# Probabilistic (Bi)simulation (A Tutorial)

Yuxin Deng

Shanghai Jiao Tong University http://basics.sjtu.edu.cn/~yuxin/

Bologna, April 22, 2013

# Outline

- 1. Probabilistic bisimulation
- 2. Justifying the lifting of relations
  - (a) Justification by Kantorovich metric
  - (b) Justification by network flow
- 3. \*Metric characterisation of probabilistic bisimulation
- 4. \*Algorithmic characterisation of probabilistic bisimulation
- 5. Logical characterisation of probabilistic bisimulation
- 6. Probabilistic simulations and testing preorders

\* to be omitted

# Probabilistic bisimulation

### **Probability distributions**

- A (discrete) probability distribution over a countable set S is a function  $\Delta: S \to [0, 1]$  s.t.  $\sum_{s \in S} \Delta(s) = 1$
- The support of  $\Delta$ :  $\lceil \Delta \rceil := \{s \in S | \Delta(s) > 0\}$
- $\mathcal{D}(S)$ : the set of all distributions over S
- $\overline{s}$ : the point distribution  $\overline{s}(s) = 1$
- Given distributions  $\Delta_1, ..., \Delta_n$ , we form their linear combination  $\sum_{i \in 1..n} p_i \cdot \Delta_i$ , where  $\forall i : p_i > 0$  and  $\sum_{i \in 1..n} p_i = 1$ .

## **Probabilistic labelled transition systems**

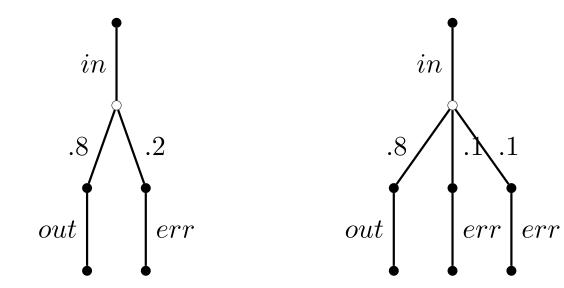
**Def.** A probabilistic labelled transition system (pLTS) is a triple  $\langle S, Act, \rightarrow \rangle$ , where

- 1. S is a set of states
- 2. Act is a set of actions
- 3.  $\rightarrow \subseteq S \times Act \times \mathcal{D}(S)$ .

We usually write  $s \xrightarrow{\alpha} \Delta$  in place of  $(s, \alpha, \Delta) \in \rightarrow$ . An LTS may be viewed as a degenerate pLTS that only uses point distributions.



.1



## Lifting relations

**Def.** Let  $\mathcal{R} \subseteq S \times T$  be a relation between sets S and T. Then  $\mathcal{R}^{\dagger} \subseteq \mathcal{D}(S) \times \mathcal{D}(T)$  is the smallest relation that satisfies:

- 1.  $s \mathcal{R} t$  implies  $\overline{s} \mathcal{R}^{\dagger} \overline{t}$
- 2.  $\Delta_i \mathcal{R}^{\dagger} \Theta_i$  implies  $(\sum_{i \in I} p_i \cdot \Delta_i) \mathcal{R}^{\dagger} (\sum_{i \in I} p_i \cdot \Theta_i)$  for any  $p_i \in [0, 1]$ with  $\sum_{i \in I} p_i = 1$ .

More discussion about the lifting operation later.

## **Bisimulation**

**Def.** A binary relation  $\mathcal{R} \subseteq S \times S$  is a simulation if whenever  $s \mathcal{R} t$ :

• if  $s \xrightarrow{a} \Delta$ , there exists some  $\Theta$  such that  $t \xrightarrow{a} \Theta$  and  $\Delta \mathcal{R}^{\dagger} \Theta$ .

The relation  $\mathcal{R}$  is a bisimulation if both  $\mathcal{R}$  and  $\mathcal{R}^{-1}$  are simulations. Bisimilarity, written  $\sim$ , is the union of all bisimulations.

# Justifying the lifting of relations

#### Alternative ways of lifting (1/2)

**Prop.**  $\Delta \mathcal{R}^{\dagger} \Theta$  if and only if

1.  $\Delta = \sum_{i \in I} p_i \cdot \overline{s_i}$ , where I is a countable index set and  $\sum_{i \in I} p_i = 1$ 

- 2. For each  $i \in I$  there is a state  $t_i$  such that  $s_i \mathcal{R} t_i$
- 3.  $\Theta = \sum_{i \in I} p_i \cdot \overline{t_i}$ .

