

Arrangements optimaux de pièces de monnaie

Étant donné un nombre infini de pièces identiques (

comment les placer sur un plan sans chevauchement pour recouvrir le plus de surface ?

arrangement

Arrangements optimaux de pièces de monnaie

Étant donné un nombre infini de pièces identiques (

comment les placer sur un plan sans chevauchement pour recouvrir le plus de surface ?

arrangement

Arrangements optimaux de disques et de sphères

1 / 21

Arrangements optimaux de pièces de monnaie

Étant donné un nombre infini de pièces identiques (

comment les placer sur un plan sans chevauchement pour recouvrir le plus de surface ?

arrangement hexagonal :

1910-1940

L'arrangement hexagonal est optimal.

Daria Pchelina

Arrangements optimaux de disques et de sphères

Nanomatériaux et arrangements

Cheon et al 2006

Paik et al 2015

Aussi en 3D :

Wu, Fan, Yin 2022

Question des chimistes :

quelles tailles et concentrations permettent d'obtenir de nouveaux matériaux ?

Daria Pchelina

Arrangements optimaux de disques et de sphères

3 / 21

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Arrangements optimaux de disques et de sphères

Définitions

Disques :

Densité :

Arrangement P: (dans \mathbb{R}^2)

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

Arrangements optimaux de disques et de sphères

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

 $\delta\left(n!\overset{\overrightarrow{n}}{\blacksquare}\cap P\right):=\frac{\operatorname{aire}\left(n!\overset{\overrightarrow{n}}{\blacksquare}\cap P\right)}{\operatorname{aire}\left(n!\overset{\overrightarrow{n}}{\blacksquare}\right)}$

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

$$\delta(P) := \lim_{n \to \infty} \frac{\operatorname{aire}\left(n \not \square \cap P\right)}{\operatorname{aire}\left(n \not \square\right)}$$

Arrangements optimaux de disques et de sphères

Définitions

Disques :

Arrangement P: (dans \mathbb{R}^2)

Densité :

$\delta(P) := \lim_{n \to \infty} \frac{\operatorname{aire}\left(n! \blacksquare \cap P\right)}{\operatorname{aire}\left(n! \blacksquare\right)}$

Question principale

Étant donné un ensemble fini de disques (par exemple, $\bigcirc \bigcirc \bullet$), quelle est la densité maximale δ^* d'un arrangement ?

Daria Pchelina

Arrangements optimaux de disques et de sphères

Arrangements à 2 disques optimaux

Théorème (Heppes 2000, 2003, Kennedy 2005, Bedaride et Fernique 2022)

Chacun des arrangements suivants est optimal pour des disques de rayons 1 et r :

Arrangements à 2 disques optimaux

Théorème (Heppes 2000, 2003, Kennedy 2005, Bedaride et Fernique 2022)

Chacun des arrangements suivants est optimal pour des disques de rayons 1 et r :

Arrangements triangulés

Graphe de contact :

Arrangements triangulés

Graphe de contact : sommets = centres de disques

Arrangements triangulés

Graphe de contact : sommets = centres de disques, arêtes = paires de disques tangents

Arrangements triangulés

Graphe de contact : sommets = centres de disques, arêtes = paires de disques tangents

Arrangements triangulés

Graphe de contact : sommets = centres de disques, arêtes = paires de disques tangents

Un arrangement s'appelle triangulé si son graphe de contact est une triangulation :

Conjecture de Connelly : triangulé saturé = optimal ?

Conjecture (Connelly 2018)

Si un ensemble de disques permet des arrangements triangulés saturés, l'un d'eux est optimal.

triangulé saturé

non triangulé saturé

triangulé non saturé

non triangulé non saturé

Conjecture de Connelly : triangulé saturé = optimal ?

Conjecture (Connelly 2018)

Si un ensemble de disques permet des arrangements triangulés saturés, l'un d'eux est optimal.

Théorème (OO• Fernique, Hashemi, Sizova 2019)

Disques de rayons 1, r, s : il y a 164 paires (r, s) permettant des arrangements triangulés.

