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Probabilistic bisimulation
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Probability distributions

• A (discrete) probability distribution over a countable set S is a

function ∆ : S → [0, 1] s.t.
∑

s∈S ∆(s) = 1

• The support of ∆: ⌈∆⌉ := {s ∈ S|∆(s) > 0}

• D(S): the set of all distributions over S

• s: the point distribution s(s) = 1

• Given distributions ∆1, ...,∆n, we form their linear combination
∑

i∈1..n pi ·∆i, where ∀i : pi > 0 and
∑

i∈1..n pi = 1.
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Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple

〈S,Act ,→〉, where

1. S is a set of states

2. Act is a set of actions

3. → ⊆ S ×Act ×D(S).

We usually write s α−→ ∆ in place of (s, α,∆) ∈ →. An LTS may be viewed

as a degenerate pLTS that only uses point distributions.
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Lifting relations

Def. Let R ⊆ S×T be a relation between sets S and T . Then

R† ⊆ D(S)×D(T ) is the smallest relation that satisfies:

1. s R t implies s R† t

2. ∆i R
† Θi implies (

∑

i∈I pi ·∆i) R
† (

∑

i∈I pi ·Θi) for any pi ∈ [0, 1]

with
∑

i∈I pi = 1.

More discussion about the lifting operation later.
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Bisimulation

Def. A binary relation R⊆ S × S is a simulation if whenever s R t:

• if s a−→ ∆, there exists some Θ such that t a−→ Θ and ∆ R† Θ.

The relation R is a bisimulation if both R and R−1 are simulations.

Bisimilarity, written ∼, is the union of all bisimulations.
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Justifying the lifting of relations
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Alternative ways of lifting (1/2)

Prop. ∆ R† Θ if and only if

1. ∆ =
∑

i∈I pi · si, where I is a countable index set and
∑

i∈I pi = 1

2. For each i∈ I there is a state ti such that si R ti

3. Θ =
∑

i∈I pi · ti.
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Alternative ways of lifting (2/2)

Prop.

1. Let ∆,Θ be distributions over S and R be an equivalence relation.

Then

∆ R† Θ iff ∀C ∈ S/R : ∆(C) = Θ(C)

where ∆(C) =
∑

s∈C ∆(s).

2. Let ∆ and Θ be distributions over S and T , respectively. Then

∆ R† Θ iff there exists a weight function w : S × T → [0, 1] such that

(a) ∀s ∈ S :
∑

t∈T w(s, t) = ∆(s)

(b) ∀t ∈ T :
∑

s∈S w(s, t) = Θ(t)

(c) ∀(s, t) ∈ S × T : w(s, t) > 0 ⇒ s R t.
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Relating the lifting operation with Kantorovich metric

The Kantorovich metric was motivated by the transportation problem.
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The transportation problem

The original transportation problem (formulated by the French

mathematician Gaspard Monge in 1781):

What’s an optimal way of shovelling a pile of sand into a

hole of the same volume?
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Kantorovich metric

Def. Let (S,m) be a separable metric space. For any two Borel

probability measures ∆ and Θ on S, the Kantorovich distance between ∆

and Θ is defined by

m̂(∆,Θ) = sup

{
∣

∣

∣

∣

∫

fd∆−

∫

fdΘ

∣

∣

∣

∣

: ||f || ≤ 1

}

.

where || · || is the Lipschitz semi-norm defined by ||f || = supx 6=y
|f(x)−f(y)|

m(x,y)

for a function f : S → R with R being the set of all real numbers.
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Kantorovich-Rubinstein Theorem

Write M(∆,Θ) for the set of all Borel probability measures on the product

space S × S with marginal measures ∆ and Θ, i.e. if Γ ∈M(∆,Θ) then
∫

y∈S
dΓ(x, y) = d∆(x) and

∫

x∈S
dΓ(x, y) = dΘ(y) hold.

