Comet, exercises 11

Bring your answers to next course, in two weeks (Dec 7)

1 Streams

Let us denote by \mathbb{R}^{ω} the set of streams, i.e., infinite sequences $\sigma, \tau \ldots$ of real numbers.

Together with the following function associating to each stream its first element and its tail, \mathbb{R}^{ω} is a final coalgebra for the functor $F X=\mathbb{R} \times X$

$$
\begin{aligned}
\mathbb{R}^{\omega} & \rightarrow \mathbb{R} \times \mathbb{R}^{\omega} \\
\sigma & \mapsto\left\langle\sigma_{0}, \sigma^{\prime}\right\rangle
\end{aligned}
$$

One can thus define streams by behavioural differential equations (i.e., F coalgebras). For instance, the everywhere-0 stream $\hat{0}$ can be defined by the following equations:

$$
\hat{0}_{0}=0 \quad \hat{0}^{\prime}=\hat{0}
$$

Similarly, pointwise addition of streams can be defined by

$$
(\sigma+\tau)_{0}=\sigma_{0}+\tau_{0} \quad(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}
$$

Shuffle product. Things become more interesting for more complex operations. Take for instance the shuffle product of streams, usually defined by the following formula:

$$
(\sigma \otimes \tau)_{n}=\sum_{k=0}^{n}\binom{n}{k} \times \sigma_{k} \times \tau_{n-k}
$$

This operation can alternatively be defined using the following differential equations, which no longer involve binomial coefficients:

$$
(\sigma \otimes \tau)_{0}=\sigma_{0} \times \tau_{0} \quad(\sigma \otimes \tau)^{\prime}=\sigma^{\prime} \otimes \tau+\sigma \otimes \tau^{\prime}
$$

Proving a simple property like associativity can be difficult with the former definition, as it would involve double summations of terms with several binomial coefficients. In contrast, one can give a straightforward coinductive proof.

Let \mathbf{b} be the following (monotone) function on binary relations on streams:

$$
\mathbf{b}: \mathcal{R} \mapsto\left\{\langle\sigma, \tau\rangle \mid \sigma_{0}=\tau_{0} \text { and } \sigma^{\prime} \mathcal{R} \tau^{\prime}\right\}
$$

One easily checks that its greatest fixpoint is just the identity relation: $\langle\sigma, \tau\rangle \in \nu \mathbf{b}$ iff $\sigma=\tau$. One can thus prove stream equalities by coinduction.

Question 1.1. Give (again?) a simple bisimulation that proves commutativity of stream addition.

Question 1.2. Prove that the following function is compatible

$$
\mathbf{c}^{+}: \mathcal{R} \mapsto\{\langle\sigma+\rho, \tau+\omega\rangle \mid \sigma \mathcal{R} \tau, \rho \mathcal{R} \omega\}
$$

Question 1.3. Assuming distributivity of shuffle product over addition, prove associativity of shuffle product using a simple bisimulation up-to.

Question 1.4. Is the following function compatible? Prove that it is below the companion.

$$
\mathbf{c}^{\otimes}: \mathcal{R} \mapsto\{\langle\sigma \otimes \rho, \tau \otimes \omega\rangle \mid \sigma \mathcal{R} \tau, \rho \mathcal{R} \omega\}
$$

Exponentiation. Let us finally consider a third natural operation on streams: exponentiation, defined by the following differential equation:

$$
e_{0}^{\sigma}=e^{\sigma_{0}} \quad e^{\sigma \prime}=\sigma^{\prime} \otimes e^{\sigma}
$$

Question 1.5. Prove the following law, using a bisimulation up to the companion.

$$
e^{\sigma+\tau}=e^{\sigma} \otimes e^{\tau}
$$

