
Hoare triples

Floyd-Hoare Logic, Separation Logic

1. Floyd-Hoare Logic 1969

Reasoning about control

Hoare triples
I {A} p {B} a Hoare triple

partial correctness:

if the initial state satisfies assertion A, and if the execution of
program p terminates, then the final state satisfies assertion B

I inference rules

{A[a/X ]}X := a {A} {A} skip {A}
{A1} p1 {A2} {A2} p2 {A3}

{A1} p1; p2 {A3}

{A ∧ a ≥ 0} p1 {B} {A ∧ ¬(a ≥ 0)} p2 {B}
{A} if a ≥ 0 then p1 else p2 {B}

{AI ∧ a ≥ 0} p {AI}
{AI} while a ≥ 0 do p {AI ∧ ¬(a ≥ 0)}

A1 ⇒ A2 {A2} p {B2} B2 ⇒ B1

{A1} p {B1}

I expressive properties

functional correctness rather than absence of runtime errors

Hoare logic — main ingredients

programmers X := Y+3

(Hoare) logicians X ≥ Y+3

ingredients in Hoare logic:

1. a language for programs p Imp
2. a language for assertions A
3. inference rules

important aspects:

I invariants in loops

I logical deduction rule

I backward reasoning (in
the rule for assignment)

Hoare logic: metatheoretical properties

I operational semantics and validity

I big step operational semantics for Imp: σ, p ⇓ σ′

I σ is an environment
I σ : V → Z a map from variables to integers

given some program p, σ is a partial mapping from a finite set
of variables to Z

I the triple {A} p {B} is valid:
for all σ, if σ satisfies A and σ, p ⇓ σ′, then σ′ satisfies B

I correctness If the triple {A} p {B} can be derived using
the inference rules of Hoare logic, then it is valid.

I NB: we could also rely on denotational semantics
associate to each program p some function Fp from
environments to environments

I (relative) completeness any valid triple can be
constructed in Hoare logic, provided we can decide validity of
the assertions (i.e., decide whether A always holds)

I logic rules capture the properties we want to express

Correct rules and completeness

I the 6 rules of Hoare logic are not the only correct rules

I for instance, the rule of constancy is correct too

{A} p {B}
{A ∧ C} p {B ∧ C} no variable in C is modified by p

I completeness: no new Hoare triple can be established if we
add the rule of constancy

I the 6 rules “tell everything”
I using the rule of constancy makes proofs easier/more

natural/more readable

somehow, completeness is not only a theoretical question

The axiom for assignment

the axiom for assignment goes backwards

{A[a/X ]}X := a {A}

(consider X := X + 3 to convince yourself)

Floyd’s forward axiom

{A}X := a {∃i . (X = a[i/X ] ∧ A[i/X ])}

see also {A ∧ X = i}X := a {A[i/X ] ∧ X = a[i/X ]}
i : “ghost variable” (should probably be written I)

Synonyms

assertion formula A

environment store σ

correctness soundness for a rule



2. Separation Logic ∼2000

Reasoning about memory

Programs manipulating pointers

I Hoare logic deals essentially with control

if a ≥ 0 then p1 else p2 p1; p2 while a ≥ 0 do p

I move to a richer language:

add (some kind of) pointers and handling of memory
I allocation
I modification (move pointers around)

I liberation/deallocation

I different kinds of properties
I typical runtime errors we want to detect:

memory leaks, invalid disposal, invalid accesses

typically, other approaches either assume memory safety,
or forbid dynamic memory allocation

I describe what programs manipulating pointers do

I adopt the same methodological framework

Separation Logic is an enrichment of Floyd-Hoare logic

Extending Imp

I structure of memory at runtime
I in (traditional) Hoare-Floyd logic, programs manipulate

variables

the environment just records the (integer) value of each variable

that is all we know about the memory

I dynamically allocated memory: add a heap component

I extending the programming language

on the board

what does this program do?

J := nil ;

while I != nil do

K := [I + 1];

[I + 1] := J;

J := I;

I := K

on the board

Extending assertions: introducing heap formulas

I a memory state is (σ, h) where
I σ is a store
I h is a heap

I Hoare logic assertions state properties about the environment

X ≥ Y ∗ Z + Q ∧ T > 0

I add formulas to reason about the heap

I NB: X 7→ 52 usually makes more sense than 32 7→ 52
(both are assertions)

Hoare triples in Separation logic — interpretation

{A} p {B} holds iff

∀σ, h., if (σ, h) |= A, ( (σ, h) satisfies A)

then

• (σ, h), p 6⇓ error, and

• if (σ, h), p ⇓ (σ′, h′), then (σ′, h′) |= B

like in traditional Hoare logic, but:

I the state has a heap component

I absence of forbidden access to the memory

Small axioms

on the board

I axioms for heap-accessing operations are tight

they only refer to the part of the heap they need to access
(their footprint)

I along these lines,
tight version of the axiom for (usual) assignment:

{X = i ∧ emp}X := a {X = a[i/X ] ∧ emp}
if X does not occur in a,
the rule becomes simpler: {emp}X := a {X = a ∧ emp}

I moreover, being tight tells us the following:
I suppose we can prove {10 7→ 32} p {10 7→ 52} whatever p is

I then we know that

if we run p in a state where cell 11 is allocated,
then p will not change the value of 11

The frame rule

I the rules of Hoare logic remain sound

I the rule of consistency
{A} p {B}

{A ∧ C} p {B ∧ C}
no variable in C
is modified by p

becomes unsound

{x 7→ } [x ] := 4 {x 7→ 4}
{x 7→ ∧ y 7→ 3} [x ] := 4 {x 7→ 4 ∧ y 7→ 3} what if x = y?