Théorème (Fernique, P 2023)

Chacun des 16 arrangements suivants est optimal pour des disques de rayons 1, r et s :

 $r\approx 0.8 s\approx 0.6 \delta^* \approx 90.9\%$

 \sim

 $r \approx 0.6 s \approx 0.5 \delta^* \approx 91.2\%$

Arrangements optimaux de disques et de sphères

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement : graphe dual du diagramme de Voronoi

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement : graphe dual du diagramme de Voronoi

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement : graphe dual du diagramme de Voronoi

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement : graphe dual du diagramme de Voronoi

Densité d'un triangle Δ = sa proportion couverte par des disques

 $\delta_{\Delta} = \frac{\operatorname{aire}(\Delta \cap P)}{\operatorname{aire}(\Delta)}.$

Arrangements optimaux de disques et de sphères

9 / 2

Triangulation d'un arrangement

Cellule de Voronoi d'un disque dans un arrangement : ensemble des points plus proches de ce disque que de tout autre

Diagramme de Voronoi d'un arrangement : partition du plan en cellules de Voronoi

Triangulation d'un arrangement : graphe dual du diagramme de Voronoi

Densité d'un triangle Δ = sa proportion couverte par des disques

 $\delta_{\Delta} = \frac{\operatorname{aire}(\Delta \cap P)}{\operatorname{aire}(\Delta)}.$

Arrangements optimaux de disques et de sphères

9 / 2

Redistribution locale de densité

 P^* de densité δ^*

Redistribution locale de densité

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

Redistribution locale de densité

Preuve :

- l'angle le plus petit de tout Δ est au moins $\frac{\pi}{6}$ $2 > R = \frac{|AB|}{2\sin\hat{C}} \ge \frac{1}{\sin\hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$
- donc l'angle le plus grand est compris entre $\frac{\pi}{3}$ et $\frac{2\pi}{3}$
- densité d'un triangle Δ : $\delta(\Delta) = \frac{\pi/2}{area(\Delta)}$
- l'aire d'un triangle ABC avec l'angle le plus grand \hat{A} : $\frac{|AB| \cdot |AC| \cdot \sin \hat{A}}{2} \ge \frac{2 \cdot 2 \cdot \sqrt{3}}{2} = \sqrt{3}$

• donc la densité de *ABC* est inférieure ou égale à $\frac{\pi/2}{\sqrt{3}} = \delta^*$

Daria Pchelina

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

P de densité $\delta(P)$

 P^* de densité δ^*

Daria Pchelina

Arrangements optimaux de disques et de sphères

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

P de densité $\delta(P)$

Les triangles dans *P*^{*} ont des densités différentes:

$$\delta\left(\bigwedge\right) < \delta^* < \delta\left(\bigwedge\right)$$

Il est impossible de borner la densité par δ^* dans chaque triangle...

 P^* de densité δ^*

Arrangements optimaux de disques et de sphères

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

P de densité $\delta(P) \leq \delta'(P)$

densité redistribuée δ' :

les triangles denses partagent leur densité avec leurs voisins

 P^* de densité δ^*

Daria Pchelina

Arrangements optimaux de disques et de sphères

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

P de densité $\delta(P) \leq \delta'(P)$

densité redistribuée δ' :

les triangles denses partagent leur densité avec leurs voisins

 P^* de densité δ^*

Daria Pchelina

Arrangements optimaux de disques et de sphères

Redistribution locale de densité

 $\delta(P) \leq \delta^*$

P de densité $\delta(P) \leq \delta'(P)$

 $\forall \Delta, \ \delta'(\Delta) \leq \delta^*$

 $\delta(P) \le \delta'(P) \le \delta^*$

densité redistribuée δ' :

les triangles denses partagent leur densité avec leurs voisins

 P^* de densité δ^*

Daria Pchelina

Arrangements optimaux de disques et de sphères

Comment vérifier que $\delta'(\Delta) \leq \delta^*$ sur chaque triangle possible Δ ? (il y en a une infinité)

Comment vérifier que $\delta'(\Delta) \leq \delta^*$ sur chaque triangle possible Δ ? (il y en a une infinité)

Propriétés de la triangulation + saturation \Rightarrow borne sur la longueur des arêtes

Comment vérifier que $\delta'(\Delta) \leq \delta^*$ sur chaque triangle possible Δ ? (il y en a une infinité)

Propriétés de la triangulation + saturation \Rightarrow borne sur la longueur des arêtes

