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Introduction

Fundamental question: when can two programs be considered
equivalent?

Context equivalence [Morris1968] :
Two terms M and N are context equivalent if their observable
behavior is the same in any context.
Proving that two programs are not equivalent is relatively
easy: just find a context that separates them.
Proving that two program are indeed equivalent, on the other
hand, can be quite complicated.

Other equivalence notion : Bisimilarity
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Our result

For a probabilistic λ-calculus (Λ⊕) :

Context Equivalence = Bisimilarity
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Syntax and Operational Semantics
Motivating Example : Perfect Security

Syntax and Operational Semantics of Λ⊕ [DLZorzi2012]

Terms: M,N ::= x | λx .M | MM | M ⊕M;

Values: V ::= λx .M;
Approximation (Big-Step) Semantics:

M ⇓ D , where D : Values→ [0, 1] sub-probability distribution.
Approximation from below : only finite distributions

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕ N ⇓ 1
2D + 1

2E

M ⇓ K N ⇓ F {P[V /x ] ⇓ E P,V }λx.P∈S(K ),V∈S(F )

MN ⇓
∑

V∈S(F )

F (V )
(∑

λx.P∈S(K ) K (λx .P)EP,V

)
Semantics: JMK = supM⇓D D ;
Variations: Small-Step Semantics, Call-by-name Evaluation.
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Syntax and Operational Semantics
Motivating Example : Perfect Security

Why Probabilistic
Computation?
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An Example: Perfect Security

Let Π = (GEN,ENC ,DEC ) be a cryptoscheme.
Let A = (A1,A2) be an adversary.

PrivKΠ
A

m0,m1 ← A1;
b ← {0, 1};
k ← GEN;
c ← ENC (mb, k);
b′ ← A2(c);
return b = b′.
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Syntax and Operational Semantics
Motivating Example : Perfect Security

An Example: Perfect Security

For every adversary A,

Pr(PrivKΠ
A = true) =

1
2
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An Example: Perfect Security

One-Time-Pad

GEN = true ⊕ false : bool;
ENC = λx .λy .if x then (NOT y) else y : bool→ bool→ bool;
DEC = ENC .

The Experiment as a Pair of Terms

EXPFST = λx .λy .ENC x GEN : bool→ bool→ bool;
EXPSND = λx .λy .ENC y GEN : bool→ bool→ bool.

∀A.Pr(PrivKOTP
A = true) =

1
2
⇔ EXPFST ≡ EXPSND
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Probabilistic Bisimulation in the abstact
A Labelled Markov Chain for Λ⊕
Example

Bisimilarity (deterministic case)

Let (S ,Act,→) be a LTS (Labelled Transition System).

A Simulation is a relation R on S such that : If p R q, and
p a−→ s, there exists t such that q a−→ t and s R t.

p q

s

t

a

a

R

R

Bisimilarity : p and q are bisimilar if : p R q, and R is a
bisimulation.
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Applicative Bisimulation [Abramsky93]

Terms

Values

M

N

L

...

V

W

Z

...

M V
eval

λx .NN{L/x} L
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Applicative Bisimulation [Abramsky93]

Simulation

M

R

N

λx .Leval

λx .Peval

L{R/x}

R

P{R/x}

R

R

Similarity: union of all simulations, denoted -;
Bisimilarity: union of all bisimulations, denoted ∼.

Theorem
M ≡ N iff M ∼ N.
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Example

Probabilistic Bisimulation
in the Abstract [LS1992]

Labelled Markov Chain (LMC): a tripleM = (S,L,P), where
S is a countable set of states;
L is a set of labels;
P is a transition probability matrix, i.e., a function
P : S × L × S → R such that for every state s and for every
label l , P(S, l , t) =

∑
t∈S P(s, l , t) ≤ 1;
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Bisimilarity (probabilistic case)

Let (S,L,P) be a LMC (Labelled Markov Chain).

E1

E2

p

q

s1

s2

s3

s4

s5

a

a

1
4

1
2

1
8

1
8

1
8

5
8

Bisimulation : R such that
R equivalence relation on
S.
(p, q) ∈ R ⇒ for every
equivalence class E ,
a ∈ L,∑
s∈E

P(p, a, s) =
∑
s∈E

P(q, a, s)

.
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A Labelled Markov Chain for Λ⊕

Terms Values

M

V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z )
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Terms Values

M V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z )
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Terms Values

M V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z )

λx .N
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Terms Values

M V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z )

λx .NN{W /x}
W , 1
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A Labelled Markov Chain for Λ⊕
Example

Back to Our Example

EXPFST = λx .λy .ENC x GEN : bool→ bool→ bool;
EXPSND = λx .λy .ENC y GEN : bool→ bool→ bool.
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Example

