Nested Timed Automata

Guoqiang Li

Shanghai Jiao Tong University

Feb. 9, 2014

Guogiang LI | Feb. 9, 2014

Joint work with Xiaojuan Cai, Mizuhito Ogawa and Shoji Yuen.

Motivation

Hybrid automata extend timed automata with various rates of clocks; We would like to extend timed automata with (time-sensitive) context switches.

- (Recursive) Procedure calls
- Multi-level interrupt handlings

Need to deal with 'local' clocks.

A Usual Automata-Based Program Analysis

```
int lek = 10;
Foo()
int x, y;
:
if x > y then Foo();
:
```

A Usual Automata-Based Program Analysis

```
int lek = 10;
Foo()
int x, y;
:
if x > y then Foo();
:
```

```
\langle pc, lek_{\mathbb{A}} \rangle, \vdots
\langle pc', lek_{\mathbb{A}} \rangle, \vdots
(Foo, x_{\mathbb{A}}, y_{\mathbb{A}})
\vdots
```

Procedure with Local Clocks

```
Tfoo() {
clock x, y;
reset (y);
if x < 10 \&\& y <= 5 then Tfoo();
else return;
```


■ Interrupt handlers override the behavior by A_i .

■ Interrupt handlers override the behavior by A_i .

■ Interrupt handlers override the behavior by A_i .

■ The behavior is resumed after the handlers terminate.

Clock values of C_2 are changed.

■ The behavior is resumed after the handlers terminate.

Clock values of C_1 are changed.

■ The behavior is resumed after the handlers terminate.

Behavioral Model

- A nested timed automaton is a pushdown system whose stack symbols are timed automata.
- It either behaves as the top TA in the stack, or switches from one TA to another by pushing, popping, and altering the top TA.
- When time passage happens, all clocks of these TAs in the stack elapse uniformly.

Contents

- Timed Automata
- Nested timed automata (NeTA)
- State reachability is decidable via translation into DTPDA (dense timed pushdown automata [Abdulla et.al. LICS2012])
- Correctness of the translation.
- Conclusion

Timed Automata (TA)

```
\mathcal{A} = (Q, q_0, F, X, \Delta), where
```

- Q is a finite set of control locations, with the initial location $q_0 \in Q$,
- $F \subseteq Q$ is the set of final locations,
- X is a finite set of clocks,
- $\Delta \subseteq Q \times \mathcal{O} \times Q$, where \mathcal{O} is a set of operations. A transition $q_1 \stackrel{\phi}{\to} q_2$, where ϕ is either of Local ϵ ,

 Test $x \in I$?,
 Assignment $x \leftarrow I$.

Clock updates, Diagnal-free and convex constraints, No invariants

- (ロ)(回)(回)(E)(E)(E)(E)(E)(O)(C)

Timed Automata (TA) [An Example]

NESTED TIMED AUTOMATA

Nested Timed Automata

```
\mathcal{N}=(\textit{T},\mathcal{A}_0,\Delta), where
```

- T is a finite set of TA, with the initial timed automaton $A_0 \in T$,
- $\Delta \subseteq T \times \mathcal{P} \times (T \cup \{\varepsilon\})$, where $\mathcal{P} = \{push, pop, internal\}$.
- A rule $(A_i, \Phi, A_j) \in \Delta$ is written as $A_i \xrightarrow{\Phi} A_j$, where

Push
$$A_i \xrightarrow{push} A_j$$
,
Pop $A_i \xrightarrow{pop} \varepsilon$, and
Internal $A_i \xrightarrow{internal} A_i$.

