
1

Joint work with Michael Lienhardt (PPS),

Claudio Antares Mezzina (Trento),

Jean-Bernard Stefani (INRIA) and

Alan Schmitt (INRIA)

Behavioral Equivalences in a

Reversible Setting

Ivan Lanese

Computer Science Department

Focus research group

University of Bologna/INRIA

Bologna, Italy

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

What is reversibility?

The possibility of executing a (concurrent) computation

both in the standard, forward direction, and in the

backward direction, going back to a past state

 In some areas systems are naturally reversible: biology,

quantum computing, …

 In concurrent systems reversibility allows for

recoverability

– In case of error I go back to a past state which is safe

– We want to use reversibility as a general framework for

programming reliable applications

 Reversibility in a sequential setting: “recursively undo

the last action”

 In a concurrent setting it is not clear which is the last

action

 Independent threads are reversed independently

 Causal dependencies should be respected

– First reverse the consequences, then the causes

Concurrent reversibility

a

a

b

b

 Reversibility in a sequential setting: “recursively undo

the last action”

 In a concurrent setting it is not clear which is the last

action

 Independent threads are reversed independently

 Causal dependencies should be respected

– First reverse the consequences, then the causes

Causal consistent reversibility

a

a

b

b

How do I define a causal consistent calculus?

 A few approaches in the literature

– RCCS by Danos and Krivine [CONCUR 2004]

– CCSk by Phillips and Ulidovski [FoSSaCS 2006]

– Rhopi by Lanese et al. [CONCUR 2010]

– Reversible structures by Laneve and Cardelli [CMSB 2011]

– Reversible µOz by Lanese et al. [FMOODS/FORTE 2012]

 Different technical solutions, same idea

 The term contains information on past actions and on

causal dependencies

– Computation should cause no loss of information

– Substitutions normally causes loss of information

This is uncontrolled reversibility

 Two kinds of transitions, forward and backward

– No hint on when to use one and when to use the other

– Nondeterministic choice on the direction

 Useful to understand the possible behaviors

 More useful as model than as programming language

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

Behavioral equivalences

 Not all the reversible calculi above have an LTS –

some have just a reduction semantics

 Barbed congruence seems a reasonable candidate

 We adapt the standard definitions

Barbed congruence and equivalence

 Barbs: a configuration 𝑀 has a barb at 𝑎 (𝑀 ↓ 𝑎) if it contains a

message on 𝑎

– We do not observe history and causality information

 A symmetric relation R is a barbed equivalence if 𝑀, 𝑁 ∈ 𝑅

implies

– 𝑀 → 𝑀′ implies 𝑁 → 𝑁′ and 𝑀′, 𝑁′ ∈ 𝑅

» No distinction between backward and forward reductions

– 𝑀 ↓ 𝑎 implies 𝑁 ↓ 𝑎

 Classic extension to the weak case

 A barbed congruence is the largest congruence included in

barbed equivalence

Barbed congruence and barbed equivalence

 Weak barbed congruence is not very discriminating

 Each configuration is weak barbed congruent to all its

descendants and predecessors

– In some sense an observational characterization of

reversibility

 Weak barbed equivalence is even less discriminating

 Each configuration is weak barbed equivalent to one

with all the barbs visible and no reductions

Back and forth barbed equivalence

 We distinguish forward reductions ↠ from backward

reductions ⇝

 We can define back and forth barbed equivalence

[De Nicola et al. CONCUR 1990]

[Phillips and Ulidowski SOS 2007]

 A symmetric relation 𝑅 is a back and forth barbed

equivalence if (𝑀, 𝑁) ∈ 𝑅 implies

– 𝑀 ↠ 𝑀′ implies 𝑁 ↠ 𝑁′ and (𝑀′, 𝑁′) ∈ 𝑅

– 𝑀 ⇝ 𝑀′ implies 𝑁 ⇝ 𝑁′ and (𝑀′, 𝑁′) ∈ 𝑅

– 𝑀 ↓ 𝑎 implies 𝑁 ↓ 𝑎

Back and forth barbed congruence

 More expressive than standard equivalences

 Distinguishes 𝑎|𝑏 from 𝑎. 𝑏 + 𝑏. 𝑎

 The former can do 𝑎, then 𝑏, then undo 𝑎, the latter

cannot

 Back and forth bisimulation corresponds to hereditary

history-preserving bisimulation (with no auto-

concurrency and no auto-causation) [Phillips and

Ulidowski SOS 2007]

Weak back and forth barbed congruence?

