Comet, exercises 6

Bring your answers to next course (Oct 26)

1 Universal Coalgebra

Let $F=2\times Id^A$ (i.e., $FX=2\times X^A$) be the functor for deterministic automata.

Question 1.1. Give its action on morphisms (i.e., what is Ff for some $f: X \to Y$?). Prove that it is a functor.

Answer. Ff is the following function from $FX = 2 \times X^A$ to $FY = 2 \times Y^A$:

$$Ff: \ 2 \times X^A \to 2 \times Y^A$$
$$\langle o, t \rangle \mapsto \langle o, f \circ t \rangle$$

Given this definition, that Fid = id and $F(f \circ g) = Ff \circ Fg$ is obvious. \square

Recall that the final coalgebra for this functor is the coalgebra of formal languages on the alphabet A, with derivatives describing the dynamics: $\langle \mathcal{P}(A^*), \langle \epsilon, \delta \rangle \rangle$ with $\epsilon(L) = "\epsilon \in L"$ and $\delta_a(L) = a^{-1}L = \{w \mid aw \in L\}$.

Question 1.2. Describe the final coalgebra for the functors $B \times Id^A$ and $B \times Id$, where B is an arbitrary set (justify your answers).

Answer. For $B \times Id^A$, the final algebra consists of the set B^{A^*} of functions from finite words on A, to B. (The case B=2 gives back formal languages, represented by their characteristic function.)

The coalgebra structure is given as follows:

$$z: B^{A^*} \to B \times (B^{A^*})^A$$

 $f \mapsto \langle f(\epsilon), (a \mapsto w \mapsto f(aw)) \rangle$

Given a coalgebra $f: X \to B \times X^A$, one defines the following function $[\cdot]: X \to B^{A^*}$ by induction on words:

$$[x](\epsilon) = \pi_1(f(x))$$

 $[x](aw) = [(\pi_2(f(x)))(a)](w)$

(Writing $f = \langle o, t \rangle$ with $o = \pi_1 \circ f$ and $t = \pi_2 \circ f$, we get the more friendly notations $[x](\epsilon) = o(x)$ and [x](aw) = [t(x)(a)](w).)

I let you check that this is the unique function such that $z \circ [\cdot] = F[\cdot] \circ f$ (i.e., the unique coalgebra homomorphism from $\langle X, f \rangle$ to $\langle B^{A^*}, z \rangle$.)

For the functor $B \times Id$, just apply the previous answer to A=1 (any singleton set). The final coalgebra is thus B^{1^\star} , but $1^\star \simeq \mathbb{N}$ so that we get functions from natural numbers to B, i.e., infinite streams of elements of B.