A π-calculus with preorders

Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi

École Normale Supérieure de Lyon
Università di Bologna

PACE kick-off meeting, 2013-04-23

Summary

1π-calculus and fusions

2 Types in fusions
$3 \pi \mathrm{P}$: a preorder on names

4 Types for $\pi \mathrm{P}$

5 Encodings

π-calculus

The π-calculus is a process calculus which is name-passing:

$$
P::=0|P| Q|!P| \bar{a}\langle b\rangle . P|a(x) . P|(\nu a) P
$$

$$
\bar{a}\langle b\rangle . P|a(x) \cdot Q \quad \rightarrow \quad P| Q[b / x]
$$

Examples:

- link $=!a(x) . \bar{b}\langle x\rangle$

■ $\operatorname{spy}=!a(x) \cdot(\bar{a}\langle x\rangle \mid \overline{\text { third }}\langle x\rangle)$

Explicit fusions

Non-binding input, construct " $=$ " to equate names:

$$
P::=0|P| Q|!P| \bar{a}\langle b\rangle . P|a\langle c\rangle . P|(\nu a) P \mid b=c
$$

$$
\bar{a}\langle b\rangle . P|a\langle c\rangle . Q \quad \rightarrow \quad P| Q \mid b=c
$$

- $(P \mid a=b) \equiv(P[b / a] \mid a=b)$
- only one binder,
- simpler theory than π,

■ outputs $\bar{a}\langle b\rangle$ and inputs $a\langle b\rangle$ are of the same kind.

Fusion-like calculi [Parrow, Victor, Fu, Wischik, Gardner, ...]

- Explicit fusions:

$$
\begin{gathered}
\bar{a}\langle b\rangle \cdot P|a\langle c\rangle \cdot Q \rightarrow P| Q \mid b=c \\
(\text { and custom } \equiv)
\end{gathered}
$$

■ Fusion calculus and χ-calculus contain these rules:

$$
\begin{aligned}
& (\boldsymbol{\nu} c)(\bar{a}\langle b\rangle . P|a\langle c\rangle \cdot Q| R) \rightarrow(P|Q| R)[b / c] \\
& (\boldsymbol{\nu} b)(\bar{a}\langle b\rangle . P|a\langle c\rangle \cdot Q| R) \rightarrow(P|Q| R)[c / b]
\end{aligned}
$$

■ Update calculus and asymmetric χ-calculus contain this rule:

$$
(\boldsymbol{\nu} c)(\bar{a}\langle b\rangle . P|a\langle c\rangle . Q| R) \rightarrow(P|Q| R)[b / c]
$$

Summary

1π-calculus and fusions

2 Types in fusions

$3 \pi \mathrm{P}$: a preorder on names

4 Types for $\pi \mathrm{P}$

5 Encodings

Capability types (i/o-types) [Pierce Sangiorgi, 93]

Types for names:

$T::=$| $\mathbf{1}$ | no capability |
| :--- | :--- |
| | $i T$ | receive capability of T-values

$\frac{\Gamma \vdash a: i T \quad \Gamma, x: T \vdash P}{\Gamma \vdash a(x) . P} \quad \frac{\Gamma \vdash a: o T \quad \Gamma \vdash b: T}{\Gamma \vdash \bar{a}\langle b\rangle . P}$

$$
\overline{\Gamma, a: \sharp T \vdash a: o T} \quad \overline{\Gamma, a: \sharp T \vdash a: i T}
$$

Subtyping in i/o-types

$$
\begin{aligned}
T_{1} \leq T_{2} \quad: \quad & \text { a } T_{1} \text {-name is also a } T_{2} \text {-name. } \\
& \text { (easier to use, harder to provide) }
\end{aligned}
$$

$$
\begin{array}{cc}
\overline{\sharp T \leq i T} & \sharp T \leq o T \\
\frac{T_{1} \leq T_{2}}{i T_{1} \leq i T_{2}} & \frac{T_{1} \leq T_{2}}{o T_{2} \leq o T_{1}}
\end{array}
$$

■ $T_{1} \leq T_{2}$: using T_{1}-names is easier, $i T_{1} \leq i T_{2}$: using channels that receive T_{1}-names is easier.

