Behavioral Equivalences in a Reversible Setting

Ivan Lanese Computer Science Department Focus research group University of Bologna/INRIA Bologna, Italy

Joint work with Michael Lienhardt (PPS), Claudio Antares Mezzina (Trento) Jean-Bernard Stefani (INRIA) and Alan Schmitt (INRIA)

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

The possibility of executing a (concurrent) computation both in the standard, forward direction, and in the backward direction, going back to a past state

- In some areas systems are naturally reversible: biology, quantum computing, ...
- In concurrent systems reversibility allows for recoverability
 - In case of error I go back to a past state which is safe
 - We want to use reversibility as a general framework for programming reliable applications

Concurrent reversibility

- Reversibility in a sequential setting: "recursively undo the last action"
- In a concurrent setting it is not clear which is the last action
- Independent threads are reversed independently
- Causal dependencies should be respected
 - First reverse the consequences, then the causes

Causal consistent reversibility

- Reversibility in a sequential setting: "recursively undo the last action"
- In a concurrent setting it is not clear which is the last action
- Independent threads are reversed independently
- Causal dependencies should be respected
 - First reverse the consequences, then the causes

How do I define a causal consistent calculus?

- A few approaches in the literature
 - RCCS by Danos and Krivine [CONCUR 2004]
 - CCSk by Phillips and Ulidovski [FoSSaCS 2006]
 - Rhopi by Lanese et al. [CONCUR 2010]
 - Reversible structures by Laneve and Cardelli [CMSB 2011]
 - Reversible μOz by Lanese et al. [FMOODS/FORTE 2012]
- Different technical solutions, same idea
- The term contains information on past actions and on causal dependencies
 - Computation should cause no loss of information
 - Substitutions normally causes loss of information

This is uncontrolled reversibility

- Two kinds of transitions, forward and backward
 - No hint on when to use one and when to use the other
 - Nondeterministic choice on the direction
- Useful to understand the possible behaviors
- More useful as model than as programming language

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

Behavioral equivalences

- Not all the reversible calculi above have an LTS some have just a reduction semantics
- Barbed congruence seems a reasonable candidate
- We adapt the standard definitions

Barbed congruence and equivalence

- Barbs: a configuration *M* has a barb at $a (M \downarrow a)$ if it contains a message on *a*
 - We do not observe history and causality information
- A symmetric relation R is a barbed equivalence if $(M, N) \in R$ implies
 - $M \to M'$ implies $N \to N'$ and $(M', N') \in R$
 - » No distinction between backward and forward reductions
 - $M \downarrow a$ implies $N \downarrow a$
- Classic extension to the weak case
- A barbed congruence is the largest congruence included in barbed equivalence

Barbed congruence and barbed equivalence

- Weak barbed congruence is not very discriminating
- Each configuration is weak barbed congruent to all its descendants and predecessors
 - In some sense an observational characterization of reversibility
- Weak barbed equivalence is even less discriminating
- Each configuration is weak barbed equivalent to one with all the barbs visible and no reductions

Back and forth barbed equivalence

- We can define back and forth barbed equivalence [De Nicola et al. CONCUR 1990]
 [Phillips and Ulidowski SOS 2007]
- A symmetric relation R is a back and forth barbed equivalence if $(M, N) \in R$ implies
 - $M \twoheadrightarrow M'$ implies $N \twoheadrightarrow N'$ and $(M', N') \in R$
 - $M \rightsquigarrow M'$ implies $N \rightsquigarrow N'$ and $(M', N') \in R$
 - $M \downarrow a$ implies $N \downarrow a$

Back and forth barbed congruence

- More expressive than standard equivalences
- Distinguishes a|b from a.b + b.a
- The former can do *a*, then *b*, then undo *a*, the latter cannot
- Back and forth bisimulation corresponds to hereditary history-preserving bisimulation (with no autoconcurrency and no auto-causation) [Phillips and Ulidowski SOS 2007]

Weak back and forth barbed congruence?

