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Introduction

This presentation is a discussion of current work and
progresses via motivating examples. The syntax will mostly be
based upon process calculi, particularly π-calculi and
Concurrent Constraint Programming (CCP).

There two main parts to the presentation
1 Information leakage
2 Languages and models
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Information Leakage

Information leakage is often measured by considering the
probabilistic outputs of a process (also function or channel)
given some secret information.

For example, we can represent the behaviour of a fair coin toss
(no secret information) output on a channel m with a process
Cm as follows:

Cm
def
= (νn)(n〈0〉+ n〈1〉 | n(x).m〈x〉) .

Clearly with fair non-deterministic choice + both 0 and 1 will be
output along m with 0.5 probability.
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Hiding Secrets

Now consider the leakage of two processes that begin with
some secret information s ∈ {0,1}.

A process that leaks all the information (along a channel name
m):

Lm
def
= m〈s〉 .

and a process that leaks no information (by bitwise or’ing the
secret with a fair coin):

Sm
def
= (νn)(Cn | n(c).([s = c]m〈0〉 | [s 6= c]m〈1〉))

and with the coin abstracted away to a parameter c:

Sm(c)
def
= [s = c]m〈0〉 | [s 6= c]m〈1〉 .
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Combining Processes

It would be nice to know when processes can be safely
combined, or to know what the results on leakage are of
combining processes. However, this turns out to be rather
complex.

Consider a process Bn(c) that simply outputs the result of a fair
coin toss c. Neither Sm(c) nor Bn(c) leak any information about
s alone, however knowing both outputs yields the secret s!

So can we reason about leakage when combining processes?
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Independence of Variables

One solution that solves the previous problem (as identified by
Yusuke Kawamoto) is to have independence of the functions
(processes/variables). Here this would prevent the sharing of
the coin c between both processes.

So consider two instances of the Sm function S1m1 and S2m2 as
follows

S1m1
def
= (νn)(Cn | n(c1).([s = c1]m1〈0〉 | [s 6= c1]m1〈1〉))

S2m2
def
= (νn)(Cn | n(c2).([s = c2]m2〈0〉 | [s 6= c2]m2〈1〉)) .

Both do not leak information independently, and also do not
leak information when combined.
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External Knowledge

However, what if an adversary knew from observation when
c2 > c1? Maybe:

1 the algorithms for generating the coins are observably
different to an adversary, or

2 the algorithms for computing the outputs are different, or
3 the adversary has some other source of information. . .

Perhaps the most interesting to model would be 2, something
like S2m2 replaced by:

S2′
m2

def
= (νn)(Cn | n(c2).([c2 = 0]m2〈s〉 | [c2 = 1]m2〈(s+1)%2〉))

where the calculation of (s + 1)%2 takes more reductions.
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Weakly Equivalent is too Weak

Perhaps we can solve these kinds of problems by enforcing
strong equivalence results? The difference in calculation time
between S2m2 and S2′

m2 could be captured by representing the
calculation time as a τ reduction with S2′

m2
def
=

(νn)(Cn | n(c2).([c2 = 0]m2〈s〉 | [c2 = 1] τ. m2〈(s+1)%2〉)) .

Now we could show that strong equivalence separates (some)
processes that leak information from those that don’t.
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About Equivalence. . .

While considering behavioural equivalence, alternative
approaches such as high and low information can be
examined. Consider that an alternative to declaring
independence in the abstract manner here, is to define it by
declaring that variables may not be shared between processes.
The problem of the original

Sm(c)
def
= [s = c]m〈0〉 | [s 6= c]m〈1〉

Bm(c)
def
= m〈c〉

can be solved by declaring c a high variable. Now leaking c can
be seen as an information leak.
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High and Low too Strong

Unfortunately this turns out to be too strong. Consider the
alternative formulation of Sm(c) given by

S ′m(c)
def
= [c = 0]m〈s〉 | [c = 1]([s = 0]m〈c〉 | [s = 1]m〈0〉) .

This is (strongly) behaviourally equivalent to Sm(c) that leaks
no information, but can leak the “high” variables s and c.
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What About When Leakage is Reduced

There are lots of ways that combining processes can leak
information, but can combining process hide information?

Consider the following two processes:

T 1m1(c1) def
= [c1 = 0] τ. m1〈s〉 | [c1 = 1]m1〈(s + 1)%2〉

T 2m2(c2) def
= [c2 = 0]m2〈s〉 | [c2 = 1] τ. m2〈(s + 1)%2〉 .

Due to the silent reductions τ either one alone leaks the secret.
Yet running them in parallel only leaks the secret some of the
time (depending on the coins and order of reductions taken).

Leakage can be reduced further by combining all the outputs
into a single result, e.g.

Tm(c1, c2) def
= T 1m1(c1) | T 2m2(c2) | m1(x).m2(y).m〈x , y〉 .
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Leakage Summary

A summary on modeling leakage with processes:
Composition of processes can leak information
Weak behavioural equivalence is too weak
Using high and low variables is too strong
Composition of processes can hide information
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Languages and Models

A different arc of research is into understanding and creating
languages that can model privacy and security properties.

Constructing new languages to specifically model properties,
for example spacial systems with desirable properties.