- $T_{1} \leq T_{2}$: providing T_{1}-names is harder, $o T_{2} \leq o T_{1}$: sending to channels that demand T_{2} is easier.

Typing issues in fusions

It seems reasonable to have:

$$
\left.\begin{array}{ccc}
b: \sharp & \vdash & \bar{a}\langle b\rangle \\
c: i & \vdash & a\langle c\rangle
\end{array}\right\} \text { globally, } a: \sharp i
$$

but this implies by reduction that:

$$
\begin{gathered}
c: i \vdash(\boldsymbol{\nu} a)(\boldsymbol{\nu} b)(\bar{b}\langle \rangle|\bar{a}\langle b\rangle| a\langle c\rangle) \\
c: i \vdash \bar{c}\langle \rangle
\end{gathered}
$$

Fusion calculi break i/o-types as is:

$$
\left.\begin{array}{c}
\Gamma \vdash P \\
P \rightarrow P^{\prime}
\end{array}\right\} \nRightarrow \Gamma \vdash P^{\prime}
$$

(formally, no subtyping used)

Origin of the problem

Inputs can "send" (i.e. input objects replace other objects):

$$
u\langle b\rangle \mid(\boldsymbol{\nu} a)(\bar{u}\langle a\rangle \mid P) \quad \rightarrow \quad P[b / a]
$$

The substitution $P[b / a]$ suggests $T_{b} \leq T_{a}$
The i/o-types suggest $T_{a} \leq T_{b}$

Sending inputs in update calculus

Fusion calculus:

output objects can be replaced:

$$
u\langle b\rangle \mid(\boldsymbol{\nu} a)(\bar{u}\langle a\rangle \mid P) \quad \rightarrow_{\mathrm{fu}} \quad P[b / a]
$$

Update calculus:

at first sight only inputs are replaced:

$$
\bar{u}\langle b\rangle \mid(\boldsymbol{\nu} a)(u\langle a\rangle \mid P) \rightarrow_{\text {up }} \quad P[b / a]
$$

but in fact, outputs can be, too:

$$
\begin{aligned}
& \bar{u}\langle b\rangle \mid(\boldsymbol{\nu} a c)(u\langle c\rangle|P| \bar{v}\langle a\rangle \mid v\langle c\rangle) \\
\rightarrow_{\text {up }} & \bar{u}\langle b\rangle \mid(\boldsymbol{\nu} a)(u\langle a\rangle \mid P) \\
\rightarrow_{\text {up }} & P[b / a]
\end{aligned}
$$

Sum up

Theorem

In a fusion-calculus where

$$
(\boldsymbol{\nu} c)(\bar{a}\langle b\rangle . P \mid a\langle c\rangle . Q) \Rightarrow(P \mid Q)[b / c],
$$

a regular type system will make subtyping essentially trivial, i.e. in a well-typed process $\Gamma \vdash P$, if $\Gamma(a) \leq \Gamma(b)$ we can exchange a and b anywhere in a process and it will stay well-typed: e.g. $\Gamma \vdash P[a / b]$ and $\Gamma \vdash P[b / a]$.

Main clash:

- fusions " $a=b$ " induce an equivalence relation,

■ subtyping is made symmetric, directed by substitutions.

Summary

1π-calculus and fusions

2 Types in fusions
$3 \pi \mathrm{P}$: a preorder on names

4 Types for $\pi \mathrm{P}$

5 Encodings

$\pi \mathrm{P}: \pi$ with preorder

Idea: removing symmetry from fusions' equivalence relation

$$
P::=\bar{a}\langle b\rangle . P|\boldsymbol{a}\langle\boldsymbol{b}\rangle . P| \boldsymbol{a} / \boldsymbol{b}|(\nu a) P| 0|P| P \mid!P
$$

- an arc $\boldsymbol{a} / \boldsymbol{b}$ makes a an alias of b :
" a can do what b can do"

$$
b \leq a
$$

■ $\boldsymbol{a}\langle\boldsymbol{b}\rangle$ is a free input prefix, symmetric of $\bar{a}\langle b\rangle$

$$
\bar{c}\langle a\rangle . P|c\langle b\rangle . Q \rightarrow P| a / b \mid Q
$$

Details:

- arcs define the preorder,
$\square \equiv$ is as in π,
- ν is the only binder.

