Probabilistic Bisimilarity Revisited

Yuxin Deng

Shanghai Jiao Tong University http://basics.sjtu.edu.cn/~yuxin/

February 9, 2014

Outline

- 1. Preliminaries
- 2. Probabilistic bisimulation and simulation
- 3. A modal characterisation of probabilistic bisimulation

Preliminaries

Probability distributions

- A (discrete) probability distribution over a countable set S is a function $\Delta: S \to [0, 1]$ s.t. $\sum_{s \in S} \Delta(s) = 1$
- The support of Δ : $\lceil \Delta \rceil := \{s \in S | \Delta(s) > 0\}$
- $\mathcal{D}(S)$: the set of all distributions over S
- \overline{s} : the point distribution $\overline{s}(s) = 1$
- Given distributions $\Delta_1, ..., \Delta_n$, we form their linear combination $\sum_{i \in 1..n} p_i \cdot \Delta_i$, where $\forall i : p_i > 0$ and $\sum_{i \in 1..n} p_i = 1$.

Probabilistic labelled transition systems

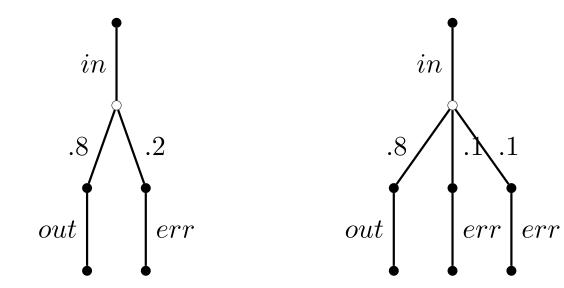
Def. A probabilistic labelled transition system (pLTS) is a triple $\langle S, Act, \rightarrow \rangle$, where

- 1. S is a set of states
- 2. Act is a set of actions
- 3. $\rightarrow \subseteq S \times Act \times \mathcal{D}(S)$.

We usually write $s \xrightarrow{\alpha} \Delta$ in place of $(s, \alpha, \Delta) \in \rightarrow$. An LTS may be viewed as a degenerate pLTS that only uses point distributions.

A pLTS is reactive if \rightarrow is a function from $S \times Act$ to $\mathcal{D}(S)$.

.1



Lifting relations

Def. Let $\mathcal{R} \subseteq S \times T$ be a relation between sets S and T. Then $\mathcal{R}^{\dagger} \subseteq \mathcal{D}(S) \times \mathcal{D}(T)$ is the smallest relation that satisfies:

- 1. $s \mathcal{R} t$ implies $\overline{s} \mathcal{R}^{\dagger} \overline{t}$
- 2. $\Delta_i \mathcal{R}^{\dagger} \Theta_i$ implies $(\sum_{i \in I} p_i \cdot \Delta_i) \mathcal{R}^{\dagger} (\sum_{i \in I} p_i \cdot \Theta_i)$ for any $p_i \in [0, 1]$ with $\sum_{i \in I} p_i = 1$.

Alternative ways of lifting (1/2)

Prop. $\Delta \mathcal{R}^{\dagger} \Theta$ if and only if

1. $\Delta = \sum_{i \in I} p_i \cdot \overline{s_i}$, where I is a countable index set and $\sum_{i \in I} p_i = 1$

2. For each $i \in I$ there is a state t_i such that $s_i \mathcal{R} t_i$

3. $\Theta = \sum_{i \in I} p_i \cdot \overline{t_i}.$

Alternative ways of lifting (2/2)

Prop. Let Δ, Θ be distributions over S and \mathcal{R} be an equivalence relation. Then

 $\Delta \mathcal{R}^{\dagger} \Theta \quad \text{iff} \quad \forall C \in S/\mathcal{R} : \Delta(C) = \Theta(C)$

where $\Delta(C) = \sum_{s \in C} \Delta(s)$.

A useful property

Lem. Let $\Delta, \Theta \in \mathcal{D}(S)$ and R be a preorder on S. If $\Delta R^{\dagger} \Theta$ then $\Delta(A) \leq \Theta(R(A))$ for each set $A \subseteq S$.

Cor. Let $\Delta, \Theta \in \mathcal{D}(S)$ and R be a preorder on S. If $\Delta R^{\dagger} \Theta$ then $\Delta(A) \leq \Theta(A)$ for each R-closed set $A \subseteq S$.

NB: $R(A) = \{t \mid \exists s \in A, s R t\}$. A set A is R-closed if $R(A) \subseteq A$.

