
Type systems



We have seen types in the course already

I types as a description of a data structure
I to generate code to allocate and construct variables
I every identifier comes with a type

variable declarations char c

I type checking (C, Pascal, . . . )
I detecting runtime errors: bad usage of variables
I checking function calls f(t1,..,tn)

I functions have types of the form (τ 1 ∗ · · · ∗ τ n) −→ τ ′

I the τi , τ
′ must be provided by the programmer

I some flexibility: subtyping char≤ int

I types can also be used for program analysis
I Hoare triples as types?

{A} p {B} can be written p : A → B
(assigning a type to a whole program)

I what (inert) data structures are vs what programs do

move to richer types



The language for types

I a lot of research in programming languages focuses
on type systems

I analyse the behaviour of programs
I absence of runtime errors
I provide guarantees (termination, non-interference, complexity,

protocol compliance, ..)

I two languages, for programs and for types
I the notion of function is central
I types for functions: τ1 → τ2

programs Fun types τ ::= int
∣∣ τ1 → τ2



Typing: definition

on the board



Exercise:

typing the CPS transform



Types in functional languages
I typing guarantees absence of runtime errors

Theorem: if Γ ` e : τ , then running e will not generate a bad
application of a function to an argument.

I language design: functions, and function types, are primitive
in functional languages

I less constructs in the language of types, (no struct, typedef)

but the language is somehow richer
I promoting the use of functions: applications everywhere

more typing, “hence” less bugs

I ML also has polymorphic types: ’a -> (’a -> ’b) -> ’b
I not only := and = (as seen before)

I the programmer can define polymorphic functions
I int -> (bool->int) -> bool and int -> (int->int) -> int are

instances of the type above
I types for functional programming languages have their origins

in logic/proof theory
I → stands for ⇒
I but ∀ (as in fun z -> z : ’a -> ’a) does not really stand for ∀

∀ is rather dependent types, as in Coq’s type system



Type inference



Type inference as in ML / Haskell

I the core of ML/Haskell (basically, Fun)

I not modules/functors

I no need for any annotation
I input: a bare program
I output: a type, or an error message

the type, actually (there are “principal types”)

I how does it work?

1. constraint generation
2. constraint solving

Theorem: the generated constraint problem has a solution iff
the program has a principal type.

I this approach, known as the Hindley-Milner approach, is global



Partial type inference
I issues in type inference

I decidability
I to a lesser extent, complexity
I being intuitive / predictable

readability of error messages
I some languages adopt partial type inference

I pragmatical reasons
I writing type annotations can be a good habit
I but we don’t want to write annotations which are

. silly nothing informative

. common ok for rare situations

I theoretical reasons

the type system is so rich (objects, subtyping, modules,
polymorphism, ..) that we cannot decide inference
Scala, ML, Coq

I an example: type inference in Scala
I builds on Java: Java users praise type inference
I is close to a functional language:

functional programmers blame partiality



Bidirectional type inference

on the board



Programming languages zoology



Things left to say

I exam
I all of the course (C+AP)
I written documents (notes, books) are allowed

I évaluation