Semantics

$$
\frac{C \triangleright a \curlyvee b}{C[\bar{a}\langle c\rangle . P \mid b\langle d\rangle . Q] \rightarrow C[P|c / d| Q]}
$$

$C \triangleright a \curlyvee b$: some name u can impersonate a and b.

$$
\begin{gathered}
C \triangleright a \curlyvee b \quad \text { iff } \quad \exists u \quad a \leq u \text { and } b \leq u \\
\text { e.g. } C=(\boldsymbol{\nu} u v)(u / a|u / v| v / b \mid-)
\end{gathered}
$$

$\pi \mathrm{P}$ examples

$$
\begin{aligned}
& a / c|(\bar{a} \mid c . P) \rightarrow a / c| P \\
& c / a|(\bar{a} \mid c . P) \rightarrow c / a| P \\
& a \curlyvee c \\
& u / a|u / c|(\bar{a} \mid c . P) \rightarrow u / a|u / c| P \\
& a / u|c / u|(\bar{a} \mid c . P) \nrightarrow \\
& P_{1} \mid \ldots \\
& (\nu x)(a / x|b / x| \bar{x})\left|a \cdot P_{1}\right| b . P_{2} \\
& P_{2} \mid \ldots
\end{aligned}
$$

$\pi \mathrm{P}$: polarized fusions

$$
P::=a / b|a\langle b\rangle . P| \bar{a}\langle b\rangle . P|P| P|!P| 0 \mid(\nu a) P
$$

- Negative occurrences of b may affect other occurrences of b;
- In π, all negative positions are immediately bound:

$$
\begin{aligned}
a(x) \cdot P & =(\boldsymbol{\nu} x)(a\langle x\rangle . P), \\
P[b / x] & =(\boldsymbol{\nu} x)(P \mid b / x) .
\end{aligned}
$$

- Extrapolating: if a appears:

■ in 0 negative occurrence: a is a channel,

- in 1 negative occurrence: a is a variable,

■ in $2+$ negative occurrences: a is a "concurrent binder".
■ Polarity does not change along reduction; easy to check on the syntax.

Some properties

Modeling standard substitution:
■ if $x>0$ in $P,(\nu x)(a / x \mid P) \sim P[a / x]$,
■ if $x<0$ in $P,(\nu x)(x / a \mid P) \sim P[a / x]$,
■ in any case, $(\nu x)(x / a|a / x| P) \sim P[a / x]$,
In the strong case, we have a LTS with simple labels ($\tau, a b, \bar{a} b)$:

$$
P \sim Q \quad \text { iff } \quad P \simeq Q
$$

$E \triangleright a \curlyvee b \quad b, d$ not bound in E $E[a\langle c\rangle . P] \xrightarrow{b\langle d\rangle} E[d / c \mid P]$

$$
\frac{P \mathcal{R} Q}{P|a / b \mathcal{R} Q| a / b}
$$

$E \triangleright a \curlyvee b \quad b, d$ not bound in E

$$
E[\bar{a}\langle c\rangle . P] \xrightarrow{\bar{b}\langle d\rangle} E[c / d \mid P]
$$

$$
\frac{P \mathcal{R} Q}{P \triangleright a \curlyvee b \Leftrightarrow Q \triangleright a \curlyvee b}
$$

