional languages, closures are typically represented by a pair

1. pointer to the code for the body
2. pointer to the environment

DEMO clos.ml

- has to be allocated in the heap
- not the whole environment
- may contain, recursively, other pointers to environments

Representing closures: closure conversion

- represent explicitly closures in the language

Fun extended with tuples/records/structs

- modify functions:
- when they are defined

$$
\begin{aligned}
& \text { [fun } \mathrm{x} \text {-> e] = let code }=\text { fun (}(, \mathrm{x}) \text {-> } \\
& \text { let (} \quad, \mathrm{x} 1, \ldots, \mathrm{xn} \text {) = c in [e] } \\
& \text { in (code, } x 1, \ldots, x n \text {) } \\
& \text { where } \mathrm{x} 1, \ldots \text {, } \mathrm{xn} \text { are the free variables of fun } \mathrm{x} \rightarrow \mathrm{e} \\
& \text { - "let (} \quad, \mathrm{x} 1, \ldots, \mathrm{xn} \text {) = c in [e]": the function } \\
& \text { reconstructs the environment before executing [e] }
\end{aligned}
$$

- and when they are called

$$
\begin{aligned}
{[\mathrm{e} 1 \mathrm{e} 2]=} & \text { let } c=[e 1] \text { in } \\
& \text { let code }=\operatorname{proj}_{0}(c) \text { in } \\
& \text { code }(c,[e 2])
\end{aligned}
$$

Lambda lifting: a transformation from FUN to FUN

- transforming the program in order to obtain a flat structure for functions
- pulling out functions defined within other functions

$$
\text { (in the "e" of a fun } x \rightarrow e \text {)) }
$$

example:

$$
\begin{aligned}
& \text { let } \mathrm{f} x= \\
& \quad \text { let } \mathrm{g} y=\mathrm{y}+\mathrm{y} \text { in } \\
& \mathrm{g} 5 * \mathrm{x}+\mathrm{g} 3 * \mathrm{x} \\
& \text { let } \mathrm{g}^{\prime} \mathrm{y} x=\mathrm{x}+\mathrm{y} \\
& \text { let } \mathrm{f}, \mathrm{x}=\mathrm{g}, \mathrm{x} 5 * \mathrm{x}+\mathrm{g}^{\prime} \mathrm{x} 3 * \mathrm{x}
\end{aligned}
$$

- modifying the definition and the calls to these functions
(g above)
- we obtain a set of recursive definitions of functions,
- with no free variable
- all at the same level

Continuations

Introducing continuations

- replace "returns" with function calls

$$
\begin{aligned}
& \text { from let } f x y=x+2 * y \\
& \text { to let } f x y k=k(x+2 * y)
\end{aligned}
$$

k is the "future" of the computation

- calling a function let $\mathrm{f} x \mathrm{y}=\mathrm{y}+(\mathrm{g}(2 * \mathrm{x}))$
- first compute g ($2 *$ x)
- then (return inside f and) add y
let $\mathrm{f} x \mathrm{y} k=$
let k ' = fun u-> $k(y+u)$ in
$\mathrm{g}(2 * \mathrm{x}) \mathrm{k}$, (k^{\prime} is the future of the computation of $\mathrm{g}(2 * \mathrm{x})$)
- recursive functions let rec fact $\mathrm{n}=$ if $\mathrm{n}<2$
then 1 else $n *(f a c t(n-1))$
let rec fact $\mathrm{n} k=$ if $\mathrm{n}<2$ then k 1
else let k' = fun u-> $k(n * u)$ in fact ($n-1$) k'

Making it systematic: the CPS translation

CPS: Continuation Passing Style

- every value is translated into a program that waits for a receiver for this value

$$
\text { [12] = fun k }->\text { k } 12 \quad \mathrm{k}: \text { the receiver }
$$

NB: using " k " for continuations is rather standard, let's forget about using k for integers $(\in \mathbb{Z})$

- accordingly, define a translation from Fun to Fun,
- written [e]
- obeying the CPS convention: [e] = fun k -> ..

> on the board

Continuations and control

CPS yields a style in which function calls express all forms of control-flow

- the flow is explicit
- "fun v -> .." insures sequentialisation
- for instance, you know which summand you evaluate first
- while loops

Demo do_while_cont.ml but also: return, break, continue, for

- exceptions
- try with / raise, try catch / throw
- it is possible to translate Fun+exceptions into Fun

Properties of the CPS translation

on the board

Tail calls

- consider let $\mathrm{f} x=\mathrm{g}(\mathrm{h}(\mathrm{x}))$
- first call h, then return in f
- then call g \longleftarrow tail call
- then return in f, and exit from f
- tail calls can be compiled in a specialised way, so that we exit from f when calling g
- no push on the stack
- tail recursive functions: recursive calls are tail calls
- the stack does not grow along recursion

DEMO append.ml, term.ml

CPS as an intermediate representation

the target language of the transformation
is almost an intermediate language

- every call is terminal
in principle, no need for a stack (always one function alive)
- refining the CPS transform to yield simpler programs
- "administrative" reductions
- treatment of arithmetical expressions when there are no function calls
- treating n -ary functions as such

```
do not translate fun x1 -> fun x2 -> fun x3 -> e
to fun x1 -> fun k1 -> fun x2 -> fun k2
    -> fun x3 -> fun k3 -> [e]
but to fun x1 x2 x3 k -> [e]
or maybe to fun (x1, x2, x3, k) -> [e]
```

- distinguishing "true functions" from continuations (jumps)
- backwards transformation (out of CPS)
- in order to compile using a stack
- CPS form used for optimisation purposes

CPS vs SSA

- the CPS transform yields programs which
- are rather difficult to read
- involve elementary operations
- arithmetic operations and function calls only on atoms (variables,constants)
- function calls are terminal
- CPS form (and its refinements/variations/improvements) is used as an intermediate representation for functional compilers
- CPS: the functional counterpart of SSA
- unique assignment to variables
- dominators \leftrightarrow scope
- φ nodes correspond to (some) continuations
- join point in the CFG \leftrightarrow continuation
- transfer of control and expressing $\varphi \leftrightarrow$ calling a continuation

