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Preliminaries
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Probability distributions

• A (discrete) probability distribution over a countable set S is a

function ∆ : S → [0, 1] s.t.
∑

s∈S ∆(s) = 1

• The support of ∆: ⌈∆⌉ := {s ∈ S|∆(s) > 0}

• D(S): the set of all distributions over S

• s: the point distribution s(s) = 1

• Given distributions ∆1, ...,∆n, we form their linear combination
∑

i∈1..n pi ·∆i, where ∀i : pi > 0 and
∑

i∈1..n pi = 1.
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Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple

〈S,Act ,→〉, where

1. S is a set of states

2. Act is a set of actions

3. → ⊆ S ×Act ×D(S).

We usually write s α−→ ∆ in place of (s, α,∆) ∈ →. An LTS may be viewed

as a degenerate pLTS that only uses point distributions.

A pLTS is reactive if → is a function from S ×Act to D(S).
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Lifting relations

Def. Let R ⊆ S×T be a relation between sets S and T . Then

R† ⊆ D(S)×D(T ) is the smallest relation that satisfies:

1. s R t implies s R† t

2. ∆i R
† Θi implies (

∑
i∈I pi ·∆i) R

† (
∑

i∈I pi ·Θi) for any pi ∈ [0, 1]

with
∑

i∈I pi = 1.
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Alternative ways of lifting (1/2)

Prop. ∆ R† Θ if and only if

1. ∆ =
∑

i∈I pi · si, where I is a countable index set and
∑

i∈I pi = 1

2. For each i∈ I there is a state ti such that si R ti

3. Θ =
∑

i∈I pi · ti.
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Alternative ways of lifting (2/2)

Prop. Let ∆,Θ be distributions over S and R be an equivalence relation.

Then

∆ R† Θ iff ∀C ∈ S/R : ∆(C) = Θ(C)

where ∆(C) =
∑

s∈C ∆(s).
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A useful property

Lem. Let ∆,Θ ∈ D(S) and R be a preorder on S. If ∆ R† Θ then

∆(A) ≤ Θ(R(A)) for each set A ⊆ S.

Cor. Let ∆,Θ ∈ D(S) and R be a preorder on S. If ∆ R† Θ then

∆(A) ≤ Θ(A) for each R-closed set A ⊆ S.

NB: R(A) = {t | ∃s ∈ A, s R t}. A set A is R-closed if R(A) ⊆ A.
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The key lemma

Lem. Let R be a preorder on a set S and ∆,Θ ∈ D(S). If ∆ R† Θ and

Θ R† ∆ then ∆(C) = Θ(C) for all equivalence classes C with respect to

the kernel R ∩R−1 of R.

C. Baier’s proof relies on the machinery of DCPOs.

We give an elementary proof with basic concepts of set thoery.
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The key lemma

Lem. Let R be a preorder on a set S and ∆,Θ ∈ D(S). If ∆ R† Θ and

Θ R† ∆ then ∆(C) = Θ(C) for all equivalence classes C with respect to

the kernel R ∩R−1 of R.

Proof. Let ≡= R ∩R−1 and [s]≡ the equivalence class that contains s.

R(s) = {t ∈ S | s R t}

= {t ∈ S | s R t ∧ t R s} ⊎ {t ∈ S | s R t ∧ t 6 R s}

= [s]≡ ⊎ As

where ⊎ stands for a disjoint union.

∆(R(s)) = ∆([s]≡) + ∆(As) and Θ(R(s)) = Θ([s]≡) + Θ(As)

Check that both R(s) and As are R-closed sets. Since ∆ R† Θ and Θ R† ∆, use

the last corollary and obtain ∆(R(s)) = Θ(R(s)). Similarly, ∆(As) = Θ(As) It

follows that ∆([s]≡) = Θ([s]≡).
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Probabilistic bisimulation and simulation
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Bisimulation

Def. A binary relation R⊆ S × S is a simulation if whenever s R t:

• if s a−→ ∆, there exists some Θ such that t a−→ Θ and ∆ R† Θ.

The relation R is a bisimulation if both R and R−1 are simulations.

Bisimilarity, written ∼, is the union of all bisimulations. The largest

simulation is similarity, written ≺. The kernel of probabilistic similarity,

i.e ≺ ∩ ≺−1, is called simulation equivalence, denoted by ≍.
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Simulation equivalence

Thm. For reactive pLTSs, simulation equivalence coincides with

bisimilarity.