Summary

1π-calculus and fusions

2 Types in fusions

$3 \pi \mathrm{P}$: a preorder on names

4 Types for $\pi \mathrm{P}$

5 Encodings

Types for $\pi \mathrm{P}$

$$
T::=i T|o T| \sharp T \mid \mathbf{1}
$$

$$
\overline{ } \overline{\sharp T \leq i T} \quad \overline{\sharp T \leq o T} \quad \frac{T_{1} \leq T_{2}}{i T_{1} \leq i T_{2}} \quad \frac{T_{1} \leq T_{2}}{o T_{2} \leq o T_{1}}
$$

$$
\begin{gathered}
\Gamma \vdash P \\
\Gamma(a) \leq o T \\
\Gamma(b) \leq T \\
\hline \Gamma \vdash \bar{a}\langle b\rangle . P \\
\uparrow
\end{gathered}
$$

like in the π-calculus

$$
\begin{array}{cc}
\Gamma \vdash P & \\
\Gamma(a) \leq i T & \\
\Gamma(b) \geq T \\
\hline \Gamma \vdash a\langle b\rangle . P & \frac{\Gamma(a) \leq \Gamma(b)}{\Gamma \vdash a / b} \\
\uparrow & \uparrow
\end{array}
$$

$(\Gamma(a) \leq . . \wedge \Gamma(b) \leq .$.

Narrowing and polarities

Usually we rely on narrowing...

$$
\left.\begin{array}{c}
T_{1} \leq T_{2} \\
\Gamma, a: T_{2} \vdash P
\end{array}\right\} \Rightarrow \Gamma, a: T_{1} \vdash P
$$

Narrowing and polarities

Usually we rely on narrowing...

$$
\left.\begin{array}{c}
\Gamma(a) \leq \Gamma(b) \\
\Gamma \vdash P
\end{array}\right\} \Rightarrow \Gamma \vdash P[a / b]
$$

Narrowing and polarities

Usually we rely on narrowing...

$$
\left.\begin{array}{c}
\Gamma(a) \leq \Gamma(b) \\
\Gamma \vdash P
\end{array}\right\} \Rightarrow \Gamma \vdash P[a / b]
$$

... but it does not hold in $\pi \mathrm{P}$:

$$
\begin{aligned}
& a: i, b: i, c: \sharp \vdash \bar{c} \mid(\nu x)(x\langle a\rangle \mid \bar{x}\langle b\rangle) \\
& a: i, b: i, c: \sharp \nvdash \bar{c} \mid(\nu x)(x\langle c\rangle \mid \bar{x}\langle b\rangle) \rightarrow(\bar{c} \mid b / c) \quad(\text { can do } \bar{b})
\end{aligned}
$$

Properties of the type system

We can make narrowing polarized: if $\Gamma(a) \leq \Gamma(b)$ then

$$
\begin{array}{ll}
\Gamma \vdash P[b / x] \Rightarrow \Gamma \vdash P[a / x] & \text { if } x>0 \\
\Gamma \vdash P[a / x] \Rightarrow \Gamma \vdash P[b / x] & \text { if } x<0
\end{array}
$$

(In π, binders hide all negative occurrences hence narrowing is only positive)

$$
P::=a / b|a\langle b\rangle . P| \bar{a}\langle b\rangle . P|P| P|!P| 0 \mid(\nu a) P
$$

This implies subject reduction: if $P \rightarrow P^{\prime}$ and $\Gamma \vdash P$ then $\Gamma \vdash P^{\prime}$.

Summary

1π-calculus and fusions

2 Types in fusions

$3 \pi \mathrm{P}$: a preorder on names

4 Types for $\pi \mathrm{P}$

5 Encodings

Encoding π

$\pi \mathrm{P}$ is close to π (more than fusions and even update $/ \chi$):

$$
a(x) . P \leftrightarrow(\nu x)(a\langle x\rangle . P)
$$

And since $a(x) . P \mid \bar{a}\langle b\rangle \rightarrow(\nu x)(P \mid b / x)$ we would like :

$$
(\nu x)(P \mid b / x)=P[b / x]
$$

Encoding π

$\pi \mathrm{P}$ is close to π (more than fusions and even update $/ \chi$) :

$$
a(x) . P \leftrightarrow(\nu x)(a\langle x\rangle . P)
$$

And since $a(x) \cdot P \mid \bar{a}\langle b\rangle \rightarrow(\nu x)(P \mid b / x)$ we would like :

$$
(\nu x)(P \mid b / x)=P[b / x]
$$

Which holds if x is positive in P (True since P is a π-process).
Remarks:

- full abstraction for $\mathrm{A} \pi$ (maybe for π),
- full abstraction for a subcalculus of $\pi \mathrm{P}$.