# Alternative ways of lifting (2/2)

#### Prop.

1. Let  $\Delta, \Theta$  be distributions over S and  $\mathcal{R}$  be an equivalence relation. Then

$$\Delta \mathcal{R}^{\dagger} \Theta \quad \text{iff} \quad \forall C \in S/\mathcal{R} : \Delta(C) = \Theta(C)$$

where  $\Delta(C) = \sum_{s \in C} \Delta(s)$ .

2. Let Δ and Θ be distributions over S and T, respectively. Then Δ R<sup>†</sup> Θ iff there exists a weight function w : S × T → [0, 1] such that
(a) ∀s ∈ S : ∑<sub>t∈T</sub> w(s,t) = Δ(s)
(b) ∀t ∈ T : ∑<sub>s∈S</sub> w(s,t) = Θ(t)
(c) ∀(s,t) ∈ S × T : w(s,t) > 0 ⇒ s R t.

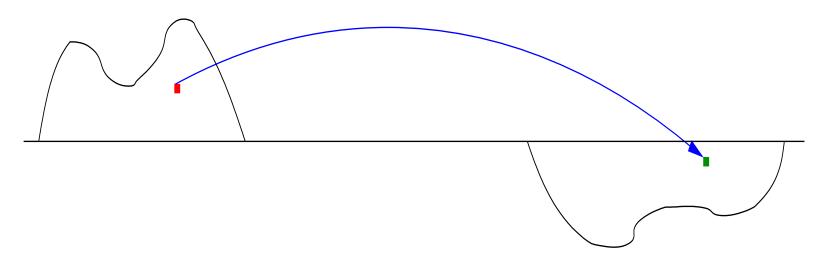
# Relating the lifting operation with Kantorovich metric

The Kantorovich metric was motivated by the transportation problem.

# The transportation problem

The original transportation problem (formulated by the French mathematician Gaspard Monge in 1781):

What's an optimal way of shovelling a pile of sand into a hole of the same volume?



#### Kantorovich metric

**Def.** Let (S, m) be a separable metric space. For any two Borel probability measures  $\Delta$  and  $\Theta$  on S, the *Kantorovich distance* between  $\Delta$ and  $\Theta$  is defined by

$$\hat{m}(\Delta,\Theta) = \sup\left\{ \left| \int f d\Delta - \int f d\Theta \right| : ||f|| \le 1 \right\}.$$

where  $|| \cdot ||$  is the *Lipschitz semi-norm* defined by  $||f|| = \sup_{x \neq y} \frac{|f(x) - f(y)|}{m(x,y)}$ for a function  $f: S \to \mathbb{R}$  with  $\mathbb{R}$  being the set of all real numbers.

#### Kantorovich-Rubinstein Theorem

Write  $M(\Delta, \Theta)$  for the set of all Borel probability measures on the product space  $S \times S$  with marginal measures  $\Delta$  and  $\Theta$ , i.e. if  $\Gamma \in M(\Delta, \Theta)$  then  $\int_{y \in S} d\Gamma(x, y) = d\Delta(x)$  and  $\int_{x \in S} d\Gamma(x, y) = d\Theta(y)$  hold.

**Thm.** If (S, m) is a separable metric space then for any two distributions  $\Delta, \Theta \in \mathcal{D}(S)$  we have

$$\hat{m}(\Delta,\Theta) = \inf \left\{ \int m(x,y) d\Gamma(x,y) : \Gamma \in M(\Delta,\Theta) \right\}.$$

# **Interpretation of Kantorovich metric**

Intuitively, a probability measure  $\Gamma \in M(\Delta, \Theta)$  can be understood as a *transportation* from one unit mass distribution  $\Delta$  to another unit mass distribution  $\Theta$ . If the distance m(x, y) represents the cost of moving one unit of mass from location x to location y then  $\hat{m}(\Delta, \Theta)$  gives the optimal total cost of transporting the mass of  $\Delta$  to  $\Theta$ .

