Comet, exercises 8 and 9

Bring your answers to next course (Nov 16)

1 Weighted Automata

Consider a weighted automaton (S, o, t) over the input alphabet A with weights on a semiring \mathbb{R} . Recall that the maps $o^{\sharp} \colon \mathbb{R}^{S}_{\omega} \to \mathbb{R}$ and $t^{\sharp} \colon \mathbb{R}^{S}_{\omega} \to (\mathbb{R}^{S}_{\omega})^{A}$ – defined during the course – are *semi-module homomorphisms*.

Let $\operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}}$ be the complete lattice of relations over \mathbb{R}^S_{ω} . The monotone map $b: \operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}} \to \operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}}$ is defined for all relations $R \in \operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}}$ as

$$b(R) = \{(v_1, v_2) \text{ s.t. } o^{\sharp}(v_1) = o^{\sharp}(v_2) \text{ and for all } a \in A, \ (t_a^{\sharp}(v_1), t_a^{\sharp}(v_2)) \in R\}.$$

Consider the monotone map $c: \operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}} \to \operatorname{\mathbf{Rel}}_{\mathbb{R}^S_{\omega}}$ defined as $(id \cup r \cup s \cup t \cup u \cup \bullet)^{\omega}$, where r, s, t are defined as usual (see e.g. the DM) and u and \bullet are defined for all relations $R \in \operatorname{\mathbf{Rel}}_{\mathbb{R}^S}$ as

$$u(R) = \{ (v_1, v_2) \text{ s.t. } v_1 = v'_1 + v''_1, v_2 = v'_2 + v''_2 \text{ and } (v'_1, v'_2) \in R, (v''_1, v''_2) \in R \}$$

$$\bullet(R) = \{ (v_1, v_2) \text{ s.t. } v_1 = k \cdot v'_1, v_2 = k \cdot v'_2 \text{ and } (v'_1, v'_2) \in R \}.$$

Question 1.1 Prove that c is sound with respect to b.

Question 1.2 Suppose to have an oracle to decide whether $(v_1, v_2) \in c(R)$ for all vectors $v_1, v_2 \in \mathbb{R}^S_{\omega}$ and relations $R \in \mathbf{Rel}_{\mathbb{R}^S_{\omega}}$. Consider the algorithm HKC for weighted automata seen at lesson. Prove that if $\text{HKC}(v_1, v_2)$ returns true, then v_1 and v_2 accepts the same weighted language.

2 Streams

Let \mathbb{R} be the field of real numbers. Consider the following stream GSOS specification on \mathbb{R} .

$$\frac{x\xrightarrow{n} x' \quad y \xrightarrow{m} y'}{x \oplus y \xrightarrow{n+m} x' \oplus y'} \qquad \frac{x\xrightarrow{n} x' \quad y \xrightarrow{m} y'}{x \otimes y \xrightarrow{n+m} (n \otimes y') \oplus (x' \otimes y)}$$

Question 2.1 Use coinduction to prove associativity and commutativity of \oplus , that is for all streams $\sigma_1, \sigma_2, \sigma_3 \in \mathbb{R}^{\omega}$,

$$(\sigma_1 \oplus \sigma_2) \oplus \sigma_3 = \sigma_1 \oplus (\sigma_2 \oplus \sigma_3)$$
 and $\sigma_1 \oplus \sigma_2 = \sigma_2 \oplus \sigma_1$.

Question 2.2 Use coinduction up-to and the previous result to prove distributivity of \otimes over \oplus , that is for all streams $\sigma_1, \sigma_2, \sigma_3 \in \mathbb{R}^{\omega}$,

$$\sigma_1 \otimes (\sigma_2 \oplus \sigma_3) = (\sigma_1 \otimes \sigma_2) \oplus (\sigma_1 \otimes \sigma_3).$$