Encoding explicit fusions

$$
\begin{aligned}
\llbracket a & =b \rrbracket \\
\llbracket \bar{a}\langle b\rangle \cdot P \rrbracket & =(\boldsymbol{\nu} u) \bar{a}\langle b, u\rangle \cdot u\langle b\rangle \cdot \llbracket P \rrbracket \\
\llbracket a\langle c\rangle \cdot Q \rrbracket & =(\boldsymbol{\nu} v) a\langle c, v\rangle \cdot \bar{v}\langle c\rangle \cdot \llbracket Q \rrbracket \\
\bar{a}\langle b\rangle \cdot P \mid a\langle c\rangle \cdot Q \rightarrow b & =c|P| Q \\
\llbracket \bar{a}\langle b\rangle \cdot P \mid a\langle c\rangle \cdot Q \rrbracket & \rightarrow(\boldsymbol{\nu} u v)(b / c|u / v| u\langle b\rangle \cdot \llbracket P \rrbracket \mid \bar{v}\langle c\rangle \cdot \llbracket Q \rrbracket) \\
& \approx(\boldsymbol{\nu} u v)(u / v|b / c| c b|\llbracket P \rrbracket| \llbracket Q \rrbracket) \\
& \sim \llbracket b=c|P| Q \rrbracket
\end{aligned}
$$

Operational correspondence:

$$
\begin{aligned}
P \rightarrow P^{\prime} & \Rightarrow \llbracket P \rrbracket \rightarrow \approx \llbracket P^{\prime} \rrbracket \\
\llbracket P \rrbracket \rightarrow Q & \Rightarrow P \rightarrow P^{\prime} \wedge Q \approx \llbracket P^{\prime} \rrbracket
\end{aligned}
$$

Encoding implicit fusions

$$
\begin{gathered}
\llbracket \bar{a}\langle b\rangle \cdot P \rrbracket=(\boldsymbol{\nu} u) \bar{a}\langle b, u\rangle \cdot u\langle b\rangle \cdot \llbracket P \rrbracket \\
\llbracket a\langle c\rangle \cdot Q \rrbracket=(\boldsymbol{\nu} v) a\langle c, v\rangle \cdot \bar{v}\langle c\rangle \cdot \llbracket Q \rrbracket \\
\llbracket \bar{a}\langle b\rangle \cdot P|a\langle c\rangle \cdot Q \rrbracket \rightarrow \approx(b / c \mid c / b)| \llbracket P \mid Q \rrbracket \\
\bar{a}\langle b\rangle \cdot P|a\langle c\rangle \cdot Q \xrightarrow{\{b=c\}} P| Q
\end{gathered}
$$

Operational correspondence:

$$
\begin{aligned}
& P \rightarrow P^{\prime} \Rightarrow \llbracket P \rrbracket \rightarrow \approx \llbracket P^{\prime} \rrbracket \\
& \llbracket P \rrbracket \rightarrow Q \Rightarrow\left\{\begin{aligned}
P \xrightarrow{\tau} P^{\prime} & \wedge Q \approx \llbracket P^{\prime} \rrbracket \\
\vee & P \xrightarrow{\{a=b\}} P^{\prime}
\end{aligned}\right) \wedge Q \approx \llbracket P^{\prime} \rrbracket|a / b| b / a \$
\end{aligned}
$$

The χ-calculus

Rules of (symmetric) χ :

$$
\begin{aligned}
& (\boldsymbol{\nu} x)(a[x] \cdot P|\bar{a}[y] \cdot Q| R) \rightarrow_{\chi} P[y / x]|Q[y / x]| R[y / x] \\
& (\boldsymbol{\nu} x)(\bar{a}[x] \cdot P|a[y] \cdot Q| R) \rightarrow_{\chi} P[y / x]|Q[y / x]| R[y / x]
\end{aligned}
$$

