
Probabilistic (Bi)simulation
(A Tutorial)

Yuxin Deng

Shanghai Jiao Tong University

http://basics.sjtu.edu.cn/∼yuxin/

Bologna, April 22, 2013

1

Outline

1. Probabilistic bisimulation

2. Justifying the lifting of relations

(a) Justification by Kantorovich metric

(b) Justification by network flow

3. ∗Metric characterisation of probabilistic bisimulation

4. ∗Algorithmic characterisation of probabilistic bisimulation

5. Logical characterisation of probabilistic bisimulation

6. Probabilistic simulations and testing preorders

∗ to be omitted

2

Probabilistic bisimulation

3

Probability distributions

• A (discrete) probability distribution over a countable set S is a

function ∆ : S → [0, 1] s.t.
∑

s∈S ∆(s) = 1

• The support of ∆: ⌈∆⌉ := {s ∈ S|∆(s) > 0}

• D(S): the set of all distributions over S

• s: the point distribution s(s) = 1

• Given distributions ∆1, ...,∆n, we form their linear combination
∑

i∈1..n pi ·∆i, where ∀i : pi > 0 and
∑

i∈1..n pi = 1.

4

Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple

〈S,Act ,→〉, where

1. S is a set of states

2. Act is a set of actions

3. → ⊆ S ×Act ×D(S).

We usually write s α−→ ∆ in place of (s, α,∆) ∈ →. An LTS may be viewed

as a degenerate pLTS that only uses point distributions.

5

Example

b

bc

in

b

.8

b

out

b

.2

b

err

b

bc

in

b

.8

b

out

b

.1

b

err

b

.1

b

err

6

Lifting relations

Def. Let R ⊆ S×T be a relation between sets S and T . Then

R† ⊆ D(S)×D(T) is the smallest relation that satisfies:

1. s R t implies s R† t

2. ∆i R
† Θi implies (

∑

i∈I pi ·∆i) R
† (

∑

i∈I pi ·Θi) for any pi ∈ [0, 1]

with
∑

i∈I pi = 1.

More discussion about the lifting operation later.

7

Bisimulation

Def. A binary relation R⊆ S × S is a simulation if whenever s R t:

• if s a−→ ∆, there exists some Θ such that t a−→ Θ and ∆ R† Θ.

The relation R is a bisimulation if both R and R−1 are simulations.

Bisimilarity, written ∼, is the union of all bisimulations.

8

Justifying the lifting of relations

9

Alternative ways of lifting (1/2)

Prop. ∆ R† Θ if and only if

1. ∆ =
∑

i∈I pi · si, where I is a countable index set and
∑

i∈I pi = 1

2. For each i∈ I there is a state ti such that si R ti

3. Θ =
∑

i∈I pi · ti.

10

Alternative ways of lifting (2/2)

Prop.

1. Let ∆,Θ be distributions over S and R be an equivalence relation.

Then

∆ R† Θ iff ∀C ∈ S/R : ∆(C) = Θ(C)

where ∆(C) =
∑

s∈C ∆(s).

2. Let ∆ and Θ be distributions over S and T , respectively. Then

∆ R† Θ iff there exists a weight function w : S × T → [0, 1] such that

(a) ∀s ∈ S :
∑

t∈T w(s, t) = ∆(s)

(b) ∀t ∈ T :
∑

s∈S w(s, t) = Θ(t)

(c) ∀(s, t) ∈ S × T : w(s, t) > 0 ⇒ s R t.

11

Relating the lifting operation with Kantorovich metric

The Kantorovich metric was motivated by the transportation problem.

12

The transportation problem

The original transportation problem (formulated by the French

mathematician Gaspard Monge in 1781):

What’s an optimal way of shovelling a pile of sand into a

hole of the same volume?

13

Kantorovich metric

Def. Let (S,m) be a separable metric space. For any two Borel

probability measures ∆ and Θ on S, the Kantorovich distance between ∆

and Θ is defined by

m̂(∆,Θ) = sup

{
∣

∣

∣

∣

∫

fd∆−

∫

fdΘ

∣

∣

∣

∣

: ||f || ≤ 1

}

.

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f(x)−f(y)|

m(x,y)

for a function f : S → R with R being the set of all real numbers.

14

Kantorovich-Rubinstein Theorem

Write M(∆,Θ) for the set of all Borel probability measures on the product

space S × S with marginal measures ∆ and Θ, i.e. if Γ ∈M(∆,Θ) then
∫

y∈S
dΓ(x, y) = d∆(x) and

∫

x∈S
dΓ(x, y) = dΘ(y) hold.

Thm. If (S,m) is a separable metric space then for any two distributions

∆,Θ ∈ D(S) we have

m̂(∆,Θ) = inf

{
∫

m(x, y)dΓ(x, y) : Γ ∈M(∆,Θ)

}

.

