Comet, exercises 6
Bring your answers to next course (Oct 26)

1 Universal Coalgebra

Let \(F = 2 \times Id^A \) (i.e., \(FX = 2 \times X^A \)) be the functor for deterministic automata.

Question 1.1. Give its action on morphisms (i.e., what is \(Ff \) for some \(f : X \to Y \) ?). Prove that it is a functor.

Answer. \(Ff \) is the following function from \(FX = 2 \times X^A \) to \(FY = 2 \times Y^A \):
\[
Ff : 2 \times X^A \to 2 \times Y^A
\]
\[
\langle o, t \rangle \mapsto \langle o, f \circ t \rangle
\]

Given this definition, that \(Fid = id \) and \(F(f \circ g) = Ff \circ Fg \) is obvious. \(\square \)

Recall that the final coalgebra for this functor is the coalgebra of formal languages on the alphabet \(A \), with derivatives describing the dynamics:
\[
\langle \mathcal{P}(A^*), \langle \epsilon, \delta \rangle \rangle \text{ with } \epsilon(L) = " \epsilon \in L " \text{ and } \delta_a(L) = a^{-1}L = \{ w \mid aw \in L \}.
\]

Question 1.2. Describe the final coalgebra for the functors \(B \times Id^A \) and \(B \times Id \), where \(B \) is an arbitrary set (justify your answers).

Answer. For \(B \times Id^A \), the final algebra consists of the set \(B^{A^*} \) of functions from finite words on \(A \), to \(B \). (The case \(B = 2 \) gives back formal languages, represented by their characteristic function.)

The coalgebra structure is given as follows:
\[
z : B^{A^*} \to B \times (B^{A^*})^A
\]
\[
f \mapsto [f(\epsilon), (a \mapsto w \mapsto f(aw))]
\]

Given a coalgebra \(f : X \to B \times X^A \), one defines the following function \([\cdot] : X \to B^{A^*} \) by induction on words:
\[
[x](\epsilon) = \pi_1(f(x))
\]
\[
[x](aw) = ([\pi_2(f(x))](a))[w]
\]

(Writing \(f = \langle o, t \rangle \) with \(o = \pi_1 \circ f \) and \(t = \pi_2 \circ f \), we get the more friendly notations \([x](\epsilon) = o(x) \) and \([x](aw) = [t(x)(a)](w) \).

I let you check that this is the unique function such that \(z \circ [\cdot] = F[\cdot] \circ f \) (i.e., the unique coalgebra homomorphism from \(\langle X, f \rangle \) to \(\langle B^{A^*}, z \rangle \).)
For the functor $B \times \text{Id}$, just apply the previous answer to $A = 1$ (any singleton set). The final coalgebra is thus B^1, but $1^\ast \simeq \mathbb{N}$ so that we get functions from natural numbers to B, i.e., infinite streams of elements of B. \qed