Encoding into π P:

$$
\begin{aligned}
& \llbracket \bar{a}\langle b\rangle \cdot P \rrbracket=(\boldsymbol{\nu} u) \bar{a}\langle b, u\rangle \cdot u\langle b\rangle \cdot \llbracket P \rrbracket \\
& \llbracket a\langle c\rangle \cdot Q \rrbracket=(\boldsymbol{\nu} v) a\langle c, v\rangle \cdot \bar{v}\langle c\rangle \cdot \llbracket Q \rrbracket
\end{aligned}
$$

$$
P \rightarrow_{\chi} P^{\prime} \Rightarrow \llbracket P \rrbracket \rightarrow \cong \llbracket P^{\prime} \rrbracket
$$

$$
\llbracket P \rrbracket \rightarrow P_{1} \Rightarrow\left\{\begin{array}{l}
P \xrightarrow{[y / x]} P^{\prime} \wedge(\boldsymbol{\nu} x) P_{1} \cong \llbracket P^{\prime} \rrbracket \\
\vee P \xrightarrow{\tau} P_{\chi} P^{\prime} \wedge P_{1} \cong \llbracket P^{\prime} \rrbracket
\end{array} \frac{\mid \nu x) P \xrightarrow{\tau} P^{\prime}}{(\nu x)} P^{\prime}\right.
$$

Asymmetric χ : not sure how.

Conclusion

Fusions:
■ behavioural theory scales from π,

- types do not!

A refinement of fusions, $\pi \mathrm{P}$:
■ has a preorder instead of an equivalence,

- preserves π 's types,

■ also, has a real notion of restriction.
Now:

- weak case of the theory,

■ extensions (e.g. what matching would be),
$■$ abstract machine (\sim fusion machine).

Thank you for your time.

Private names

This π process has some private names:

$$
\left.(\boldsymbol{\nu} a b) \text { int_server }_{a} \mid \text { list_server }_{b}|\bar{c}\langle a, b\rangle . P| \ldots\right)
$$

In other (algebraic) words:

$$
\begin{aligned}
& (\nu a b) \bar{u}\langle a, b\rangle \cdot(\bar{a} \mid b) \\
\sim & (\nu a b) \bar{u}\langle a, b\rangle \cdot(\bar{a} \cdot b+b \cdot \bar{a})
\end{aligned}
$$

Which does not hold in the case of fusions:

$$
\begin{array}{ccc}
u\langle d, d\rangle \mid(\nu a b) \bar{u}\langle a, b\rangle .(\bar{a} \mid b) & \nsim & u\langle d, d\rangle \mid(\nu a b) \bar{u}\langle a, b\rangle \cdot(\bar{a} \cdot b+b \cdot \bar{a}) \\
\downarrow & & \downarrow \\
(\bar{d} \mid d) & \nsim & (\bar{d} \cdot d+d \cdot \bar{d})
\end{array}
$$

Modelisation in fusions

A bad client fusing names:

$$
c\langle d, d\rangle \quad \mid \quad(\boldsymbol{\nu} a b)\left(\text { int_server }_{a} \mid \text { list_server }_{b}|\bar{c}\langle a, b\rangle . P| \ldots\right)
$$

Modelisation is more difficult using fusions than π :

- we lack private names,
- we lack types (beyond simple types).

Fusions calculi are too pure for modelisation.
...is there a similar calculus that keeps these good properties of π ?

Private names in $\pi \mathrm{P}$

If a is not negative in P then it is private in $(\nu a) P$.
In fusions:

$$
\begin{aligned}
& (\nu a b)(P \mid \bar{u}\langle a, b\rangle) \quad \mid u\langle d, d\rangle \\
\rightarrow & (\nu a b)(P|a=d| b=d) .
\end{aligned}
$$

In $\pi \mathrm{P} a$ and b are not compromised:

$$
\begin{aligned}
& (\nu a b)(P \mid \bar{u}\langle a, b\rangle) \mid u\langle d, d\rangle \\
\rightarrow & (\nu a b)(P|a / d| b / d) .
\end{aligned}
$$

In $\pi \mathrm{P}$ the law holds:

$$
(\nu a b) \bar{u}\langle a, b\rangle \cdot(\bar{a} \mid b) \sim(\nu a b) \bar{u}\langle a, b\rangle \cdot(\bar{a} \cdot b+b \cdot \bar{a}) .
$$