Semantics of NeTA

Given an NeTA (T, A_0, Δ) , a configuration is a stack, and the stack alphabet is a tuple $\langle A, q, \nu \rangle$, The transition of NeTA is represented as follows:

- Progress transitions: $c \xrightarrow{t}_{\mathcal{N}} c + t$.
- Discrete transitions: $c \xrightarrow{\phi}_{\mathcal{N}} c'$
 - Intra-action $\langle A, q, \nu \rangle c \xrightarrow{\phi}_{\mathcal{N}} \langle A, q', \nu' \rangle c$
 - Push $\langle \mathcal{A}, q, \nu \rangle c \xrightarrow{push}_{\mathscr{N}} \langle \mathcal{A}', q_0(\mathcal{A}'), \nu_0' \rangle \langle \mathcal{A}, q, \nu \rangle c$
 - Pop $\langle \mathcal{A}, q, \nu \rangle c \xrightarrow{\rho o p}_{\mathscr{N}} c$ if $q \in F(\mathcal{A})$.
 - Inter-action $\langle \mathcal{A}, q, \nu \rangle c \xrightarrow{internal}_{\mathscr{N}} \langle \mathcal{A}', q_0(\mathcal{A}'), \nu_0' \rangle c$ if $q \in \mathcal{F}(\mathcal{A})$.

TRANSLATION TO DTPDA

Dense Timed PDA [Abdulla et.al. 2012]

- State: *S* = {•}
- \blacksquare clocks: $C = \{x_1, x_2, x_3\},\$
- Stack symbols: $\Gamma = \{a, b, d\}$

Dense Timed PDA [Abdulla et.al. 2012]

```
■ State: S = {•}
```

- clocks: $C = \{x_1, x_2, x_3\}$,
- Stack symbols: $\Gamma = \{a, b, d\}$

Dense Timed PDA [Abdulla et.al. 2012]

```
■ State: S = {•}
```

- clocks: $C = \{x_1, x_2, x_3\},$
- Stack symbols: $\Gamma = \{a, b, d\}$

Dense Timed PDA [Abdulla et.al. 2012]

```
■ State: S = {•}
```

- clocks: $C = \{x_1, x_2, x_3\},$
- Stack symbols: $\Gamma = \{a, b, d\}$

Dense Timed PDA [Abdulla et.al. 2012]

```
■ State: S = \{ \bullet \}
■ clocks: C = \{ x_1, x_2, x_3 \},
```

■ Stack symbols: $\Gamma = \{a, b, d\}$

DTPDA

```
\mathcal{D} = \langle S, s_0, \Gamma, C, \Delta \rangle, where
```

- **S** is a finite set of states with the initial state $s_0 \in S$,
- Γ is a finite stack alphabet,
- C is a finite set of clocks, and
- $\Delta \subseteq S \times \mathcal{O} \times S$ is a finite set of transitions.

A transition $s_1 \stackrel{\phi}{\rightarrow} s_2$, where ϕ is either of

```
Local: 6
```

Test: $x \in I$? Assignment: $x \leftarrow I$

Push: $push(\gamma, I)$ Pop: $pop(\gamma, I)$

A Variation of DTPDA for Encoding NeTA

- Push $push(\gamma, I)$ pushes γ to the top of the stack, with the age in the interval I.
 - Pop $pop(\gamma, I)$ pops the top-most stack symbol provided that this symbol is γ and its age belongs to I.

- Push_A $push(\gamma, x)$ pushes γ to the stack associated with a local age with the value of the x's value.
 - Pop_A $pop(\gamma, x)$ pops γ from a stack and assigns value of its local age to the global clock x.

<ロト < @ ト < 注 > < 注 > つ と で の へ で の へ で 。

An Example of the DTPDA Variant

```
■ State: S = {•}
```

- clocks: $C = \{x_1, x_2, x_3\},\$
- Stack symbols: $\Gamma = \{a, b, d\}$

An Example of the DTPDA Variant

```
■ State: S = {•}
```

- clocks: $C = \{x_1, x_2, x_3\},\$
- Stack symbols: $\Gamma = \{a, b, d\}$

An Example of the DTPDA Variant

```
■ State: S = {•}
```

■ clocks: $C = \{x_1, x_2, x_3\},$

■ Stack symbols: $\Gamma = \{a, b, d\}$

State Reachability of DTPDA

State reachability

s is reachabile if for some w' and ν' , $\langle s_0, w, \nu \rangle \rightarrow^* \langle s, w', \nu' \rangle$

where
$$\rightarrow = \frac{\text{Local}}{} \cup \frac{\text{Test}}{} \cup \frac{\text{Assignment}}{} \cup \frac{\text{Push}}{} \cup \frac{\text{Pop}}{}$$

Theorem

The state reachability of DTPDA is decidable.

