Comet – excercise 7

Bring your answers to the course on Nov. 17th.

1 Up-to techniques for weighted automata

Recall the following monotone maps on the lattice Rel_V of relations over a semimodule V for a semiring k.

- $u(R) = \{(v, w) \mid v = v_1 + v_2, w = w_1 + w_2, (v_1, w_1) \in R, (v_2, w_2) \in R\}$
- $\cdot(R) = \{(k \cdot v, k \cdot w) \mid (v, w) \in R, k \in k\}$
- $id(R) = R$
- $r(R) = \{(v, v) \mid v \in V\}$
- $s(R) = \{(v, w) \mid (w, v) \in R\}$
- $t(R) = \{(v, w) \mid \exists u, (v, u) \in R, (u, w) \in R\}$

The congruence closure is defined as expected

$$ c = (id \cup r \cup s \cup t \cup \cdot)^\omega $$

and the contextual closure as

$$ ctx = (id \cup r \cup u \cup \cdot)^\omega. $$

Question 1.1. Prove that, whenever k is a field, every bisimulation up-to c is a bisimulation up-to ctx.

Question 1.2 (Optional). Provide an example of bisimulation up-to c that is not a bisimulation up-to ctx. [Hint: use one of the semiring seen during the course]

2 Streams of natural numbers

Weighted automata over a singleton alphabet $A = \{\bullet\}$ and the semiring of natural numbers N accept streams (namely infinite sequences) of natural numbers. During the course we have already seen the weighted automata accepting the Fibonacci’s serie $0, 1, 1, 2, 3, 5, 8 \ldots$

Question 2.1. Give a weighted automata accepting the serie $1, 2, 4, 8, \ldots$

Question 2.2. Give a weighted automata accepting the serie $1, 1, 1, 1, \ldots$. One for the serie $1, 2, 3, 4 \ldots$. One for the serie $1^2, 2^2, 3^2, 4^2 \ldots$ and one for $1^3, 2^3, 3^3, 4^3 \ldots$

Question 2.3 (Optional). All the series of the previous question have the shape $1, 2^n, 3^n, 4^n \ldots$. Can you provide the general rule for the weighted automata accepting such serie for an arbitrary n?

Question 2.4 (Optional). Not all the series of natural numbers can be accepted by a finite weighted automaton. What about the serie of Catalan numbers $1, 1, 2, 5, 14, 42, \ldots$? You do not need to provide a formal proof.

During the course we have seen that whenever the underlying semiring is a field, the problem of deciding the equivalence of finite weighted automata is decidable.

Question 2.5. Show how to reduce the problem of equivalence of weighted automata over a singleton alphabet and the semiring of natural numbers to the above problem.