The χ-calculus

Symmetric χ-calculus (1,2) \simeq fusion calculus Asymmetric χ-calculus $(1) \simeq$ update calculus

$$
\begin{align*}
& (\boldsymbol{\nu} x)(a[x] \cdot P|\bar{a}[y] \cdot Q| R) \rightarrow_{\chi} P[y / x]|Q[y / x]| R[y / x] \tag{1}\\
& (\boldsymbol{\nu} x)(\bar{a}[x] \cdot P|a[y] \cdot Q| R) \rightarrow_{\chi} P[y / x]|Q[y / x]| R[y / x] \tag{2}
\end{align*}
$$

Even in (1) alone input objects are being rewritten, e.g.:

$$
\begin{aligned}
& (\boldsymbol{\nu} x z b)(\bar{b}[x]|b[z] \cdot a[z]| \bar{a}[y] \mid R) \\
\rightarrow_{\chi} & (\boldsymbol{\nu} x)(a[x]|\bar{a}[y]| R) \\
\rightarrow_{\chi} & R[y / x]
\end{aligned}
$$

Fusions: an equivalence relation on names

	condition	effect
π	$\bar{a}\langle c\rangle . P \mid b(x) . Q$ syntactic equality $a=b$	$\rightarrow \quad P \mid Q[c / x]$ syntactic replacement $x \mapsto c$
fusions	$\bar{a}\langle c\rangle . P \mid b\langle d\rangle . Q$ equivalence relation $a \sim b$	$\rightarrow \quad P\|Q\| c=d$ equivalence modification $c \sim d$

Fusions: an equivalence relation on names

	condition		effect
π	$\bar{a}\langle c\rangle . P \mid b(x) . Q$ syntactic equality $a=b$	\rightarrow	$P \mid Q[c / x]$ syntactic replacement fusions
	$\bar{a}\langle c\rangle . P \mid b\langle d\rangle . Q$ equivalence relation $a \sim b$	\rightarrow	$P\|Q\| c=d$ equivalence modification c
$\pi \mathrm{P}$			

Two semantics

Eager semantics

$$
\begin{aligned}
\bar{a}\langle b\rangle . P \mid a\langle c\rangle \cdot Q & \rightarrow P|b / c| Q \\
\bar{a}\langle c\rangle \cdot P \mid b / a & \rightarrow \bar{b}\langle c\rangle \cdot P \mid b / a \\
a\langle c\rangle . P \mid b / a & \rightarrow b\langle c\rangle . P \mid b / a
\end{aligned}
$$

Some remarks:

- a / b can act at any time,
- more τ-reductions (\approx),
- easier to implement,
- $a . a \nsim a \mid a$.

By-need semantics

$$
\frac{C \vdash u / a \text { and } C \vdash u / b}{C[\bar{a}\langle c\rangle . P \mid b\langle d\rangle . Q] \rightarrow C[P|c / d| Q]}
$$

Some remarks:

- a / b acts as late as possible,
- more τ-sensible (\sim, \approx),
- more expressive,
- $a . a \sim a \mid a$.

Typing $\pi I: \pi$ with internal mobility [Sangiorgi, 96]

Sending only fresh names. (Subcalculus of π)

$$
((\nu x) \bar{a} x . P) \mid a(x) \cdot Q \quad \rightarrow \quad(\nu x)(P \mid Q)
$$

- simpler theory, expressiveness (π, λ);
- duality at the operational level:

$$
\begin{gathered}
\overline{a(x) \cdot \bar{b}(y) \cdot P}=\bar{a}(x) \cdot b(y) \cdot \bar{P} \\
P \rightarrow P^{\prime} \quad \Leftrightarrow \bar{P} \rightarrow \overline{P^{\prime}}
\end{gathered}
$$

■ But subtyping does not improve expressiveness.