• Arithmétique d'intervalles :

Comment vérifier que $\delta'(\Delta) \leq \delta^*$ sur chaque triangle possible Δ ? (il y en a une infinité)

 ${\sf Propriét\text{\'e}s} \text{ de la triangulation} + {\sf saturation} \Rightarrow {\sf borne sur la longueur des arêtes}$

 $r_a + r_b \ge c \ge r_a + r_b +$

• Arithmétique d'intervalles :

pour vérifier $\delta'(\Delta_{a,b,c}) \leq \delta^* \ \forall (a, b, c) \in [\underline{a}, \overline{a}] \times [\underline{b}, \overline{b}] \times [\underline{c}, \overline{c}],$ nous vérifions $[\underline{\delta}, \overline{\delta}] \leq \delta^*$ où $[\underline{\delta}, \overline{\delta}] = \delta'(\Delta_{[\underline{a}, \overline{a}], [\underline{b}, \overline{b}], [\underline{c}, \overline{c}]})$

• Si $\delta^* \in [\underline{\delta}, \overline{\delta}]$, subdivision récursive :

Notre preuve a fonctionné pour ces cas :

 $r\approx 0.6 s\approx 0.5 \delta^* \approx 91.3\%$

7 $s\approx 0.5 \delta^* \approx 91.1\%$

 $r \approx 0.4 \ s \approx 0.4 \ \delta^* \approx 92.2\%$ $r \approx 0.5 \ s \approx 0.4 \ \delta^* \approx 91.8\%$ $r \approx 0.5 \ s \approx 0.4 \ \delta^* \approx 91.7\%$ $r \approx 0.8 \ s \approx 0.5 \ \delta^* \approx 91.2\%$

et pour les cas "mélangés" :

et pour les cas "mélangés" :

et pour les cas "mélangés" :

12

8

14

9

15

 b_4

h.

11

10

Arrangements optimaux de disques et de sphères

13

 b_6

45 contre-exemples : méthode flip-and-flow

Lorsque le rapport entre deux disques est suffisamment proche de celui d'un arrangement triangulé à 2 disques, nous pouvons arranger ces disques de manière similaire (non triangulée) et obtenir encore une densité élevée

arrangement triangulé à 3 disques

arrangement triangulé à 2 disques

45 contre-exemples : méthode flip-and-flow

Lorsque le rapport entre deux disques est suffisamment proche de celui d'un arrangement triangulé à 2 disques, nous pouvons arranger ces disques de manière similaire (non triangulée) et obtenir encore une densité élevée

arrangement triangulé à 3 disques

arrangement dense non triangulé

45 contre-exemples : méthode *flip-and-flow*

Lorsque le rapport entre deux disques est suffisamment proche de celui d'un arrangement triangulé à 2 disques, nous pouvons arranger ces disques de manière similaire (non triangulée) et obtenir encore une densité élevée

arrangement triangulé à 3 disques

arrangement triangulé à 2 disques

 $\delta \approx 0.950308 \ r \approx 0.154701$

Arrangements optimaux de disques et de sphères

45 contre-exemples : méthode flip-and-flow

Lorsque le rapport entre deux disques est suffisamment proche de celui d'un arrangement triangulé à 2 disques, nous pouvons arranger ces disques de manière similaire (non triangulée) et obtenir encore une densité élevée

arrangement triangulé à 3 disques

arrangement dense non triangulé

Arrangements optimaux de disques et de sphères

Conjecture de Kepler : empilements d'oranges

Empilement cubique centré :

 $\delta^* = rac{\pi}{3\sqrt{2}} pprox 74\%$

Conjecture de Kepler : empilements d'oranges

Empilement cubique centré :

$$\delta^* = rac{\pi}{3\sqrt{2}} pprox 74\%$$

Théorème (démontré par Hales, Ferguson, 1998–2014conjecturé par Kepler, 1611)L'empilement cubique centré est optimal.

 cet empilement est optimal parmi les empilements regulieres 	Gauss 1831
• 18ème problème de la li <mark>ste de Hilbert</mark>	1900
 6 prépublications (250 pages) par Hales et Ferguson > 50000 + 137000 lignes de code 	ArXiv 1998
• comité de lecture : 13 relecteurs, 4 ans "99% de certitude"	1999–2003
version courte de la preuve Annals of Mathe	matics 2005
• version complète : 6 articles édités	DCG 2006
 Projet Flyspeck : preuve formelle vérifiée par ordinateur Forum of Mathemat 	2003–2014 tics, Pi 2017