[Abdulla et.al. LICS2012]

Region construction by fractional parts of ages
Rotation at poping with shadow variables consistency

State Reachability of DTPDA Variant

State reachability

s is reachabile if for some w' and ν' ,

$$\langle s_0, \mathbf{w}, \mathbf{\nu} \rangle \rightarrow^* \langle \mathbf{s}, \mathbf{w}', \mathbf{\nu}' \rangle$$

$$\text{where } \to = \xrightarrow{\mathsf{Local}} \cup \xrightarrow{\mathsf{Test}} \cup \xrightarrow{\mathsf{Assignment}} \cup \xrightarrow{\mathsf{Push}} \cup \xrightarrow{\mathsf{Pop}} \cup \xrightarrow{\mathsf{Push}_{\mathcal{A}}} \cup \xrightarrow{\mathsf{Pop}_{\mathcal{A}}}$$

Theorem

The state reachability of DTPDA variant is decidable.

Small modification to LICS2012 proof works for the variant.

Another proof idea via WSPDS: [Cai et.al. 2013, 2014]

Encoding to DTPDA Variant

- The key of the encoding is to synchronize the initial value of clocks, and
- Storing and restoring clocks values simultaneously when timed context switches.

Encoding Push of NeTA to DTPDA

Encoding Push of NeTA to DTPDA

$$p_{2} = \begin{array}{c} x_{1} \leftarrow 2.9 \\ x_{2} \leftarrow 3.3 \\ \hline y_{1} \leftarrow 4.1 \\ y_{2} \leftarrow 0.5 \end{array}$$

$$\xrightarrow{-\operatorname{push}(p_2,d)}_{\mathscr{D}}$$

$$\xrightarrow{ \operatorname{push}(x_1,x_1) } \mathscr{D} \xrightarrow{ \operatorname{push}(x_2,x_2) } \mathscr{D}$$

$$\xrightarrow{y_1 \leftarrow [0,0]} \mathscr{D}$$

$$\xrightarrow{y_2 \leftarrow [0,0]}_{\mathscr{D}}$$

$$\xrightarrow{y_1 \in [0,0]?}_{\mathscr{D}}$$

$$p_2^{1,2} = \begin{bmatrix} x_1 \leftarrow 2.9 \\ x_2 \leftarrow 3.3 \\ \hline y_1 \leftarrow 4.1 \\ y_2 \leftarrow 0.5 \end{bmatrix} (p_2, 0)$$

$$r_1^2$$

$$\begin{array}{c} y_1 \leftarrow 4.1 \\ y_2 \leftarrow 0.5 \\ \hline x_1 \leftarrow 2.9 \\ x_2 \leftarrow 3.3 \end{array} \quad \begin{array}{c} (\mathbf{x_2}, \mathbf{3.3}) \\ (\mathbf{x_1}, \mathbf{2.9}) \\ (p_2, 0) \end{array}$$

$$\begin{array}{|c|c|c|c|}\hline & y_1 \leftarrow \mathbf{0} \\ y_2 \leftarrow 0.5 \\ \hline & x_1 \leftarrow 2.9 \\ x_2 \leftarrow 3.3 \\ \hline \end{array} \begin{array}{|c|c|c|c|c|}\hline (x_2,3.3) \\ \hline (x_1,2.9) \\ \hline (p_2,0) \\ \hline \end{array}$$

q_1	$y_1 \leftarrow 0$	
	$y_2 \leftarrow 0$	$(x_2, 3.3)$
	$x_1 \leftarrow 2.9$	$(x_1, 2.9)$
	$x_2 \leftarrow 3.3$	$(p_2, 0)$

Correctness

Lemma

Given an NeTA \mathcal{N} , its encoding $\mathcal{E}(\mathcal{N})$, and configurations c, c' of \mathcal{N} .