15

Interpretation of Kantorovich metric

Intuitively, a probability measure Γ ∈M(∆,Θ) can be understood as a

transportation from one unit mass distribution ∆ to another unit mass

distribution Θ. If the distance m(x, y) represents the cost of moving one

unit of mass from location x to location y then m̂(∆,Θ) gives the optimal

total cost of transporting the mass of ∆ to Θ.

16

Discrete transportation problem

For two discrete distributions ∆ and Θ with finite supports {x1, ..., xn}

and {y1, ..., yl}, respectively, minimizing the total cost of a discretized

version of the transportation problem reduces to the following linear

programming problem:

minimize
∑n

i=1

∑l
j=1 Γ(xi, yj)m(xi, yj)

subject to • ∀1 ≤ i ≤ n :
∑l

j=1 Γ(xi, yj) = ∆(xi)

• ∀1 ≤ j ≤ l :
∑n

i=1 Γ(xi, yj) = Θ(yj)

• ∀1 ≤ i ≤ n, 1 ≤ j ≤ l : Γ(xi, yj) ≥ 0.

(1)

i.e. m̂(∆,Θ) is the minimum value of problem (1).

17

Discrete transportation problem

∆ Θ

s1

s2

...

sn

s1

s2

...

sn

c11

c12

c
1n

c22

c
2n

cnn

cij stands for m(si, sj), for all i, j

18

Lifting relations vs. lifting metrics

Prop. Let R be a binary relation and m a pseudometric on a state space

S satisfying

s R t iff m(s, t) = 0

for any s, t ∈ S. Then it holds that

∆ R† Θ iff m̂(∆,Θ) = 0

for any distributions ∆,Θ ∈ D(S).

19

Network

Def. A network is a tuple N = (N,E,⊥,⊤, c) where

• (N,E) is a finite directed graph (i.e. N is a set of nodes and

E ⊆ N ×N is a set of edges)

• ⊥ and ⊤ are the source and sink nodes respectively

• c is a capability function that assigns to each edge (v, w) ∈ E a

non-negative number c(v, w).

20

Example

⊥ ⊤

s1

s2

...

sn

s′1

s′2

...

s′n

c11

c12

c
1n

c22

c
2n

cnn

∆(
s1
)

∆(s2)

∆
(s
n)

Θ(s
1)

Θ(s2)

Θ(
sn
)

cij = 1 for all i, j

21

Flow function

Def. A flow function f for N is a function that assigns to each edge e a

real number f(e) such that

• 0 ≤ f(e) ≤ c(e) for all edges e.

• For each node v ∈ N\{⊥,⊤},
∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e)

where in(v) is the set of incoming edges to node v;

out(v) the set of outgoing edges from node v.

22

Maximum flow

Def. The flow F (f) of f is given by

F (f) =
∑

e∈out(⊥)

f(e)−
∑

e∈in(⊥)

f(e).

The maximum flow in N is the supremum (maximum) over the flows F (f),

where f is a flow function in N .

23

The network N (∆,Θ,R)

Def. Let S′ = {s′ | s ∈ S} and ⊥,⊤ are two new states with ⊥,⊤ 6∈ S ∪ S′.

For any ∆,Θ ∈ D(S) and R⊆ S × S, we construct the following network

N (∆,Θ,R) = (N,E,⊥,⊤, c).

• N = S ∪ S′ ∪ {⊥,⊤}.

• E = {(s, t′) | (s, t) ∈R} ∪ {(⊥, s) | s ∈ S} ∪ {(s′,⊤) | s ∈ S}.

• c is defined by c(⊥, s) = ∆(s), c(t′,⊤) = Θ(t) and c(s, t′) = 1 for all

s, t ∈ S.

24

Relating the Lifting operation with network flow

Lem. [Baier et al., 2000] The following statements are equivalent.

1. There exists a weight function w for (∆,Θ) with respect to R.

2. The maximum flow in N (∆,Θ,R) is 1.

Cor. ∆ R† Θ iff the maximum flow in N (∆,Θ,R) is 1.

25

Metric characterisation of bisimulation

26

Algorithmic characterisation of bisimulation

27

Logical characterisation of bisimulation

28

Adequacy and expressivity

Let L be a logic. The set of formulae that state s satisfies is denoted by

L(s). Then s =L t iff L(s) = L(t).

• The logic L is adequate w.r.t. ∼ on a pLTS if for any states s and t,

s =L t iff s ∼ t.

• The logic L is expressive w.r.t. ∼ on a pLTS if for each state s there

exists a characteristic formula ϕs ∈ L such that, for any states s and t,

t |= ϕs iff s ∼ t.

29

An adequate logic

ϕ := ⊤ | ϕ1 ∧ ϕ2 | 〈a〉ψ | ¬ϕ

ψ :=
⊕

i∈I pi · ϕi

• s |= ⊤ for all s ∈ S.

