On Böhm Trees and Lévy-Longo Trees in π -calculus

Xian Xu

East China University of Science and Technology

(from ongoing work with Davide Sangiorgi)

April, 2013

Subject

Encodings

- from $\underline{\lambda}$ -calculus (sequential programming)
- to $\frac{\pi\text{-calculus}}{\pi\text{-calculus}}$ (concurrent programming) or variants of name-passing process models.

Benefit

λ in π

- 1. expressiveness exhibition
- 2. λ -model in process models
- 3. full abstraction

Known encodings:

[Milner, 1990] [Sangiorgi, 1993,1994,1995] [Merro and Sangiorgi, 2004] [Cai and Fu, 2011] [Hirschkoff, Madiot, and Sangiorgi, 2012] ...

$$M = N \quad \text{iff} \quad \llbracket M \rrbracket \asymp \llbracket N \rrbracket$$

Aim of our work

To find general conditions that ensure desired full abstraction of an encoding.

$$M = N \quad \text{iff} \quad \llbracket M \rrbracket \asymp \llbracket N \rrbracket$$

3-b

Aim of our work

To find general conditions that ensure desired full abstraction of an encoding.

full abstraction w.r.t. Lévy-Longo tree (LT) equality

or Böhm tree (BT) equality

 $M=N \quad \text{iff} \quad \llbracket M \rrbracket \asymp \llbracket N \rrbracket$

Aim of our work

To find general conditions that ensure desired full abstraction of an encoding.

full abstraction w.r.t. Lévy-Longo tree (LT) equality

or Böhm tree (BT) equality

 $M=N \quad \text{iff} \quad \llbracket M \rrbracket \asymp \llbracket N \rrbracket$

= is Lévy-Longo tree or Böhm tree equality;

 \asymp is a behavioral equivalence in the target model.

Motivation

- 1. Importance of BT and LT:
 - (1) Operational semantics of λ -terms
 - (2) Observational theory in λ (LT and BT equalities)
 - (3) The local structure of some of influential models of the λ -calculus is the BT equality

(E.g. [Scott & Plotkin's P_{ω} 1976] [Plotkin's T^{ω} ,1978] [Plotkin & Engeler's D_A , 1981])

- 2. Proof methods for full abstraction are often tedious:
 - (1) Operational correspondence
 - (2) Validity of β rule
 - (3) Proof technique: Böhm-out, up-to.
 - (E.g. [Sangiorgi, 1995], [Boudol & Laneve, 1995])

Motivation

- 1. Importance of BT and LT:
 - (1) Operational semantics of λ -terms
 - (2) Observational theory in λ (LT and BT equalities)
 - (3) The local structure of some of influential models of the λ -calculus is the BT equality

(E.g. [Scott & Plotkin's P_{ω} 1976] [Plotkin's T^{ω} ,1978] [Plotkin & Engeler's D_A , 1981])

- 2. Proof methods for full abstraction are often tedious:
 - (1) Operational correspondence
 - (2) Validity of β rule
 - (3) Proof technique: Böhm-out, up-to.
 - (E.g. [Sangiorgi, 1995], [Boudol & Laneve, 1995])

Organization of this talk

- **DEFINITIONS**
- THE CONDITIONS
- EXAMPLES
- EXTENSION

Definitions

 $M \in PO^n$: *M* has proper order *n*, i.e. like $\lambda x_1 \dots x_n$. Ω . **Definition 1** (Lévy-Longo trees). The *Lévy–Longo Tree* of *M*, LT(M), is:

(1)
$$LT(M) = \top$$
 if $M \in PO^{\omega}$;
(2) $LT(M) = \lambda x_1 \dots x_n$. \bot if $M \in PO^n$, $0 \leq n < \omega$;
(3) $LT(M) = \lambda \tilde{x} \cdot y$
 \dots
 $LT(M_1)$ \dots $LT(M_n)$

if $M \to_h^* \lambda \widetilde{x}. y M_1 \dots M_n, n \ge 0.$

LT equality: LT(M) = LT(N), i.e. they have the same LTs.

Böhm trees

Böhm trees (BTs):

$$BT(M) = \bot$$
 if $M \in PO^n, 0 \leq n \leq \omega$

plus (3) of LT.

BT equality: BT(M) = BT(N), i.e. they have the same BTs.