- Not yet studied as far as I know
- A few possible design choices
 - Which kind of τ steps do I allow in reductions?
 - And to reach weak barbs?
- Which choices give an equivalence that matches the intuition?

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

Power is nothing without control

- Programs based on uncontrolled reversibility are not very useful
 - They always diverge
 - No way to make a result persistent
- We want to go back only when needed
 - In particular, in case of errors
- We want to specify how far back to go

Reversibility control

- Different approaches in the literature
 - Irreversible actions by Danos and Krivine
 [CONCUR 2005]
 - Energy parameters by Bacci et al [CALCO 2011]
 - Rollback operator by Lanese et al [CONCUR 2011]
 - Monitors by Phillips et al [RC 2012]

Rollback operator idea

Contraction of the second seco

- Normal computation goes forward
- There is an explicit primitive, roll γ , to trigger a rollback
- γ refers to a specific action done in the past
 - We specify which action to undo
 - As a result we undo all the actions depending on it
 - Independent actions are not undone

Is rollback enough?

- Rollback allows to control reversibility
- In case of rollback
 - We go back to a past consistent state
 - And we execute forward again from it
 - We may take the same path, obtaining the same error again
 - Good for transient errors, not for permanent ones
- Each program with a (reachable) rollback is divergent
- We want to remember the past tries and learn from them

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

Actions with alternatives

- Instead of actions A we use actions with alternatives
 - A%0 : try A then stop trying
 - A%B%0 : try A then B then stop trying
- If the action with alternative is the target of the rollback, it is replaced by its alternative
- Using alternatives the programmer may now avoid looping

Alternatives in the literature?

- We proposed asynchronous HOπ with rollback and alternatives [ESOP 2013]
 - Only messages have alternatives
 - Only messages and 0 may be used as alternatives
- No other calculi with alternatives in the literature
- Some forms of control of reversibility allow anyway to avoid divergence

Are alternatives useful?

- Can we programme interesting applications exploiting rollback and alternatives?
- Can we recover/improve recoverability patterns from the literature?
- And invent new ones?

Messages with alternatives are robust

- We can encode different idioms:
 - General alternatives: not only messages
 - Finite retry: try n times
 - Endless retry: try forever
 - Triggers with alternatives: we attach alternatives to triggers instead of to messages

What can we model?

- Interesting applications:
 - State space exploration with backtracking: 8 queens problem
 - Error handling scenario: Automotive case study from Sensoria project
- Can we recover/improve existing techniques?
 - Software transactional memory model from Acciai et al. [ESOP 2007]
 - Interacting transactions from Hennessy et al. [CONCUR 2010]

Which equivalence?

- Behavioral equivalences useful for proving correctness of our encodings
- We used weak barbed congruence
- More discriminating with control and alternatives
 - Not all actions can be undone
 - Alternatives change the barbs
- Allows for a context lemma
 - Only parallel contexts and substitutions need to be considered
- More discriminating equivalences should be meaningful
 - The same as for uncontrolled reversibility?

- Uncontrolled reversibility
- Barbed congruences in the uncontrolled setting
- Controlled reversibility
- Alternatives
- Conclusions

Summary

- Causal consistent reversible calculi
- Mechanisms for controlling reversibility
- Alternatives for programming what to do after rollback
- Strong back and forth barbed congruence for the uncontrolled setting
- Weak barbed congruence in a setting with control and alternatives

- Many possible research directions
- Which LTS for reversible calculi?
 - LTS for reversible π [Krivine et al. LICS 2013]
 - A complex LTS for controlled reversibility
- Many open issues for behavioral equivalences
 - Which definition can be used for weak back and forth barbed congruence in the uncontrolled setting?
 - Is the same equivalence needed/reasonable with control and alternatives?
- Consider other languages/constructs
 - Klaim, object-oriented languages,...
- Reversibility seems useful for debugging

Finally