Typing $\pi I: \pi$ with internal mobility [Sangiorgi, 96]

Sending only fresh names. (Subcalculus of π)

$$
\bar{a}(x) \cdot P \mid a(x) \cdot Q \quad \rightarrow \quad(\nu x)(P \mid Q)
$$

- simpler theory, expressiveness (π, λ);
- duality at the operational level:

$$
\begin{gathered}
\overline{a(x) \cdot \bar{b}(y) \cdot P}=\bar{a}(x) \cdot b(y) \cdot \bar{P} \\
P \rightarrow P^{\prime} \quad \Leftrightarrow \bar{P} \rightarrow \overline{P^{\prime}}
\end{gathered}
$$

- But subtyping does not improve expressiveness.

A "maximal" solution: $\bar{\pi}$ [Concur'12]

The calculus $\bar{\pi}$:

- has duality,

■ symmetry, free input and output prefixes,

- has types,

■ is a conservative extension of π.

With the following drawbacks:
■ not minimal (gotten by saturation of π),
■ verbose,

- it is necessarily typed,
- no fusion constructor.

Everything but the first item: remaining of this talk.

Preservation of scope

scope of the binders of b
$\ldots|\overbrace{b\langle e\rangle|\ldots| \underbrace{a\langle b\rangle . P|\ldots| c / b}_{\text {binders of } b}|\ldots| \bar{c}\langle b\rangle}| \ldots$
With usual substitution:

- This breaks subtyping,
- controling the binders helps controling the scope,

■ $\pi \mathrm{P}$ preserves locality of binders.

$\pi I: \pi$ with internal mobility [Sangiorgi, 96]

Sending only fresh names (subcalculus of π):
$((\nu x) \bar{a}\langle x\rangle . P) \mid a(x) \cdot Q \quad \rightarrow \quad(\nu x)(P \mid Q)$

■ expressive system (λ, π),

- simpler theory,

■ the natures of $\bar{a}(x)$ and $a(x)$ are similar.
$\pi I: \pi$ with internal mobility [Sangiorgi, 96]

Sending only fresh names (subcalculus of π):

$$
\bar{a}(x) . P \mid a(x) . Q \quad \rightarrow \quad(\nu x)(P \mid Q)
$$

■ expressive system (λ, π),

- simpler theory,

■ the natures of $\bar{a}(x)$ and $a(x)$ are similar.

Trying to invent typing rules

Fusions are two-way substitutions:

$$
\begin{aligned}
P \mid b=c & \equiv P[c / b] \mid b=c \\
& \equiv P[b / c] \mid b=c
\end{aligned}
$$

which trivializes subtyping:
■ $\Gamma \vdash b=c$ implies $(\Gamma \vdash P \Rightarrow \Gamma \vdash P[c / b])$,

- which suggests $\Gamma(c) \leq \Gamma(b)$ (and thus $\Gamma(b)=\Gamma(c)$),
- hence $(\Gamma \vdash \bar{a}\langle b\rangle \mid a\langle c\rangle) \Rightarrow \Gamma(b)=\Gamma(c)$,

■ so in $\frac{\Gamma(a) \stackrel{?}{=} o T_{1} \quad \Gamma(b) \stackrel{?}{=} T_{2}}{\Gamma \vdash \bar{a}\langle b\rangle}, \Gamma(a)$ should "know" T_{2}.
Intuition: there is no subtyping as we know it.
Formally: impossibility result.

Impossibility result

If we have
1 free inputs and outputs $a\langle b\rangle$ and $\bar{a}\langle b\rangle$,
$2(\boldsymbol{\nu} c)(\bar{a}\langle b\rangle . P \mid a\langle c\rangle . Q) \rightarrow^{*}(P \mid Q)[b / c]$,
3 judgments like $\Gamma \vdash P$,
4 compositionality $(\Gamma \vdash P ; \Gamma \vdash Q \Rightarrow \Gamma \vdash P \mid Q$ et $\Gamma \backslash a \vdash(\nu a) P)$,
5 weakening, strengthening,
6 stability by injective name substitution,
7 narrowing : $\Gamma, a: T \vdash P$ and $U \leq T$ implies $\Gamma, a: U \vdash P$
then there are some Γ, P, P^{\prime} such that:

$$
\Gamma \vdash P \wedge P \rightarrow{ }^{*} P^{\prime} \wedge \Gamma \nvdash P^{\prime}
$$