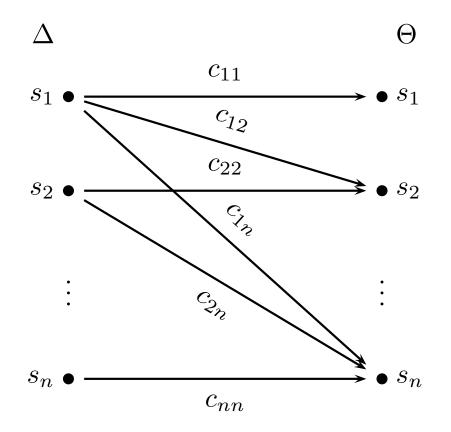
#### **Discrete transportation problem**

For two discrete distributions  $\Delta$  and  $\Theta$  with finite supports  $\{x_1, ..., x_n\}$ and  $\{y_1, ..., y_l\}$ , respectively, minimizing the total cost of a discretized version of the transportation problem reduces to the following linear programming problem:

minimize 
$$\sum_{i=1}^{n} \sum_{j=1}^{l} \Gamma(x_i, y_j) m(x_i, y_j)$$
  
subject to 
$$\forall 1 \le i \le n : \sum_{j=1}^{l} \Gamma(x_i, y_j) = \Delta(x_i)$$
  
$$\forall 1 \le j \le l : \sum_{i=1}^{n} \Gamma(x_i, y_j) = \Theta(y_j)$$
  
$$\forall 1 \le i \le n, 1 \le j \le l : \Gamma(x_i, y_j) \ge 0.$$
 (1)

i.e.  $\hat{m}(\Delta, \Theta)$  is the minimum value of problem (1).

# **Discrete transportation problem**



 $c_{ij}$  stands for  $m(s_i, s_j)$ , for all i, j

### Lifting relations vs. lifting metrics

**Prop.** Let R be a binary relation and m a pseudometric on a state space S satisfying

s R t iff m(s,t) = 0

for any  $s, t \in S$ . Then it holds that

 $\Delta R^{\dagger} \Theta \quad \text{iff} \quad \hat{m}(\Delta, \Theta) = 0$ 

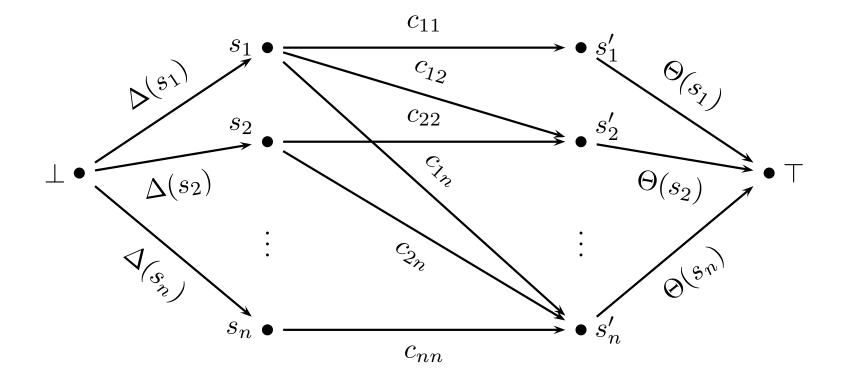
for any distributions  $\Delta, \Theta \in \mathcal{D}(S)$ .

#### Network

**Def.** A network is a tuple  $\mathcal{N} = (N, E, \bot, \top, c)$  where

- (N, E) is a finite directed graph (i.e. N is a set of nodes and  $E \subseteq N \times N$  is a set of edges)
- $\perp$  and  $\top$  are the source and sink nodes respectively
- c is a capability function that assigns to each edge  $(v, w) \in E$  a non-negative number c(v, w).

Example



 $c_{ij} = 1$  for all i, j

## **Flow function**

**Def.** A flow function f for  $\mathcal{N}$  is a function that assigns to each edge e a real number f(e) such that

- $0 \le f(e) \le c(e)$  for all edges e.
- For each node  $v \in N \setminus \{\bot, \top\}$ ,

$$\sum_{e \in in(v)} f(e) = \sum_{e \in out(v)} f(e)$$

where in(v) is the set of incoming edges to node v; out(v) the set of outgoing edges from node v.