• s |= ϕ1 ∧ ϕ2 if s |= ϕi for i = 1, 2.

• s |= 〈a〉ψ if for some ∆ ∈ D(S), s a−→ ∆ and ∆ |= ψ.

• s |= ¬ϕ if it is not the case that s |= ϕ.

• ∆ |=
⊕

i∈I pi · ϕi if there are ∆i ∈ D(S), for all i ∈ I, t ∈ ⌈∆i⌉, with

t |= ϕi, such that ∆ =
∑

i∈I pi ·∆i.

Thm. s ∼ t iff s =L t.

30

Probabilistic modal µ-calculus (1/2)

Let Var be a set of variables. We define a set Lµ of modal formulae in

positive normal form:

ϕ := 〈a〉ϕ | [a]ϕ |
∧

i∈I ϕi |
∨

i∈I ϕi | X | µX.ϕ | νX.ϕ

ψ :=
⊕

i∈I pi · ϕi

where a ∈ Act , I is an finite index set and
∑

i∈I pi = 1. Let
∧

i∈∅ ϕi = ⊤

and
∨

i∈∅ ϕi = ⊥.

31

Probabilistic modal µ-calculus (2/2)

Let Env = { ρ | ρ : Var → P(S) }[℄ : Lµ → Env → P(S)
[⊤℄

ρ
= S[⊥℄

ρ
= ∅[∧i∈I ϕi℄ρ =

⋂
i∈I [ϕi℄ρ[∨i∈I ϕi℄ρ =

⋃
i∈I [ϕi℄ρ[〈a〉ψ℄

ρ
= { s ∈ S | ∃∆ : s a−→ ∆ ∧ ∆ ∈ [ψ℄

ρ
}[[a]ϕ℄

ρ
= { s ∈ S | ∀∆ : s a−→ ∆ ⇒ ∆ ∈ [ψ℄

ρ
}[X℄

ρ
= ρ(X)[µX.ϕ℄

ρ
=

⋂
{V ⊆ S | [ϕ℄

ρ[X 7→V] ⊆ V }[νX.ϕ℄

ρ
=

⋃
{V ⊆ S | [ϕ℄

ρ[X 7→V]
⊇ V }[⊕i∈I pi · ϕi℄ρ = {∆ ∈ D(S) | ∆ =

⊕
i∈I pi ·∆i ∧ ∀i ∈ I, ∀t ∈ ⌈∆i⌉ : t ∈ [ϕi℄ρ }

32

Equation system of formulae

Let E be a closed equation systems of formulae.

E : X1 = ϕ1

...

Xn = ϕn

E viewed as a function E : Var → Lµ defined by E(Xi) = ϕi for i = 1, ..., n

and E(Y) = Y for other variables Y ∈ Var .

Def. An environment ρ is a solution of E if ∀i : [Xi℄ρ = [ϕi℄ρ.
33

Existence of solutions

1. The set Env with the partial order ≤ given by

ρ ≤ ρ′ iff ∀X ∈ Var : ρ(X) ⊆ ρ′(X)

forms a complete lattice.

2. The equation functional E : Env → Env given by

E := λρ.λX.[E(X)℄ρ
is monotonic.

3. The Knaster-Tarski fixpoint theorem guarantees existence of solutions,

and the largest solution

ρE :=
⊔

{ ρ | ρ ≤ E(ρ) }

34

Characteristic equation system

Def. Given a finite state pLTS, its characteristic equation system consists

of one equation for each state s1, ..., sn ∈ S.

E : Xs1 = ϕs1

...

Xsn = ϕsn

where

ϕs := (
∧

s
a−→∆

〈a〉X∆) ∧ (
∧

a∈Act

[a]
∨

s
a−→∆

X∆)

with X∆ :=
⊕

s∈⌈∆⌉ ∆(s) ·Xs.

Thm. If E is a characteristic equation system then s ∼ t iff t ∈ ρE(Xs).

35

Characteristic formulae

• Rule 1: E → F

• Rule 2: E → G

• Rule 3: E → H if Xn 6∈ fv(ϕ1, ..., ϕn)

E : X1 = ϕ1 F : X1 = ϕ1 G : X1 = ϕ1[ϕn/Xn] H : X1 = ϕ

.

.

.
.
.
.

.

.

.
.
.
.

Xn−1 = ϕn−1 Xn−1 = ϕn−1 Xn−1 = ϕn−1[ϕn/Xn] Xn−1 = ϕn

Xn = ϕn Xn = νXn.ϕn Xn = ϕn

Figure 1: Transformation rules

Thm. Given a characteristic equation system E, there is a characteristic

formula ϕs such that ρE(Xs) = [ϕs℄ for any state s.