I the Frame Rule

{A} p {B}
{A ∗ C} p {B ∗ C}

no variable in C
is modified by p

I separation logic is inherently modular

as opposed to whole program verification

Separation logic: sum up

I inference rules
I those of Hoare logic control
I those for the new programming constructs memory

I important things:
I invariants in while loops, backward rule for assignment,

consequence rule
I (tight) small axioms, footprint, frame rule

I metatheoretical properties
I correctness
I completeness



Beyond absence of runtime errors:

recursive data structures

Reasoning about lists

I a linked list in memory is something like

(X1 7→ k1,X2) ∗ (X2 7→ k2,X3) ∗ · · · ∗ (Xn 7→ kn, nil)

(X 7→ a, b) stands for X 7→ a ∗ (X + 1) 7→ b

I describe the structure using assertions:

add the possibility to write (recursive) equations

list(i) = (i = nil ∧ emp) ∨ (∃j , k. (i 7→ k , j) ∗ list(j))

I the formula above just specifies that we have a list in memory

we can rely on “mathematical lists” ([], k::ks) to provide a
more informative definition

list([], i) = emp ∧ i = nil
list(k::ks, i) = ∃j . (i 7→ k, j) ∗ list(ks, j)

Recursive data structures

I we can specify similarly various kinds of data structures

I we can give a meaning to such recursive definitions using
Tarski’s theorem

I an exercise

list(i) = (i = nil ∧ emp) ∨ (∃j , k. (i 7→ k , j) ∗ list(j))

I write the code for a while loop that deallocates a linked list,
I and prove {list(X )} p {emp}, where p is your program

On the weirdness of auxiliary variables
I in the lecture we saw the small axiom for lookup

{a 7→ i ∧ X = j}X := [a] {X = i ∧ a[j/X ] 7→ i}
I in the TD you saw its simpler form

{a 7→ i}X := [a] {X = i ∧ a[j/X ] 7→ i} if X does not appear in a

I how does one entail the other?

rule of auxiliary
variable elimination

{A} p {B}
{∃u.A} p {∃u.B}

if u does not
appear in p

I if X does not appear in a, a[j/X ] = a

moreover,
{a 7→ i ∧ X = j}X := [a] {X = i ∧ a 7→ i}

{∃j . (a 7→ i ∧ X = j)︸ ︷︷ ︸
⇔ a 7→ i ∧ ∃j .X = j
⇔ a 7→ i

}X := [a] {∃j . (X = i ∧ a 7→ i)︸ ︷︷ ︸
⇔ X =i ∧ a 7→i

}

Going further

Reasoning about concurrent programs

concurrent separation logic

I shared memory, several threads

I permissions, locks, critical sections

I ownership

Towards automation

I Hoare logic and separation logic are used naturally in an
interactive manner

I if loop invariants are provided (as well as the global pre and
post conditions), we can automatically chop the verification
task into the proof of slices of the form

{A} p1; p2; . . . ; pk {B},

where the pi s are elementary commands.

I construction of the Hoare triple boils down to being able to
prove entailments between assertions, A ` B

cf. the Why3 tool (Filliâtre et al.)

Towards automation of separation logic
I restrict the set of possible formulas: symbolic heaps

P ∧ H
P = P1 ∧ · · · ∧ Pk pure formulas
H = H1 ∧ · · · ∧ Hn simple heap formulas

(for instance, 7→, list,emp)

I small axioms are adapted to symbolic heaps,
yielding a “specialised operational semantics”

I deciding entailments
I for the pure part of symbolic heaps, standard approaches

(theorem provers/automatic decision procedures)
I for the heap components, exploiting implications like

I (list(i) ∧ i = nil) ⇒ emp
I (i 7→ k, j ∧ list(j)) ⇒ list(i)

I more automation: discovering loop invariants
I back to abstract interpretation: abstract execution, generating

a postcondition as we run through the loop
I sometimes abstracting (narrowing) to insure termination

I e.g., replacing i 7→ k, j ∧ j 7→ (k ′, j ′) ∧ j ′ = nil with list(i)
(loosing information about the size of the list)



Modular analysis

I use the automated framework to analyse
functions manipulating pointers

I compute Hoare triples for functions,
without information about the rest of the code

I solve A ∗ ?antiframe ` B ∗ ?frame

I antiframe: missing portion of heap
because of function calls, the outer function body should have
some parts of the heap in its precondition

I frame: leftover portion of heap
the postcondition of the outer function body specifies what
parts of the heap are left unchanged