## Maximum flow

**Def.** The flow F(f) of f is given by

$$F(f) = \sum_{e \in out(\perp)} f(e) - \sum_{e \in in(\perp)} f(e).$$

The maximum flow in  $\mathcal{N}$  is the supremum (maximum) over the flows F(f), where f is a flow function in  $\mathcal{N}$ .

# The network $\mathcal{N}(\Delta, \Theta, \mathcal{R})$

**Def.** Let  $S' = \{s' \mid s \in S\}$  and  $\bot, \top$  are two new states with  $\bot, \top \notin S \cup S'$ . For any  $\Delta, \Theta \in \mathcal{D}(S)$  and  $\mathcal{R} \subseteq S \times S$ , we construct the following network  $\mathcal{N}(\Delta, \Theta, \mathcal{R}) = (N, E, \bot, \top, c).$ 

- $N = S \cup S' \cup \{\bot, \top\}.$
- $E = \{(s, t') \mid (s, t) \in \mathcal{R}\} \cup \{(\bot, s) \mid s \in S\} \cup \{(s', \top) \mid s \in S\}.$
- c is defined by  $c(\perp, s) = \Delta(s)$ ,  $c(t', \top) = \Theta(t)$  and c(s, t') = 1 for all  $s, t \in S$ .

#### Relating the Lifting operation with network flow

Lem. [Baier et al., 2000] The following statements are equivalent.
1. There exists a weight function w for (Δ, Θ) with respect to R.
2. The maximum flow in N(Δ, Θ, R) is 1.

**Cor.**  $\Delta \mathcal{R}^{\dagger} \Theta$  iff the maximum flow in  $\mathcal{N}(\Delta, \Theta, \mathcal{R})$  is 1.

# Metric characterisation of bisimulation

# Algorithmic characterisation of bisimulation

# Logical characterisation of bisimulation

#### Adequacy and expressivity

Let  $\mathcal{L}$  be a logic. The set of formulae that state *s* satisfies is denoted by  $\mathcal{L}(s)$ . Then  $s = \mathcal{L} t$  iff  $\mathcal{L}(s) = \mathcal{L}(t)$ .

• The logic  $\mathcal{L}$  is adequate w.r.t. ~ on a pLTS if for any states s and t,

$$s = \mathcal{L} t \text{ iff } s \sim t.$$

• The logic  $\mathcal{L}$  is expressive w.r.t. ~ on a pLTS if for each state s there exists a characteristic formula  $\varphi_s \in \mathcal{L}$  such that, for any states s and t,

$$t \models \varphi_s \quad \text{iff} \quad s \sim t.$$

# An adequate logic

$$\begin{split} \varphi &:= & \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle \psi \mid \neg \varphi \\ \psi &:= & \bigoplus_{i \in I} p_i \cdot \varphi_i \end{split}$$

• 
$$s \models \top$$
 for all  $s \in S$ .

• 
$$s \models \varphi_1 \land \varphi_2$$
 if  $s \models \varphi_i$  for  $i = 1, 2$ .

• 
$$s \models \langle a \rangle \psi$$
 if for some  $\Delta \in \mathcal{D}(S)$ ,  $s \xrightarrow{a} \Delta$  and  $\Delta \models \psi$ .

• 
$$s \models \neg \varphi$$
 if it is not the case that  $s \models \varphi$ .

• 
$$\Delta \models \bigoplus_{i \in I} p_i \cdot \varphi_i$$
 if there are  $\Delta_i \in \mathcal{D}(S)$ , for all  $i \in I, t \in \lceil \Delta_i \rceil$ , with  $t \models \varphi_i$ , such that  $\Delta = \sum_{i \in I} p_i \cdot \Delta_i$ .

Thm.  $s \sim t$  iff  $s = \mathcal{L} t$ .

## Probabilistic modal $\mu$ -calculus (1/2)

Let *Var* be a set of variables. We define a set  $\mathcal{L}_{\mu}$  of modal formulae in positive normal form:

$$\begin{split} \varphi &:= \langle a \rangle \varphi \mid [a] \varphi \mid \bigwedge_{i \in I} \varphi_i \mid \bigvee_{i \in I} \varphi_i \mid X \mid \mu X.\varphi \mid \nu X.\varphi \\ \psi &:= \bigoplus_{i \in I} p_i \cdot \varphi_i \end{split}$$

where  $a \in Act$ , I is an finite index set and  $\sum_{i \in I} p_i = 1$ . Let  $\bigwedge_{i \in \emptyset} \varphi_i = \top$ and  $\bigvee_{i \in \emptyset} \varphi_i = \bot$ .