The key lemma

Lem. Let R be a preorder on a set S and $\Delta, \Theta \in \mathcal{D}(S)$. If $\Delta R^{\dagger} \Theta$ and $\Theta R^{\dagger} \Delta$ then $\Delta(C) = \Theta(C)$ for all equivalence classes C with respect to the kernel $R \cap R^{-1}$ of R.

C. Baier's proof relies on the machinery of DCPOs.We give an elementary proof with basic concepts of set thoery.

The key lemma

Lem. Let R be a preorder on a set S and $\Delta, \Theta \in \mathcal{D}(S)$. If $\Delta R^{\dagger} \Theta$ and $\Theta R^{\dagger} \Delta$ then $\Delta(C) = \Theta(C)$ for all equivalence classes C with respect to the kernel $R \cap R^{-1}$ of R.

Proof. Let $\equiv = R \cap R^{-1}$ and $[s]_{\equiv}$ the equivalence class that contains s.

$$R(s) = \{t \in S \mid s \ R \ t\}$$
$$= \{t \in S \mid s \ R \ t \land t \ R \ s\} \uplus \{t \in S \mid s \ R \ t \land t \ R \ s\}$$
$$= [s]_{\equiv} \ \uplus \ A_s$$

where \uplus stands for a disjoint union.

$$\Delta(R(s)) = \Delta([s]_{\equiv}) + \Delta(A_s) \quad \text{and} \quad \Theta(R(s)) = \Theta([s]_{\equiv}) + \Theta(A_s)$$

Check that both R(s) and A_s are *R*-closed sets. Since $\Delta R^{\dagger} \Theta$ and $\Theta R^{\dagger} \Delta$, use the last corollary and obtain $\Delta(R(s)) = \Theta(R(s))$. Similarly, $\Delta(A_s) = \Theta(A_s)$ It follows that $\Delta([s]_{\equiv}) = \Theta([s]_{\equiv})$.

Probabilistic bisimulation and simulation

Bisimulation

Def. A binary relation $\mathcal{R} \subseteq S \times S$ is a simulation if whenever $s \mathcal{R} t$:

• if $s \xrightarrow{a} \Delta$, there exists some Θ such that $t \xrightarrow{a} \Theta$ and $\Delta \mathcal{R}^{\dagger} \Theta$.

The relation \mathcal{R} is a bisimulation if both \mathcal{R} and \mathcal{R}^{-1} are simulations. Bisimilarity, written \sim , is the union of all bisimulations. The largest simulation is similarity, written \prec . The kernel of probabilistic similarity, i.e $\prec \cap \prec^{-1}$, is called simulation equivalence, denoted by \asymp .

Simulation equivalence

Thm. For reactive pLTSs, simulation equivalence coincides with bisimilarity.

Proof. Show that \asymp is a bisimulation. Suppose $s \asymp t$. If $s \xrightarrow{a} \Delta$ then $t \xrightarrow{a} \Theta$ for some Θ with $\Delta \prec^{\dagger} \Theta$. For reactive pLTSs, $t \xrightarrow{a} \Theta$ must be matched by $s \xrightarrow{a} \Delta$ and $\Theta \prec^{\dagger} \Delta$. From the previous lemma, $\Delta(C) = \Theta(C)$ for any $C \in S/ \asymp$.

A model characterisation of bisimulation

The logic

The language \mathcal{L} of formulas:

$$\varphi ::= \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle_p \varphi.$$

Modal characterisation for the continuous case given by Panagaden et al. We will see the concrete case can be much simplified.

Semantics

• $s \models \top$ always;

•
$$s \models \varphi_1 \land \varphi_2$$
, if $s \models \varphi_1$ and $s \models \varphi_2$;

• $s \models \langle a \rangle_p \varphi$, if $s \xrightarrow{a} \Delta$ and $\exists A \subseteq S$. $(\forall s' \in A, s' \models \varphi) \land (\Delta(A) \ge p)$.

Let $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}$. Then $s \models \langle a \rangle_p \varphi$ iff $s \xrightarrow{a} \Delta$ and $\Delta(\llbracket \varphi \rrbracket) \ge p$.

Logical equivalence

Let
$$s = {}^{\mathcal{L}} t$$
 if $s \models \varphi \Leftrightarrow t \models \varphi$ for all $\varphi \in \mathcal{L}$.