Understanding languages, their expressiveness, and their
relation to each other.
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Spacial Concurrent Constraint Programming (SCCP)

A development of Concurrent Constraint Programming (CCP)
that includes a notion of agent spaces. Consists of processes
P and constraints c with reductions of processes and a
collection of constraints σ captured by:

〈ask(c)→ P, σ〉 7−→ 〈P, σ〉 σ |= c 〈tell(c), σ〉 7−→ 〈0, σ t c〉

the SCCP extension add a process [P]i that contains the
process P within the space of an agent i . Also the concept of
the scope of the constraints that are within an agent space
si(c). Consider the new reduction

〈P, ρ〉 7−→ 〈P ′, ρ′〉

〈[P]i , σ〉 7−→ 〈[P ′]i , σ t si(ρ
′)〉

si(σ) = ρ .
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A Communication Problem

Unfortunately this language does not allow for communication
since the tell primitive is still scoped by agent spaces.

〈tell(c), ρ〉 7−→ 〈0, ρ′ t c〉

〈[tell(c)]i , σ〉 7−→ 〈[0]i , σ t si(ρ
′ t c)〉

si(σ) = ρ .

This implies the creation of a new send primitive to send
information to another agent, regardless of spaces/scopes.

This alone could be non-trivial to add to the language in a clean
manner, but is made more complex by security concerns. . .
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Accepting Messages

Simply allowing messages to be sent to an agent allows
malicious agents to send bad constraints. For example, a
malicious agent can simply send contradiction to another agent
to render the other agent contradictory.

〈[send(j ,⊥)]i | [P]j , σ〉 Z=⇒ 〈[]i | [P]j , σ t sj(⊥)〉

This in turn implies that an acc(ept) primitive may be required
that allows the receiving agent to declare which other agents to
accept messages from.

This could perhaps be solved with some kind of global
message buffer like the constraints where messages live in
transit between send and acc.
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Agent Boundaries

However, this ignores agent boundaries as potential barriers to
communication, and which space belonging to the receiving
agent (and perhaps sending agent) is involved in the
communication.

An alternative that could start addressing these is to consider
agent boundaries like in the Mobile Ambient calculus, and have
explicit primitives to move in and out of agent spaces...

〈enter(i)→ P | [Q]i , σ〉 7−→ 〈[P | Q]i , σ〉

〈[exit(i)→ P | Q]i , σ〉 7−→ 〈P | [Q]i , σ〉
.
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Who Owns a Boundary?

However, this is still problematic as this would allow any agent
to send messages/processes across any boundaries it knows.
In practice, boundaries are usually controlled by one or both
sides, consider:

A private network connected to (inside?) the internet.
A user application running on (inside?) a kernel/system
space.
A laptop connected to (inside?) a private network.

Clearly there is no simple answer.

Aside: this work is with linked with Frank Valencia’s and it is a
goal to try and find a logical axiomatisation for any new
communication primitives.
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Understanding Languages

Building new languages, particularly process calculi, is “easy”
and there are many of them. Another area of research is better
understanding of process calculi in general.

Here the focus is on understanding the rôle of certain
properties in communication primitives; past examples include:
synchronism, arity, communication-medium, spaces, types, and
pattern-matching.

Some recent features include: intensionality, symmetry, and
logics.
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Intensionality

Intensionality is the idea that a communication primitive may
have behaviour dependent upon the structure of what is being
communicated. For example consider the three processes:

P1 def
= n〈a•b〉 P2 def

= n〈c〉 Q def
= n(x•y).Q′ R def

= n(z).R′

where P1 and P2 are outputs of the compound a • b and the
name c, respectively. Also Q and R are inputs of x • y and z,
respectively. P1 can reduce with both Q and R:

P1 | Q | R 7−→ {a/x ,b/y}Q′ | R
or P1 | Q | R 7−→ Q | {a • b/z}R′

however P2 can only reduce with R

P2 | Q | R 7−→ Q | {c/z}R′
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Expressiveness of Intensionality

Intensionality (that includes the capability to determine equality
of names in interaction) turns out to be able to encode:
synchronism, arity, communication-medium, and
pattern-matching.

Theorem

Any asynchronous/synchronous, monadic/polyadic, data-space
based/channel-based, (non-)pattern-matching language can be
encoded into any intensional language. That is, intensionality
alone is sufficient to encode: synchronicty, polyadicity,
channel-based communication, and name-matching.
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Onwards...

Other features not (yet) captured with these kinds of results.
Future work can explore relations based on these:

Symmetry: Such as in fusion calculus and concurrent
pattern calculus (CPC). (Symmetry has been used to show
separation results, mostly for CPC.)
Logics: Such as in CCP style calculi and Psi calculus.
(Logics have been used to show separation results for Psi
calculus.)
Other features...

Goal to show which calculi have greater expressiveness, and
also which features provide expressiveness. Also means that
equivalence in expressiveness means freedom to chose the
most convenient calculus, e.g. for modeling a system/property.
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Conclusions

Information leakage with process calculi:
Process composition can leak both more or less
information
Syntactical mechanisms are insufficient (high/low names)
Strong equivalences required

Languages and models:
Combining spaces and communication is messy
Spacial/hierarchical classifications do not always align
Many features of communication primitives, their relative
expressiveness is not fully understood.
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