# Probabilistic modal $\mu$ -calculus (2/2)

Let 
$$Env = \{ \rho \mid \rho : Var \to \mathcal{P}(S) \}$$
  
 $\llbracket \rrbracket : \mathcal{L}_{\mu} \to Env \to \mathcal{P}(S)$ 

$$\begin{split} \begin{bmatrix} \top \end{bmatrix}_{\rho} &= S \\ \begin{bmatrix} \bot \end{bmatrix}_{\rho} &= \emptyset \\ \begin{bmatrix} \bigwedge_{i \in I} \varphi_i \end{bmatrix}_{\rho} &= \bigcap_{i \in I} \begin{bmatrix} \varphi_i \end{bmatrix}_{\rho} \\ \begin{bmatrix} \bigvee_{i \in I} \varphi_i \end{bmatrix}_{\rho} &= \bigcup_{i \in I} \begin{bmatrix} \varphi_i \end{bmatrix}_{\rho} \\ \begin{bmatrix} \langle a \rangle \psi \end{bmatrix}_{\rho} &= \{s \in S \mid \exists \Delta : s \xrightarrow{a} \Delta \land \Delta \in \llbracket \psi \end{bmatrix}_{\rho} \} \\ \begin{bmatrix} [a] \varphi \end{bmatrix}_{\rho} &= \{s \in S \mid \forall \Delta : s \xrightarrow{a} \Delta \Rightarrow \Delta \in \llbracket \psi \end{bmatrix}_{\rho} \} \\ \begin{bmatrix} [X] \end{bmatrix}_{\rho} &= \rho(X) \\ \begin{bmatrix} \mu X . \varphi \end{bmatrix}_{\rho} &= \bigcap \{ V \subseteq S \mid \llbracket \varphi \end{bmatrix}_{\rho[X \mapsto V]} \subseteq V \} \\ \begin{bmatrix} \nu X . \varphi \end{bmatrix}_{\rho} &= \bigcup \{ V \subseteq S \mid \llbracket \varphi \end{bmatrix}_{\rho[X \mapsto V]} \supseteq V \} \\ \begin{bmatrix} \bigoplus_{i \in I} p_i \cdot \varphi_i \end{bmatrix}_{\rho} &= \{ \Delta \in \mathcal{D}(S) \mid \Delta = \bigoplus_{i \in I} p_i \cdot \Delta_i \land \forall i \in I, \forall t \in \lceil \Delta_i \rceil : t \in \llbracket \varphi_i \rrbracket_{\rho} \} \end{split}$$

#### Equation system of formulae

Let E be a closed equation systems of formulae.

$$E: X_1 = \varphi_1$$
$$\vdots$$
$$X_n = \varphi_n$$

E viewed as a function  $E: Var \to \mathcal{L}_{\mu}$  defined by  $E(X_i) = \varphi_i$  for i = 1, ..., nand E(Y) = Y for other variables  $Y \in Var$ .

**Def.** An environment  $\rho$  is a solution of E if  $\forall i : [X_i]_{\rho} = [\varphi_i]_{\rho}$ .

## **Existence of solutions**

1. The set Env with the partial order  $\leq$  given by

$$\rho \leq \rho' \text{ iff } \forall X \in Var : \rho(X) \subseteq \rho'(X)$$

forms a complete lattice.

2. The equation functional  $\mathcal{E}: Env \to Env$  given by

$$\mathcal{E} := \lambda \rho. \lambda X. \llbracket E(X) \rrbracket_{\rho}$$

is monotonic.