Proof. Show that ≍ is a bisimulation. Suppose s ≍ t. If s a−→ ∆ then t a−→ Θ

for some Θ with ∆ ≺† Θ. For reactive pLTSs, t a−→ Θ must be matched by

s a−→ ∆ and Θ ≺† ∆. From the previous lemma, ∆(C) = Θ(C) for any C ∈ S/ ≍.
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A model characterisation of bisimulation
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The logic

The language L of formulas:

ϕ ::= ⊤ | ϕ1 ∧ ϕ2 | 〈a〉pϕ.

Modal characterisation for the continuous case given by Panagaden et al.

We will see the concrete case can be much simplified.
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Semantics

• s |= ⊤ always;

• s |= ϕ1 ∧ ϕ2, if s |= ϕ1 and s |= ϕ2;

• s |= 〈a〉pϕ, if s
a−→ ∆ and ∃A ⊆ S. (∀s′ ∈ A. s′ |= ϕ) ∧ (∆(A) ≥ p).

Let [[ϕ]] = {s ∈ S | s |= ϕ}. Then s |= 〈a〉pϕ iff s a−→ ∆ and ∆([[ϕ]]) ≥ p.
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Logical equivalence

Let s =L t if s |= ϕ⇔ t |= ϕ for all ϕ ∈ L.

Lem. Given a reactive pLTS (S,A,−→) and two states s, t ∈ S, if s =L t

and s a−→ ∆, then some Θ exists with t a−→ Θ, and for any formula ψ ∈ L

we have ∆([[ψ]]) = Θ([[ψ]]).
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The π-λ theorem

Let P be a family of subsets of a set X . P is a π-class if is closed under

finite intersection; P is a λ-class if it is closed under complementations and

countable disjoint unions.

Thm. If P is a π-class, then σ(P) is the smallest λ-class containing P ,

where σ(P) is a σ-algebra containing P .
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An application of the π-λ theorem

Prop. Let A0 = {[[ϕ]] | ϕ ∈ L}. For any ∆,Θ ∈ D(S), if ∆(A) = Θ(A) for

any A ∈ A0, then ∆(B) = Θ(B) for any B ∈ σ(A0).
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An application of the π-λ theorem

Prop. Let A0 = {[[ϕ]] | ϕ ∈ L}. For any ∆,Θ ∈ D(S), if ∆(A) = Θ(A) for

any A ∈ A0, then ∆(B) = Θ(B) for any B ∈ σ(A0).

Proof. Let

P = {A ∈ σ(A0) | ∆(A) = Θ(A)}.

P is closed under countable disjoint unions because probability distributions are

σ-additive. P is closed under complementation because if A ∈ P then

∆(S\A) = ∆(S)−∆(A) = Θ(S)−Θ(A) = Θ(S\A). Thus P is a λ-class. Note

that A0 is a π-class because [[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]. Since A0 ⊆ P, we apply the

π-λ Theorem to obtain that σ(A0) ⊆ P ⊆ σ(A0), i.e. σ(A0) = P.
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Completeness of the logic

Lem. Given the logic L, and let (S,A,−→) be a reactive pLTS. Then for

any two states s, t ∈ S, s ∼ t iff s =L t.
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Completeness of the logic

Lem. Given the logic L, and let (S,A,−→) be a reactive pLTS. Then for

any two states s, t ∈ S, s ∼ t iff s =L t.

Proof. For any u ∈ S the equivalence class in S/=L that contains u is

[u] =
⋂

{[[ϕ]] | u |= ϕ} ∩
⋂

{S\[[ϕ]] | u 6|= ϕ}.

Here only countable intersections are used because the set of all the formulas in

the logic L is countable. Let A0 = {[[ϕ]] | ϕ ∈ L}. Then each equivalence class of

S/=L is a member of σ(A0).

s =L t and s a−→ ∆ implies that some Θ exists with t a−→ Θ and for any ϕ ∈ L,

∆([[ϕ]]) = Θ([[ϕ]]). By the last proposition, ∆([u]) = Θ([u]), where [u] is any

equivalence class of S/
=L . Thus ∆ (=L)

†
Θ.

24



Summary

• A simple proof of the coincidence of bisimilarity with simulation

equivalence for reactive systems

• A modal characterisation with a neat completeness proof.
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