- (Preservation) if $c \longrightarrow c'$, then $[c] \hookrightarrow^* [c']$;
- (Reflection) if $\llbracket c \rrbracket \hookrightarrow^* \kappa$,
 - 1 there exists c' such that $\kappa = [c']$ and $c \longrightarrow^* c'$, or
 - 2 κ is not an encoded configuration, and there exists c' such that $\kappa \hookrightarrow * [c']$ by discrete transitions and $c \longrightarrow * c'$.

Correctness

Lemma

Given an NeTA \mathcal{N} , its encoding $\mathcal{E}(\mathcal{N})$, and configurations \mathbf{c} , \mathbf{c}' of \mathcal{N} .

- (Preservation) if $c \longrightarrow c'$, then $[c] \hookrightarrow^* [c']$;
- \blacksquare (Reflection) if $\llbracket c \rrbracket \hookrightarrow^* \kappa$,
 - 1 there exists c' such that $\kappa = [c']$ and $c \longrightarrow^* c'$, or
 - 2 κ is not an encoded configuration, and there exists c' such that $\kappa \hookrightarrow * [c']$ by discrete transitions and $c \longrightarrow * c'$.

Theorem

The state reachability problem of NeTA is decidable.

DEADLINE ANALYSIS FOR MULTILEVEL INTERRUPT HANDLING

Deadline Analysis

- Interrupt handlers as guarded timed automata.
- Interrupt request as $push_A$ operation.
- Return from interrupt as pop_A operation.
- Deadline violation as the reachability to err state.

Timed Automata with Deadline

Add a stopwatch to check deadline and an error state

Fall into q_{err} when deadline passed.

Guogiang LI | Feb. 9, 2014

Deadline Analysis

```
Handler_i: guard(A_i, d_i)
guard(A_i, d_i) adds the deadline to A
```

Interrupt : $A_i \xrightarrow{\text{push}} A_|$ A_i may interrupt A_j

Initial: $A_0 = Task_1 || Task_2 || \cdots || Task_n$

Interrupt fails to be handled if q_{err} in some $A_i(i > 0)$ is reachabile.

- Three kinds of clocks: global clocks, local clocks and stopwatch clocks.
- Reachability problems of pushdown systems under respective kind of clocks are decidable, however:

- Three kinds of clocks: global clocks, local clocks and stopwatch clocks.
- Reachability problems of pushdown systems under respective kind of clocks are decidable, however:
 - Under global and stopwatch clocks: Undecidable [Benerecetti et.al, 2010]

- Three kinds of clocks: global clocks, local clocks and stopwatch clocks.
- Reachability problems of pushdown systems under respective kind of clocks are decidable, however:
 - Under global and stopwatch clocks: Undecidable [Benerecetti et.al, 2010]
 - Under global and local clocks: Decidable [Li et. al., 2014]
 - Under local and stopwatch clocks: ???

- Three kinds of clocks: global clocks, local clocks and stopwatch clocks.
- Reachability problems of pushdown systems under respective kind of clocks are decidable, however:
 - Under global and stopwatch clocks: Undecidable [Benerecetti et.al, 2010]
 - Under global and local clocks: Decidable [Li et. al., 2014]
 - Under local and stopwatch clocks: ???
- Reachability problem of NeTA with invariant is positive.

Future Implementation

- Develop a tool based on a restrictive class such that a pop action occurs only with an integer-valued age.
- This subclass can be encoded into UTPDA (without local age).
- Encode UTPDA to weighted pushdown system to gain the efficiency.

Related Work

- Timed PDA [Bouajjani et. al.,1994]
 PDA with Global clocks
- Timed recursive state machines [Benerecetti et.al, 2010] Extended PDA with two stacks for states and clocks
- Recursive timed automata [Trivedi et.al., 2010]
 Local clocks stop
- Hierarchical timed automata [David et.al., 2001]
 Static hierarchy

Conclusion

- An NeTA is a pushdown system with a finite set of TA as stack symbols.
- All clocks in the stack elapse uniformly.
- The state reachability is decidable by encoding to DTPDA with an extension of local clock assignment.

Thank you!

li.g@sjtu.edu.cn