3. The Knaster-Tarski fixpoint theorem guarantees existence of solutions, and the largest solution

$$\rho_E := \bigsqcup \{ \rho \mid \rho \leq \mathcal{E}(\rho) \}$$

#### Characteristic equation system

**Def.** Given a finite state pLTS, its characteristic equation system consists of one equation for each state  $s_1, ..., s_n \in S$ .

$$E: X_{s_1} = \varphi_{s_1}$$
$$\vdots$$
$$X_{s_n} = \varphi_{s_n}$$

where

$$\varphi_s := \left(\bigwedge_{s \to \Delta} \langle a \rangle X_{\Delta}\right) \wedge \left(\bigwedge_{a \in Act} [a] \bigvee_{s \to \Delta} X_{\Delta}\right)$$
  
$$\square \qquad \Delta(s) \cdot X$$

with  $X_{\Delta} := \bigoplus_{s \in \lceil \Delta \rceil} \Delta(s) \cdot X_s$ .

**Thm.** If E is a characteristic equation system then  $s \sim t$  iff  $t \in \rho_E(X_s)$ .

#### Characteristic formulae

- Rule 1:  $E \to F$
- Rule 2:  $E \to G$
- Rule 3:  $E \to H$  if  $X_n \notin fv(\varphi_1, ..., \varphi_n)$

$$E: X_{1} = \varphi_{1} \qquad F: X_{1} = \varphi_{1} \qquad G: X_{1} = \varphi_{1}[\varphi_{n}/X_{n}] \qquad H: X_{1} = \varphi_{1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$X_{n-1} = \varphi_{n-1} \qquad X_{n-1} = \varphi_{n-1} \qquad X_{n-1} = \varphi_{n-1}[\varphi_{n}/X_{n}] \qquad X_{n-1} = \varphi_{n}$$

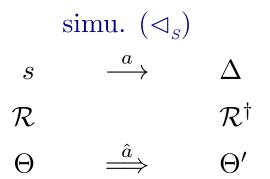
$$X_{n} = \varphi_{n} \qquad X_{n} = \nu X_{n}.\varphi_{n} \qquad X_{n} = \varphi_{n}$$

#### Figure 1: Transformation rules

**Thm.** Given a characteristic equation system E, there is a characteristic formula  $\varphi_s$  such that  $\rho_E(X_s) = \llbracket \varphi_s \rrbracket$  for any state s.

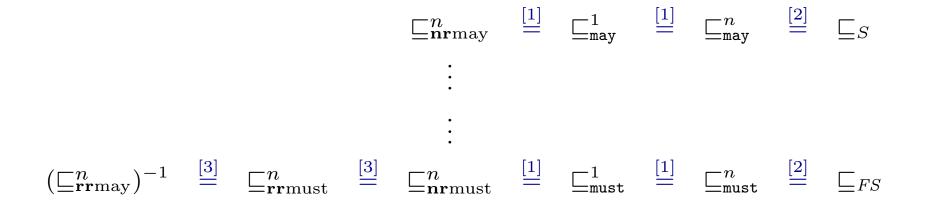
# Probabilistic simulations

## Simulations



|               | failure simu.                                 | $(\triangleleft_{FS})$ |                                      |                         |
|---------------|-----------------------------------------------|------------------------|--------------------------------------|-------------------------|
| s             | $(\not \xrightarrow{A})$                      |                        | $\overset{a}{\longrightarrow}$       | $\Delta$                |
| $\mathcal{R}$ |                                               |                        |                                      | $\mathcal{R}^{\dagger}$ |
| Θ             | $\Longrightarrow \Theta' \not\xrightarrow{A}$ |                        | $\overset{\hat{a}}{\Longrightarrow}$ | $\Theta'$               |

#### **Overview of results for finitary processes**



The symbol = between two relations means that they coincide, while a vertical dotted line between two relations denotes that the relation below is finer than the relation above if divergence is absent.

[1]: [ESOP'07]; [2]: [LICS'07, CONCUR'09]; [3]: [QAPL'11] (for convergent processes)

### A general testing scenario

Assume

- a set of processes  $\mathcal{P}roc$ ,
- a set of tests  $\mathcal{T}$ ,
- a set of outcomes  $\mathcal{O}$ , results of applying a test to a process
- a function  $\mathcal{A}: \mathcal{T} \times \mathcal{P}roc \to \mathcal{P}_{fin}^+(\mathcal{O})$ , to apply a test to a process
- $\mathcal{O}$  is endowed with a partial order, with  $o_1 \leq o_2$  meaning  $o_2$  is a better outcome than  $o_1$ .