Thm. If (S,m) is a separable metric space then for any two distributions

∆,Θ ∈ D(S) we have

m̂(∆,Θ) = inf

{
∫

m(x, y)dΓ(x, y) : Γ ∈M(∆,Θ)

}

.
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Interpretation of Kantorovich metric

Intuitively, a probability measure Γ ∈M(∆,Θ) can be understood as a

transportation from one unit mass distribution ∆ to another unit mass

distribution Θ. If the distance m(x, y) represents the cost of moving one

unit of mass from location x to location y then m̂(∆,Θ) gives the optimal

total cost of transporting the mass of ∆ to Θ.
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Discrete transportation problem

For two discrete distributions ∆ and Θ with finite supports {x1, ..., xn}

and {y1, ..., yl}, respectively, minimizing the total cost of a discretized

version of the transportation problem reduces to the following linear

programming problem:

minimize
∑n

i=1

∑l
j=1 Γ(xi, yj)m(xi, yj)

subject to • ∀1 ≤ i ≤ n :
∑l

j=1 Γ(xi, yj) = ∆(xi)

• ∀1 ≤ j ≤ l :
∑n

i=1 Γ(xi, yj) = Θ(yj)

• ∀1 ≤ i ≤ n, 1 ≤ j ≤ l : Γ(xi, yj) ≥ 0.

(1)

i.e. m̂(∆,Θ) is the minimum value of problem (1).
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Discrete transportation problem
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Lifting relations vs. lifting metrics

Prop. Let R be a binary relation and m a pseudometric on a state space

S satisfying

s R t iff m(s, t) = 0

for any s, t ∈ S. Then it holds that

∆ R† Θ iff m̂(∆,Θ) = 0

for any distributions ∆,Θ ∈ D(S).
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Network

Def. A network is a tuple N = (N,E,⊥,⊤, c) where

• (N,E) is a finite directed graph (i.e. N is a set of nodes and

E ⊆ N ×N is a set of edges)

• ⊥ and ⊤ are the source and sink nodes respectively

• c is a capability function that assigns to each edge (v, w) ∈ E a

non-negative number c(v, w).
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Example
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Flow function

Def. A flow function f for N is a function that assigns to each edge e a

real number f(e) such that

• 0 ≤ f(e) ≤ c(e) for all edges e.

• For each node v ∈ N\{⊥,⊤},
∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e)

where in(v) is the set of incoming edges to node v;

out(v) the set of outgoing edges from node v.
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Maximum flow

Def. The flow F (f) of f is given by

F (f) =
∑

e∈out(⊥)

f(e)−
∑

e∈in(⊥)

f(e).

The maximum flow in N is the supremum (maximum) over the flows F (f),

where f is a flow function in N .
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The network N (∆,Θ,R)

Def. Let S′ = {s′ | s ∈ S} and ⊥,⊤ are two new states with ⊥,⊤ 6∈ S ∪ S′.

For any ∆,Θ ∈ D(S) and R⊆ S × S, we construct the following network

N (∆,Θ,R) = (N,E,⊥,⊤, c).

• N = S ∪ S′ ∪ {⊥,⊤}.

• E = {(s, t′) | (s, t) ∈R} ∪ {(⊥, s) | s ∈ S} ∪ {(s′,⊤) | s ∈ S}.

• c is defined by c(⊥, s) = ∆(s), c(t′,⊤) = Θ(t) and c(s, t′) = 1 for all

s, t ∈ S.
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Relating the Lifting operation with network flow

Lem. [Baier et al., 2000] The following statements are equivalent.

1. There exists a weight function w for (∆,Θ) with respect to R.

2. The maximum flow in N (∆,Θ,R) is 1.

Cor. ∆ R† Θ iff the maximum flow in N (∆,Θ,R) is 1.
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Metric characterisation of bisimulation
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Algorithmic characterisation of bisimulation
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Logical characterisation of bisimulation
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Adequacy and expressivity

Let L be a logic. The set of formulae that state s satisfies is denoted by

L(s). Then s =L t iff L(s) = L(t).

• The logic L is adequate w.r.t. ∼ on a pLTS if for any states s and t,

s =L t iff s ∼ t.

• The logic L is expressive w.r.t. ∼ on a pLTS if for each state s there

exists a characteristic formula ϕs ∈ L such that, for any states s and t,

t |= ϕs iff s ∼ t.
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An adequate logic

ϕ := ⊤ | ϕ1 ∧ ϕ2 | 〈a〉ψ | ¬ϕ

ψ :=
⊕

i∈I pi · ϕi

• s |= ⊤ for all s ∈ S.