36

Probabilistic simulations

37

Simulations

simu. (⊳
S
)

s
a

−→ ∆

R R†

Θ
â

=⇒ Θ′

failure simu. (⊳
FS
)

s (6
A

−→)
a

−→ ∆

R R†

Θ =⇒ Θ′ 6 A−→
â

=⇒ Θ′

38

Overview of results for finitary processes

⊑n
nrmay

[1]
= ⊑

1
may

[1]
= ⊑

n
may

[2]
= ⊑S

...

...

(⊑n
rrmay)

−1 [3]
= ⊑n

rrmust

[3]
= ⊑n

nrmust

[1]
= ⊑

1
must

[1]
= ⊑

n
must

[2]
= ⊑FS

The symbol = between two relations means that they coincide, while a vertical dotted

line between two relations denotes that the relation below is finer than the relation

above if divergence is absent.

[1]: [ESOP’07]; [2]: [LICS’07, CONCUR’09]; [3]: [QAPL’11] (for convergent

processes)

39

A general testing scenario

Assume

• a set of processes Proc,

• a set of tests T ,

• a set of outcomes O, results of applying a test to a process

• a function A : T × Proc→ P
+

fin(O), to apply a test to a process

• O is endowed with a partial order, with o1 ≤ o2 meaning o2 is a better

outcome than o1.

40

Testing preorders

Comparing subsets of O with the Hoare or Smyth preorders.

Def. For O1, O2 ∈ P
+

fin(O)

O1 ≤Ho O2 if ∀o1 ∈ O1 ∃o2 ∈ O2 : o1 ≤ o2

O1 ≤Sm O2 if ∀o2 ∈ O2 ∃o1 ∈ O1 : o1 ≤ o2.

For P,Q∈Proc

P ⊑may Q if A(T, P) ≤Ho A(T,Q) for every test T

P ⊑must Q if A(T, P) ≤Sm A(T,Q) for every test T .

41

Non-probabilistic vs. probabilistic testing

• Non-probabilistic testing: O = {failure, success}

• Probabilistic testing: O = [0, 1]

• Vector based testing: O = [0, 1]n

Prop. For closed sets O1, O2 ∈ P
+

fin([0, 1]) we have

1. O1 ≤Ho O2 iff max(O1) ≤ max(O2)

2. O1 ≤Sm O2 iff min(O1) ≤ min(O2).

42

Uni-success testing

s0

s1

t0

t1

s2 t2 t’2

t3 t4

t5 t6

a

d e

s3 s4

s5 s6

P Q

b

a

c c

d e

T

a

b

c c

d e

ω

c

1/2 1/2

b

1/21/2

ω

43

Testing systems

a

P||T

b

e

Q||T

a

cc c c

d e

ω
ω ω

ω

c
1/2

1/2

d

1/2
1/2

c

b

1/2 1/2

44

(Static) resolutions

Apply(T, Q) = {0, 1/2, 1}Apply(P||T) = {1/2}

a

P||T

b

Q||T

a

cc c c

d e

ω
ω

d e

1/2

1/2 1/2
1/2

c c

b

1/2 1/2

ω

ω

45

Uni-success testing preorders

Def.

P ⊑1
may Q if ∀T : max{A(T, P)} ≤ max{A(T,Q)}.

P ⊑1
must Q if ∀T : min{A(T, P)} ≤ min{A(T,Q)}

E.g. P ⊑1
may Q and Q ⊑1

must P

46

Summary

• A notion of probabilistic bisimulation based on a lifting operation

• The lifting is closely related to the Kantorovich metric and network

flow problem

• Characterising probabilistic bisimulation via metrics, decision

algorithms, and modal logics

• Probabilistic simulations and testing preorders

47

References

1. C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic

processes. Journal of Computer and System Sciences, 60(1):187-231, 2000.

2. F. van Breugel and J. Worrell. Approximating and computing behavioural distances in probabilistic

transition systems. Theoretical Computer Science 360:373-385, 2006.

3. J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden.The metric analogue of weak bisimulation

for probabilistic processes. In Proc. LICS’02.

4. [ESOP’07] Scalar Outcomes Suffice for Finitary Probabilistic Testing.

http://basics.sjtu.edu.cn/∼yuxin/publications/scalar.pdf

5. [LICS’07] Characterising Testing Preorders for Finite Probabilistic Processes (Extended Abstract).

http://basics.sjtu.edu.cn/∼yuxin/publications/lics.pdf

6. [CONCUR’09] Testing Finitary Probabilistic Processes (Extended Abstract).

http://basics.sjtu.edu.cn/∼yuxin/publications/concur09.pdf

7. [QAPL’11] Real-Reward Testing for Probabilistic Processes.

http://basics.sjtu.edu.cn/∼yuxin/publications/qapl2011.pdf

8. [CMURR] Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation.

http://basics.sjtu.edu.cn/∼yuxin/publications/probbisi.pdf

48