#### **Testing preorders**

Comparing subsets of  $\mathcal{O}$  with the Hoare or Smyth preorders. **Def.** For  $O_1, O_2 \in \mathcal{P}_{fin}^+(\mathcal{O})$ 

 $O_{1} \leq_{\text{Ho}} O_{2} \quad \text{if} \quad \forall o_{1} \in O_{1} \ \exists o_{2} \in O_{2} : o_{1} \leq o_{2}$  $O_{1} \leq_{\text{Sm}} O_{2} \quad \text{if} \quad \forall o_{2} \in O_{2} \ \exists o_{1} \in O_{1} : o_{1} \leq o_{2}.$ For  $P, Q \in \mathcal{P}roc$ 

 $P \sqsubseteq_{\text{may}} Q \quad \text{if} \quad \mathcal{A}(T, P) \leq_{\text{Ho}} \mathcal{A}(T, Q) \quad \text{for every test } T$  $P \sqsubseteq_{\text{must}} Q \quad \text{if} \quad \mathcal{A}(T, P) \leq_{\text{Sm}} \mathcal{A}(T, Q) \quad \text{for every test } T.$ 

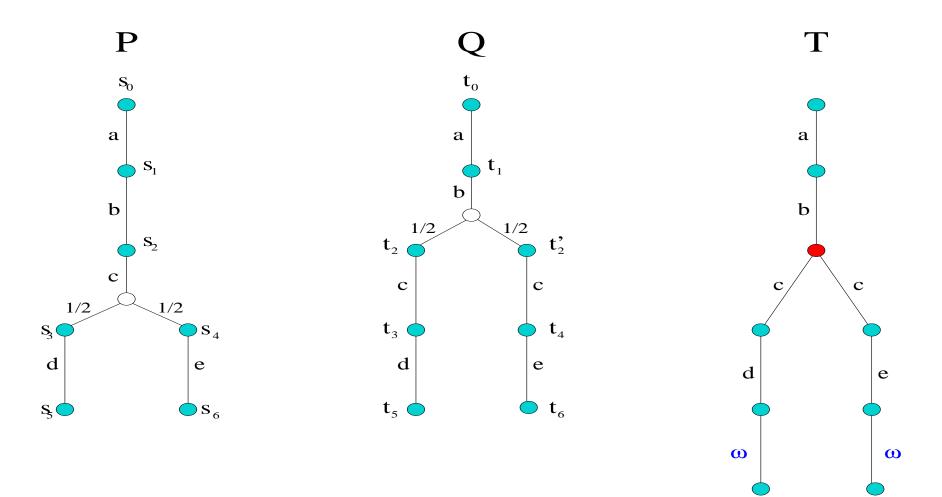
#### Non-probabilistic vs. probabilistic testing

- Non-probabilistic testing:  $\mathcal{O} = \{failure, success\}$
- Probabilistic testing:  $\mathcal{O} = [0, 1]$
- Vector based testing:  $\mathcal{O} = [0, 1]^n$

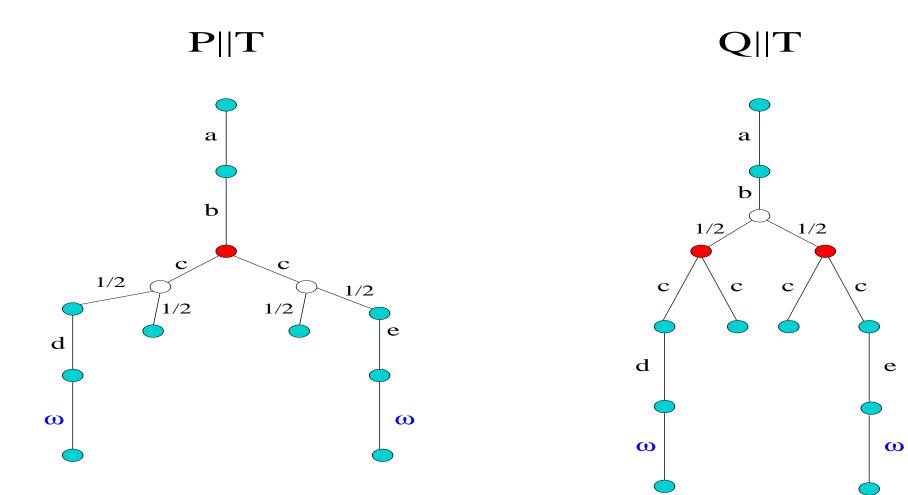
**Prop.** For closed sets  $O_1, O_2 \in \mathcal{P}_{fin}^+([0,1])$  we have