• s |= ϕ1 ∧ ϕ2 if s |= ϕi for i = 1, 2.

• s |= 〈a〉ψ if for some ∆ ∈ D(S), s a−→ ∆ and ∆ |= ψ.

• s |= ¬ϕ if it is not the case that s |= ϕ.

• ∆ |=
⊕

i∈I pi · ϕi if there are ∆i ∈ D(S), for all i ∈ I, t ∈ ⌈∆i⌉, with

t |= ϕi, such that ∆ =
∑

i∈I pi ·∆i.

Thm. s ∼ t iff s =L t.
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Probabilistic modal µ-calculus (1/2)

Let Var be a set of variables. We define a set Lµ of modal formulae in

positive normal form:

ϕ := 〈a〉ϕ | [a]ϕ |
∧

i∈I ϕi |
∨

i∈I ϕi | X | µX.ϕ | νX.ϕ

ψ :=
⊕

i∈I pi · ϕi

where a ∈ Act , I is an finite index set and
∑

i∈I pi = 1. Let
∧

i∈∅ ϕi = ⊤

and
∨

i∈∅ ϕi = ⊥.
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Probabilistic modal µ-calculus (2/2)

Let Env = { ρ | ρ : Var → P(S ) }[ ℄ : Lµ → Env → P(S )
[⊤℄

ρ
= S[⊥℄

ρ
= ∅[∧i∈I ϕi℄ρ =

⋂
i∈I [ϕi℄ρ[∨i∈I ϕi℄ρ =

⋃
i∈I [ϕi℄ρ[〈a〉ψ℄

ρ
= { s ∈ S | ∃∆ : s a−→ ∆ ∧ ∆ ∈ [ψ℄

ρ
}[[a]ϕ℄

ρ
= { s ∈ S | ∀∆ : s a−→ ∆ ⇒ ∆ ∈ [ψ℄

ρ
}[X℄

ρ
= ρ(X)[µX.ϕ℄

ρ
=

⋂
{V ⊆ S | [ϕ℄

ρ[X 7→V ] ⊆ V }[νX.ϕ℄

ρ
=

⋃
{V ⊆ S | [ϕ℄

ρ[X 7→V ]
⊇ V }[⊕i∈I pi · ϕi℄ρ = {∆ ∈ D(S) | ∆ =

⊕
i∈I pi ·∆i ∧ ∀i ∈ I, ∀t ∈ ⌈∆i⌉ : t ∈ [ϕi℄ρ }
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Equation system of formulae

Let E be a closed equation systems of formulae.

E : X1 = ϕ1

...

Xn = ϕn

E viewed as a function E : Var → Lµ defined by E(Xi) = ϕi for i = 1, ..., n

and E(Y ) = Y for other variables Y ∈ Var .

Def. An environment ρ is a solution of E if ∀i : [Xi℄ρ = [ϕi℄ρ.
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Existence of solutions

1. The set Env with the partial order ≤ given by

ρ ≤ ρ′ iff ∀X ∈ Var : ρ(X ) ⊆ ρ′(X )

forms a complete lattice.

2. The equation functional E : Env → Env given by

E := λρ.λX.[E(X)℄ρ
is monotonic.

3. The Knaster-Tarski fixpoint theorem guarantees existence of solutions,

and the largest solution

ρE :=
⊔

{ ρ | ρ ≤ E(ρ) }
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Characteristic equation system

Def. Given a finite state pLTS, its characteristic equation system consists

of one equation for each state s1, ..., sn ∈ S.

E : Xs1 = ϕs1

...

Xsn = ϕsn

where

ϕs := (
∧

s
a−→∆

〈a〉X∆) ∧ (
∧

a∈Act

[a]
∨

s
a−→∆

X∆)

with X∆ :=
⊕

s∈⌈∆⌉ ∆(s) ·Xs.

Thm. If E is a characteristic equation system then s ∼ t iff t ∈ ρE(Xs).
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Characteristic formulae

• Rule 1: E → F

• Rule 2: E → G

• Rule 3: E → H if Xn 6∈ fv(ϕ1, ..., ϕn)

E : X1 = ϕ1 F : X1 = ϕ1 G : X1 = ϕ1[ϕn/Xn] H : X1 = ϕ

.