Examples

 $M \equiv \lambda z. \, x \Omega(y \Xi)(\lambda x. \, \Omega) \, (\Xi = (\lambda x z. \, x x)(\lambda x z. \, x x))$ LT(M) = $\lambda z. x$ $\lambda x. \perp$ y \bot Т BT(M) = $\lambda z. x$ y

Definition 2 (encoding of the λ -calculus). A mapping from λ -terms to π -agents, and is compositional.

i.e., $\llbracket \lambda x. M \rrbracket \stackrel{\text{def}}{=} C^x_{\lambda} \llbracket M \rrbracket \rrbracket \llbracket MN \rrbracket \stackrel{\text{def}}{=} C_{\text{app}} \llbracket M \rrbracket, \llbracket N \rrbracket \rrbracket$

Definition 2 (encoding of the λ -calculus). A mapping from λ -terms to π -agents, and is compositional.

i.e., $[\![\lambda x. M]\!] \stackrel{\text{def}}{=} C^x_{\lambda}[[\![M]\!]] [\![MN]\!] \stackrel{\text{def}}{=} C_{\text{app}}[[\![M]\!], [\![N]\!]]$

Two kinds of contexts:

- Abstraction context: $C^x_{\lambda} \stackrel{\text{def}}{=} [\![\lambda x. [\cdot]]\!]$
- Variable context: $C_{\text{var}}^{x,n} \stackrel{\text{def}}{=} \llbracket x[\cdot]_1 \cdots [\cdot]_n \rrbracket$

Conventions:

- [] is an encoding of the λ -calculus into π -calculus
- $\mathcal{V}ar \subseteq \mathcal{N}$, where \mathcal{N} is the set of π -names
- σ stands for name substitution, i.e. mapping on π names
- \mathcal{C} is a set of contexts for π
- \leq is a precongruence and \asymp is a congruence on the agents of π -calculus

Definition 3. [] and \asymp are:

• complete if LT(M) = LT(N) (or BT(M) = BT(N)) implies $\llbracket M \rrbracket \asymp \llbracket N \rrbracket$.

• sound if

$$\llbracket M \rrbracket \asymp \llbracket N \rrbracket$$
 implies $LT(M) = LT(N)$ (or $BT(M) = BT(N)$).

Full abstraction: soundness & completeness.

Auxiliary definitions (Def.4-6)

Definition 4. $[\![]\!]$ and relation \mathcal{R} :

- validate rule β if $[(\lambda x. M)N] \mathcal{R} [[M\{N/x\}]]$.
- validate rule α if $[\![\lambda x. M]\!] \mathcal{R} [\![\lambda y. (M\{y/x\})]\!]$.

Definition 5. C is *closed under context composition* if $\forall C \in C$. $\forall D$ (unary context). $D[C] \in C$.

Definition 6. \asymp has *unique solution of equations up to* \leq *and the contexts* C if $\forall \mathcal{R}$, it holds that

- If $P \mathcal{R} Q$ implies
 - 1. $P \asymp Q$, or
 - 2. $\exists C \in C$ with $(1 \leq i \leq n)$

 $P \geq C[P_1, \dots, P_n]$ $Q \geq C[Q_1, \dots, Q_n]$ $P_i \quad \mathcal{R} \quad Q_i$ $P_i \sigma \quad \mathcal{R} \quad Q_i \sigma \quad \text{for all } \sigma, \text{ if } [\cdot]_i \text{ occurs under an input in } C$ $\mathsf{then} \quad \mathcal{R} \subseteq \asymp.$

Intuitively, this definition comes from the proof technique of up-to context and expansion.

Definition 6. \asymp has *unique solution of equations up to* \leq *and the contexts* C if $\forall \mathcal{R}$, it holds that

- If $P \mathcal{R} Q$ implies
 - 1. $P \asymp Q$, or
 - 2. $\exists C \in C$ with $(1 \leq i \leq n)$

 $P \geq C[P_1, \dots, P_n]$ $Q \geq C[Q_1, \dots, Q_n]$ $P_i \quad \mathcal{R} \quad Q_i$ $P_i\sigma \quad \mathcal{R} \quad Q_i\sigma \quad \text{for all } \sigma, \text{ if } [\cdot]_i \text{ occurs under an input in } C$

then $\mathcal{R} \subseteq \asymp$.