- 1.  $O_1 \leq_{\text{Ho}} O_2$  iff  $\max(O_1) \leq \max(O_2)$
- 2.  $O_1 \leq_{\mathrm{Sm}} O_2$  iff  $\min(O_1) \leq \min(O_2)$ .

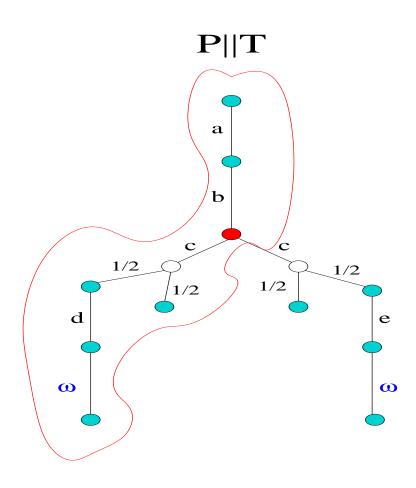
Uni-success testing

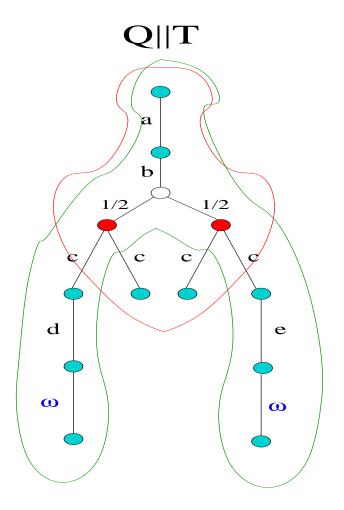


Testing systems



# (Static) resolutions





Apply(T, Q) =  $\{0, 1/2, 1\}$ 

Apply(P||T) =  $\{1/2\}$ 

Uni-success testing preorders

#### Def.

 $P \sqsubseteq_{\text{may}}^{1} Q \quad \text{if} \quad \forall T : \max\{\mathcal{A}(T, P)\} \leq \max\{\mathcal{A}(T, Q)\}.$  $P \sqsubseteq_{\text{must}}^{1} Q \quad \text{if} \quad \forall T : \min\{\mathcal{A}(T, P)\} \leq \min\{\mathcal{A}(T, Q)\}$ 

**E.g.**  $P \sqsubseteq_{may}^{1} Q$  and  $Q \sqsubseteq_{must}^{1} P$ 

## Summary

- A notion of probabilistic bisimulation based on a lifting operation
- The lifting is closely related to the Kantorovich metric and network flow problem
- Characterising probabilistic bisimulation via metrics, decision algorithms, and modal logics
- Probabilistic simulations and testing preorders

#### References

- 1. C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic processes. *Journal of Computer and System Sciences*, 60(1):187-231, 2000.
- 2. F. van Breugel and J. Worrell. Approximating and computing behavioural distances in probabilistic transition systems. *Theoretical Computer Science* 360:373-385, 2006.
- 3. J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of weak bisimulation for probabilistic processes. In *Proc. LICS'02*.
- 4. [ESOP'07] Scalar Outcomes Suffice for Finitary Probabilistic Testing. http://basics.sjtu.edu.cn/~yuxin/publications/scalar.pdf
- 5. [LICS'07] Characterising Testing Preorders for Finite Probabilistic Processes (Extended Abstract). http://basics.sjtu.edu.cn/~yuxin/publications/lics.pdf
- 6. [CONCUR'09] Testing Finitary Probabilistic Processes (Extended Abstract). http://basics.sjtu.edu.cn/~yuxin/publications/concur09.pdf
- 7. [QAPL'11] Real-Reward Testing for Probabilistic Processes. http://basics.sjtu.edu.cn/~yuxin/publications/qapl2011.pdf
- 8. [CMURR] Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation. http://basics.sjtu.edu.cn/~yuxin/publications/probbisi.pdf