.

.
.
.
.

.

.

.
.
.
.

Xn−1 = ϕn−1 Xn−1 = ϕn−1 Xn−1 = ϕn−1[ϕn/Xn] Xn−1 = ϕn

Xn = ϕn Xn = νXn.ϕn Xn = ϕn

Figure 1: Transformation rules

Thm. Given a characteristic equation system E, there is a characteristic

formula ϕs such that ρE(Xs) = [ϕs℄ for any state s.
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Probabilistic simulations
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Simulations

simu. (⊳
S
)

s
a

−→ ∆

R R†

Θ
â

=⇒ Θ′

failure simu. (⊳
FS
)

s ( 6
A

−→)
a

−→ ∆

R R†

Θ =⇒ Θ′ 6 A−→
â

=⇒ Θ′

38



Overview of results for finitary processes

⊑n
nrmay

[1]
= ⊑

1
may

[1]
= ⊑

n
may

[2]
= ⊑S

...

...

(⊑n
rrmay)

−1 [3]
= ⊑n

rrmust

[3]
= ⊑n

nrmust

[1]
= ⊑

1
must

[1]
= ⊑

n
must

[2]
= ⊑FS

The symbol = between two relations means that they coincide, while a vertical dotted

line between two relations denotes that the relation below is finer than the relation

above if divergence is absent.

[1]: [ESOP’07]; [2]: [LICS’07, CONCUR’09]; [3]: [QAPL’11] (for convergent

processes)
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A general testing scenario

Assume

• a set of processes Proc,

• a set of tests T ,

• a set of outcomes O, results of applying a test to a process

• a function A : T × Proc→ P
+

fin(O), to apply a test to a process

• O is endowed with a partial order, with o1 ≤ o2 meaning o2 is a better

outcome than o1.
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Testing preorders

Comparing subsets of O with the Hoare or Smyth preorders.

Def. For O1, O2 ∈ P
+

fin(O)

O1 ≤Ho O2 if ∀o1 ∈ O1 ∃o2 ∈ O2 : o1 ≤ o2

O1 ≤Sm O2 if ∀o2 ∈ O2 ∃o1 ∈ O1 : o1 ≤ o2.

For P,Q∈Proc

P ⊑may Q if A(T, P ) ≤Ho A(T,Q) for every test T

P ⊑must Q if A(T, P ) ≤Sm A(T,Q) for every test T .
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Non-probabilistic vs. probabilistic testing

• Non-probabilistic testing: O = {failure, success}

• Probabilistic testing: O = [0, 1]

• Vector based testing: O = [0, 1]n

Prop. For closed sets O1, O2 ∈ P
+

fin([0, 1]) we have

1. O1 ≤Ho O2 iff max(O1) ≤ max(O2)

2. O1 ≤Sm O2 iff min(O1) ≤ min(O2).
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Uni-success testing

s0

s1

t0

t1

s2 t2 t’2

t3 t4

t5 t6

a

d e

s3 s4

s5 s6

P Q

b

a

c c

d e

T

a

b

c c

d e

ω

c

1/2 1/2

b

1/21/2

ω

43



Testing systems
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(Static) resolutions

Apply(T, Q) = {0, 1/2, 1}Apply(P||T) = {1/2}

a

P||T

b

Q||T

a

cc c c

d e

ω
ω

d e

1/2

1/2 1/2
1/2

c c

b

1/2 1/2

ω

ω
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Uni-success testing preorders

Def.

P ⊑1
may Q if ∀T : max{A(T, P )} ≤ max{A(T,Q)}.

P ⊑1
must Q if ∀T : min{A(T, P )} ≤ min{A(T,Q)}

E.g. P ⊑1
may Q and Q ⊑1

must P
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Summary

• A notion of probabilistic bisimulation based on a lifting operation

• The lifting is closely related to the Kantorovich metric and network

flow problem

• Characterising probabilistic bisimulation via metrics, decision

algorithms, and modal logics

• Probabilistic simulations and testing preorders
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