• Moreover, \mathcal{R} should also be closed under substitution, if the synchronous π -calculus is used.

Intuitively, this definition comes from the proof technique of up-to context and expansion.

The conditions

The conditions for completeness

Theorem 7 (completeness for LT). [] and \asymp are complete for LTs, if $\exists \leq , C$, the conditions below are met.

- *1. the variable contexts of* $\llbracket \rrbracket$ *are contained in* C*;*
- 2. either
 - (a) the abstraction contexts of $[\![\,]\!]$ are contained in C;

- *4.* \asymp has unique solution of equations up to \leq and the contexts *C*;
- *5.* $[\![]\!]$, \geq *validate rules* α *and* β *;*
- 6. [[] respects substitution, i.e. $[M\sigma] \equiv [M]\sigma$;
- 7. whenever $M \in PO^0$ then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket$.

18-a

Theorem 7 (completeness for LT). [] and \asymp are complete for LTs, if $\exists \leq , C$, the conditions below are met.

- *1. the variable contexts of* $\llbracket \rrbracket$ *are contained in* C*;*
- 2. either
 - (a) the abstraction contexts of $[\![\,]\!]$ are contained in C;

Or

- *(b) C is closed under composition and*
- (c) $M, N \in PO^{\omega}$ impries $\llbracket M \rrbracket \asymp \llbracket N \rrbracket$;

- *4.* \asymp has unique solution of equations up to \leq and the contexts C;
- *5.* $[\![]\!]$, \geq *validate rules* α *and* β *;*
- *6.* $\llbracket \rrbracket$ respects substitution, i.e. $\llbracket M \sigma \rrbracket \equiv \llbracket M \rrbracket \sigma$;
- 7. whenever $M \in PO^0$ then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket$.

Theorem 8 (completeness for BT). [] and \asymp are complete for BTs, if $\exists \leq , C$, the conditions below are met.

1. the variable contexts of $\llbracket \rrbracket$ *are contained in* C*;*

2. either

(a) the abstraction contexts of $[\![\,]\!]$ are contained in ${\cal C}$ and

(b) $[\![\lambda x, \Omega]\!] \leq [\![\Omega]\!];$

- *4.* \asymp has unique solution of equations up to \leq and the contexts C;
- *5.* $[\![]\!]$, \geq *validate rules* α *and* β *;*
- *6.* $\llbracket \rrbracket$ respects substitution, i.e. $\llbracket M \sigma \rrbracket \equiv \llbracket M \rrbracket \sigma$;
- 7. whenever $M \in PO^0$ then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket$.

19-a

Theorem 8 (completeness for BT). [] and \asymp are complete for BTs, if $\exists \leq , C$, the conditions below are met.

1. the variable contexts of $\llbracket \rrbracket$ *are contained in* C*;*

2. either

(a) the abstraction contexts of $[\![\,]\!]$ are contained in ${\cal C}$ and

(b) $[\![\lambda x. \Omega]\!] \leq [\![\Omega]\!];$

0*I*

(c) C is closed under composition and

(d) $M \in PO^{\omega}$ imprises $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket$;

- *4.* \asymp has unique solution of equations up to \leq and the contexts C;
- 5. [[]], \geq validate rules α and β ;
- 6. [[]] respects substitution, i.e. $[M\sigma] \equiv [M]\sigma$;
- 7. whenever $M \in PO^0$ then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket$.

The conditions for soundness

Definition 9. *C*: *n*-hole context.

C has inverse w.r.t. ≥, if

 $\forall i = 1, \ldots, n \exists D_i$ s.t.

 $\forall A_1, \ldots, A_n$, it holds that $D_i[C[\widetilde{A}]] \ge A_i$

Theorem 10 (soundness for LT). [] and \asymp are sound for LTs, if $\exists \leq$, the conditions below are satisfied.

- 1. $\geq \subseteq \asymp$ (also $\leq \subseteq \asymp$);
- *2.* []] and \geq validate rules α and β ;
- 3. If $M \in PO^0$, then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket \asymp \llbracket M \rrbracket$;
- 4. $\llbracket \Omega \rrbracket$, $\llbracket \lambda x. M \rrbracket$, $\llbracket xM_1 \cdots M_m \rrbracket$, $\llbracket xN_1 \cdots N_n \rrbracket$, and $\llbracket y \widetilde{O} \rrbracket$ are pairwise unequal w.r.t. \asymp ;
- *5. The abstraction contexts of* $\llbracket \rrbracket$ *have inverse with respect to* \geq *;*
- *6.* The variable contexts of $\llbracket \rrbracket$ have inverse with respect to \geq .