Back to Our Example

EXPFST EXPSND

λy .ENC true GEN λy .ENC false GEN λy .ENC y GEN

̂λy .ENC true GEN ̂λy .ENC false GEN ̂λy .ENC y GEN

ENC true GEN ENC false GEN

t̂rue f̂alse

true false true
false

eval eval eval

truefalse truefalse

true

false

eval eval

1
2

1
2

1
2

1
2
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Probabilistic Bisimulation in the abstact
A Labelled Markov Chain for Λ⊕
Example

Back to Our Example

Rσ = Xσ ∪ IDσ;

Xbool = {(ENC true GEN), (ENC false GEN)};
Xbool→bool = {(λy .ENC y GEN), (λy .ENC true GEN),

(λy .ENC false GEN)};
Xbool→bool→bool = {EXPFST ,EXPSND};
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Context Equivalence vs. Bisimulation

Contexts:
C ::= [·] | λx .C | CM | MC | M ⊕ C | C ⊕M.
Context Equivalence: M ≡ N iff for every context C it holds
that

∑
JC [M]K =

∑
JC [N]K.

Theorem
∼ is included in ≡.

Lemma
∼ is a congruence.

M ∼ N =⇒ C [M] ∼ C [N]

Howe’s technique.
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Full Abstraction?

∼ is a sound methodology for program equivalence.
Is it also complete?
CBN : No [DLSA2014]

Counterexample:

M = λx .λy .(Ω⊕ I ); N = λx .(λy .Ω)⊕ (λy .I ).

Of course, I 6∼ Ω and as a consequence

λy .Ω 6∼ λy .I 6∼ λy .(Ω⊕ I ) =⇒ M 6∼ N.

On the other hand, M ≡ N.
We need a CIU-Theorem for that.

CBV
The counterexample above cannot be easily adapted.
Contexts seem to be more powerful.
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Full Abstraction in CBV

Tests: t ::= ω | a · t | 〈t, t〉.
Semantics of Tests

PM(x , ω) = 1; PM(x , a · t) =
∑
s∈S
P(x , a, s) · PM(s, t)

PM(x , 〈t, s〉) = PM(x , t) · PM(x , s).

Theorem (vBMMW2004)

x ∼ y iff for every test t it holds that PM(x , t) = PM(y , t).

But the question now is: are contexts powerful enough to
implement every possible test?
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Full Abstraction in CBV

Contexts do not have the necessary discriminating power in
CBN.

Conjecture: only tests in the form 〈t1, . . . , tn〉 where each ti is
a trace can be captured.

In CBV evaluation, terms can be copied after being evaluated!

Lemma. For every test t there is a context Ct which is
equivalent to t in CBV.
Theorem. In CBV, ∼ and ≡ coincide.
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How About Simulation (in CBV)?

Similarity can itself be characterized by a notion of testing, but
for a stronger notion of test.

General boolean tests are allowed, including disjunctive tests.

The grammar of test needs to be enriched:
t ::= ω | a · t | 〈t, t〉 | t ∨ t | . . ..

Let us look at the counterexample for CBN:

M = λx .λy .(Ω⊕ I ); N = λx .(λy .Ω)⊕ (λy .I ).

The two terms are incomparable by -.
But how about context equivalence?
Lemma. M ≤ N.
Proof. Purely operational.
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Our Neighborhood

Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼ - ⊆ ≤ ≤ ⊆ -
CBN X X X X

CBV X X X X

[Abramsky1990,Howe1993]
Λ⊕ with nondeterministic semantics, where we observe
convergence, in its may or must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼ - ⊆ ≤ ≤ ⊆ -
CBN X × X ×
CBV X × X ×

[Ong1993,Lassen1998]
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Summing up:

∼ ⊆ ≡ ≡ ⊆ ∼ - ⊆ ≤ ≤ ⊆ -
CBN X × X ×
CBV X X X ×

Further work:
What if we add sequencing to CBN?
What if we add parallel or to CBN?
How about approximate notions of bisimulation?
How about λ-calculi for probabilistic polynomial time?
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Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

?
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Howe’s Technique

x ` x R M
x ` x RH M

x ∪ {x} ` M RH L x ` λx .L R N x /∈ x
x ` λx .M RH N

x ` M RH P x ` N RH T x ` (PT ) R L
x ` MN RH L

x ` M RH P x ` N RH T x ` (P ⊕ T ) R L
x ` M ⊕ N RH L
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The Key Lemma

Proving that -H is indeed a precongruence is a convenient
way to proceed.
Statement: If M -H N, then for every X ⊆ Λ⊕(x) it holds
that JMK(λx .X ) ≤ JNK(λx .(-H (X ))).
Proof.

We prove that D(λx .X ) ≤ JNK(λx .(-H (X ))) for every D
such that M ⇓ D .
By induction on the structure of any derivation of M ⇓ D
(which is finite).
Everything goes through smoothly, except. . . the application
case.
We need to prove that probability assignments can always be
disentangled. This is the case, though.
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So we have :

-H ⊆ - =⇒ -H = -

=⇒ - is a precongruence
=⇒ ∼ is a congruence
=⇒ ∼ ⊆ ≡ .

Theorem
∼ ⊆ ≡
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