 Not yet studied as far as I know

 A few possible design choices

– Which kind of 𝜏 steps do I allow in reductions?

– And to reach weak barbs?

 Which choices give an equivalence that matches the

intuition?

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

Power is nothing without control

 Programs based on uncontrolled

reversibility are not very useful

– They always diverge

– No way to make a result persistent

 We want to go back only when needed

– In particular, in case of errors

 We want to specify how far back to go

Reversibility control

 Different approaches in the literature

– Irreversible actions by Danos and Krivine

[CONCUR 2005]

– Energy parameters by Bacci et al [CALCO 2011]

– Rollback operator by Lanese et al [CONCUR 2011]

– Monitors by Phillips et al [RC 2012]

Rollback operator idea

 Normal computation goes forward

 There is an explicit primitive, roll γ, to trigger a rollback

 γ refers to a specific action done in the past

– We specify which action to undo

– As a result we undo all the actions depending on it

– Independent actions are not undone

Is rollback enough?

 Rollback allows to control reversibility

 In case of rollback

– We go back to a past consistent state

– And we execute forward again from it

– We may take the same path, obtaining the same error again

– Good for transient errors, not for permanent ones

 Each program with a (reachable) rollback is divergent

 We want to remember the past tries and learn from them

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

Actions with alternatives

 Instead of actions A we use actions with alternatives

– A%0 : try A then stop trying

– A%B%0 : try A then B then stop trying

 If the action with alternative is the target of the rollback,

it is replaced by its alternative

 Using alternatives the programmer may now avoid

looping

Alternatives in the literature?

 We proposed asynchronous HOπ with rollback and

alternatives [ESOP 2013]

– Only messages have alternatives

– Only messages and 0 may be used as alternatives

 No other calculi with alternatives in the literature

 Some forms of control of reversibility allow anyway to

avoid divergence

Are alternatives useful?

 Can we programme interesting applications exploiting

rollback and alternatives?

 Can we recover/improve recoverability patterns from

the literature?

 And invent new ones?

Messages with alternatives are robust

 We can encode different idioms:

– General alternatives: not only messages

– Finite retry: try n times

– Endless retry: try forever

– Triggers with alternatives: we attach alternatives to triggers

instead of to messages

What can we model?

 Interesting applications:

– State space exploration with backtracking: 8 queens problem

– Error handling scenario: Automotive case study from Sensoria

project

 Can we recover/improve existing techniques?

– Software transactional memory model from Acciai et al.

[ESOP 2007]

– Interacting transactions from Hennessy et al. [CONCUR

2010]

Which equivalence?

 Behavioral equivalences useful for proving correctness

of our encodings

 We used weak barbed congruence

 More discriminating with control and alternatives

– Not all actions can be undone

– Alternatives change the barbs

 Allows for a context lemma

– Only parallel contexts and substitutions need to be considered

 More discriminating equivalences should be meaningful

– The same as for uncontrolled reversibility?

Roadmap

 Uncontrolled reversibility

 Barbed congruences in

the uncontrolled setting

 Controlled reversibility

 Alternatives

 Conclusions

Summary

 Causal consistent reversible calculi

 Mechanisms for controlling reversibility

 Alternatives for programming what to do after rollback

 Strong back and forth barbed congruence for the

uncontrolled setting

 Weak barbed congruence in a setting with control and

alternatives

Future work

 Many possible research directions

 Which LTS for reversible calculi?

– LTS for reversible π [Krivine et al. LICS 2013]

– A complex LTS for controlled reversibility

 Many open issues for behavioral equivalences

– Which definition can be used for weak back and forth barbed

congruence in the uncontrolled setting?

– Is the same equivalence needed/reasonable with control and

alternatives?

 Consider other languages/constructs

– Klaim, object-oriented languages,...

 Reversibility seems useful for debugging

Finally