Lem. Given a reactive pLTS (S, A, \rightarrow) and two states $s, t \in S$, if $s =^{\mathcal{L}} t$ and $s \xrightarrow{a} \Delta$, then some Θ exists with $t \xrightarrow{a} \Theta$, and for any formula $\psi \in \mathcal{L}$ we have $\Delta(\llbracket \psi \rrbracket) = \Theta(\llbracket \psi \rrbracket)$.

The π - λ theorem

Let \mathcal{P} be a family of subsets of a set X. \mathcal{P} is a π -class if is closed under finite intersection; \mathcal{P} is a λ -class if it is closed under complementations and countable disjoint unions.

Thm. If \mathcal{P} is a π -class, then $\sigma(\mathcal{P})$ is the smallest λ -class containing \mathcal{P} , where $\sigma(\mathcal{P})$ is a σ -algebra containing \mathcal{P} .

An application of the π - λ theorem

Prop. Let $\mathcal{A}_0 = \{ \llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L} \}$. For any $\Delta, \Theta \in \mathcal{D}(S)$, if $\Delta(A) = \Theta(A)$ for any $A \in \mathcal{A}_0$, then $\Delta(B) = \Theta(B)$ for any $B \in \sigma(\mathcal{A}_0)$.

An application of the π - λ theorem

Prop. Let $\mathcal{A}_0 = \{ \llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L} \}$. For any $\Delta, \Theta \in \mathcal{D}(S)$, if $\Delta(A) = \Theta(A)$ for any $A \in \mathcal{A}_0$, then $\Delta(B) = \Theta(B)$ for any $B \in \sigma(\mathcal{A}_0)$.

Proof. Let

$$\mathcal{P} = \{ A \in \sigma(\mathcal{A}_0) \mid \Delta(A) = \Theta(A) \}.$$

 \mathcal{P} is closed under countable disjoint unions because probability distributions are σ -additive. \mathcal{P} is closed under complementation because if $A \in \mathcal{P}$ then $\Delta(S \setminus A) = \Delta(S) - \Delta(A) = \Theta(S) - \Theta(A) = \Theta(S \setminus A)$. Thus \mathcal{P} is a λ -class. Note that \mathcal{A}_0 is a π -class because $\llbracket \varphi_1 \wedge \varphi_2 \rrbracket = \llbracket \varphi_1 \rrbracket \cap \llbracket \varphi_2 \rrbracket$. Since $\mathcal{A}_0 \subseteq \mathcal{P}$, we apply the π - λ Theorem to obtain that $\sigma(\mathcal{A}_0) \subseteq \mathcal{P} \subseteq \sigma(\mathcal{A}_0)$, i.e. $\sigma(\mathcal{A}_0) = \mathcal{P}$.

Completeness of the logic

Lem. Given the logic \mathcal{L} , and let (S, A, \rightarrow) be a reactive pLTS. Then for any two states $s, t \in S, s \sim t$ iff $s = {}^{\mathcal{L}} t$.

Completeness of the logic

Lem. Given the logic \mathcal{L} , and let (S, A, \rightarrow) be a reactive pLTS. Then for any two states $s, t \in S, s \sim t$ iff $s = \mathcal{L} t$.

Proof. For any $u \in S$ the equivalence class in $S/_{=\mathcal{L}}$ that contains u is

$$[u] = \bigcap \{ \llbracket \varphi \rrbracket \mid u \models \varphi \} \cap \bigcap \{ S \setminus \llbracket \varphi \rrbracket \mid u \not\models \varphi \}.$$

Here only countable intersections are used because the set of all the formulas in the logic \mathcal{L} is countable. Let $\mathcal{A}_0 = \{ \llbracket \varphi \rrbracket \mid \varphi \in \mathcal{L} \}$. Then each equivalence class of $S/_{=\mathcal{L}}$ is a member of $\sigma(\mathcal{A}_0)$.

 $s = {}^{\mathcal{L}} t$ and $s \xrightarrow{a} \Delta$ implies that some Θ exists with $t \xrightarrow{a} \Theta$ and for any $\varphi \in \mathcal{L}$, $\Delta(\llbracket \varphi \rrbracket) = \Theta(\llbracket \varphi \rrbracket)$. By the last proposition, $\Delta(\llbracket u \rrbracket) = \Theta(\llbracket u \rrbracket)$, where $\llbracket u \rrbracket$ is any equivalence class of $S/_{=\mathcal{L}}$. Thus $\Delta (=^{\mathcal{L}})^{\dagger} \Theta$.

Summary

- A simple proof of the coincidence of bisimilarity with simulation equivalence for reactive systems
- A modal characterisation with a neat completeness proof.