Theorem 11 (soundness for BT). [] and \asymp are sound for BTs, if $\exists \leq$, the conditions below are satisfied.

1. $\geq \subseteq \asymp$ (also $\leq \subseteq \asymp$);

2. [] and \geq validate rules α and β ;

- 3. If $M \in PO^n$ ($0 \leq n \leq \omega$), then $\llbracket M \rrbracket \asymp \llbracket \Omega \rrbracket \asymp \llbracket M \rrbracket$;
- 4. $[\Omega], [yM_1 \cdots M_m], [yN_1 \cdots N_n], [zO],$ and $[\lambda x. M],$ where $M \notin PO^k$ ($\forall k. 0 \leq k \leq \omega$), are pairwise unequal w.r.t. \asymp ;
- 5. The abstraction contexts of $\llbracket \rrbracket$ have inverse with respect to \geq ;
- *6.* The variable contexts of $\llbracket \rrbracket$ have inverse with respect to \geq .

Examples

Milner's encoding (lazy): $\lambda \rightsquigarrow A\pi$

$$\begin{bmatrix} \lambda x. M \end{bmatrix} \stackrel{\text{def}}{=} (p) p(x, q). \llbracket M \rrbracket \langle q \rangle$$
$$\llbracket x \rrbracket \stackrel{\text{def}}{=} (p) \overline{x} \langle p \rangle$$
$$\llbracket M N \rrbracket \stackrel{\text{def}}{=} (p) \boldsymbol{\nu} r, x \left(\llbracket M \rrbracket \langle r \rangle \mid \overline{r} \langle x, p \rangle \mid ! x(q). \llbracket N \rrbracket \langle q \rangle \right), x \text{ fresh.}$$

where (p) P is abstraction, and $F\langle p \rangle$ is application.

		%	$pprox^{asy}$	$\sim_{ m may}$	$\sim^{ m asy}_{ m may}$	\sim_{must}
LT	completeness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	soundness	\checkmark	\checkmark	\checkmark		\checkmark
BT	completeness				\checkmark	
	soundness				\checkmark	

Table 1: Results for the encoding

An encoding of strong lazy strategy [HMS12]: $\lambda \rightsquigarrow \pi$

$$\begin{bmatrix} \lambda x. M \end{bmatrix} \stackrel{\text{def}}{=} (p) \boldsymbol{\nu} x, q (\overline{p} \langle x, q \rangle \mid \llbracket M \rrbracket \langle q \rangle)$$
$$\begin{bmatrix} x \rrbracket \stackrel{\text{def}}{=} (p) (x(p'). (p' \triangleright p)) \\\\ \llbracket MN \rrbracket \stackrel{\text{def}}{=} (p) \boldsymbol{\nu} q, r (\llbracket M \rrbracket \langle q \rangle \mid q(x, p'). (p' \triangleright p \mid !\overline{x} \langle r \rangle. \llbracket N \rrbracket \langle r \rangle)) \quad x \text{ fresh}$$

where $r \triangleright q \stackrel{\text{def}}{=} !r(y,h). \overline{q} \langle y,h \rangle$; \triangleright has the most precedence.

		$\stackrel{c}{\approx}$	\sim^c_{may}	\sim^{c}_{must}
ΙT	completeness	\checkmark	\checkmark	\checkmark
LT	soundness	\checkmark	\checkmark	
рт	completeness			\checkmark
BT	soundness			\checkmark

Table 2: Results for the encoding

Extension

Question

How can we tune the observational theory to obtain BT rather than LT?

Question

How can we tune the observational theory to obtain BT rather than LT?

Basic idea: assign only writable type to the access point p of the encoding, so that pairs like $[\Omega]$ and $[\lambda x. \Omega]$ would become equal.

Table 3: More results for Milner's encoding under types

Conclusion

What's done:

- general conditions for encodings of λ into π
- case study of the conditions
- extension using types (obtain BT without ξ rule)

Future directions:

- other (process) models, e.g. higher-order, ambients.
- BT with η rule (more technique needed)

Thank you