Daria Pchelina

Arrangements optimaux de disques et de sphères

Empilement de sel

sphère

Daria Pchelina

Arrangements optimaux de disques et de sphères

Empilement de sel

empilement de sel

Daria Pchelina

Arrangements optimaux de disques et de sphères

Empilement de sel

triangulé \rightarrow tétraédré le graphe de contact est une "tétraédrisation"

Conjecture du selproblème ouvertL'empilement de sel est optimal $\delta^* \approx 79\%$

Pourquoi les calculs sont-ils si lents ?

arithmétique d'intervalles + formules énormes \rightarrow perte de précision

Pourquoi les calculs sont-ils si lents ?

arithmétique d'intervalles + formules énormes \rightarrow perte de précision

Exemple : pour calculer le rayon de la sphère de support, nous devons résoudre $Ar^2 + Br + C = 0$

 $A = -4a^{2}b^{2}d^{2} + 4a^{2}c^{2}d^{2} + 4b^{2}c^{2}d^{2} - 4c^{4}d^{2}d^{2}d^{2} - 4b^{2}c^{2} - 4b^{2}c^{2}d^{2} + 4b^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4b^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4b^{2}c^{2}c^{2} + 4b^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4b^{2}c^{2}c^{2} + 4c^{2}c^{2}c^{2} + 4c^{2}$

$$\begin{split} B &= -Ac^{2}d^{2}r_{1} + Ab^{2}d^{2}r_{1} + Ac^{2}d^{2}r_{1} + Ac^{2}d^{2}r_{1} + Ac^{2}d^{2}r_{1} + Ab^{2}c^{2}r_{1} - Ab^{2}c^{2}r_{1} + Ab^$$

Pourquoi les calculs sont-ils si lents ?

arithmétique d'intervalles + formules énormes \rightarrow perte de précision

Exemple : pour calculer le rayon de la sphère de support, nous devons résoudre $Ar^{2} + Br + C = 0$

Balance Calculer avec des rayons et des longueurs d'arêtes fixes, puis "simplifier" : $A_{1111} = 4 \left(d^2 - e^2 \right)^2 + 4 f^4 + \left(\left(d^2 - 8 \right) e^2 - 8 d^2 \right) f^2 + 4 d^2 e^2 f^2 + 4 d^2 f^2 + 4 d^2 e^2 + 4 d^2 + 4 d^2 + 4 d^2 e^2 + 4 d^2 + 4$ $\begin{vmatrix} B_{1111} = 8 (d^2 - e^2)^2 + 8 f^4 + 2 ((d^2 - 8)e^2 - 8 d^2) f^2 \\ C_{1111} = d^2 e^2 f^2 \end{vmatrix}$ $C_{1111} = d^2 e^2 f^2$.+4a²b²r²r₂r_w-4b⁴r²r_w-4a²c²r²v_x+4b²c²r²v_x+4b²d²r²v_x+4c²d²r²v_x-8b²e²r²v_x+4a²f²r²v_x+4b²f²r²v_x-4d²f²r²v_x-4a⁴r²v_x-4a⁴r²v_x+4a²b²r²v_x+4a²f²r²v_x+4a²f²r²v_x+4a²b²r²v_x+4a²f²r²v_x-4b²r²v_x+4a²b²r²v_x-4a⁴r²v_x-4a⁴r²v_x-4a⁴r²v_x-4a²b²r²v_x

-4b²c²r²r₂+4a²d²r₂r₂+4c²d²r₂r₂+4b²e²r₂r₂+4b²e²r₂r₂-4d²e²r₂r₂-8a²t²r₂r₂+4b²d²r₂r₂+4b²d²r₂r₂-4d⁴r₂r₂-4d³e²r₂r₂+4b²e²r₂+2b²r₂+2

Daria Pchelina

Arrangements optimaux de disques et de sphères

Techniques

propriétés des triangulations

Géométrie :

géométrie différentielle

Assistance informatique :

Autres questions "sphériques" : des grains de pollen ...

Tammes 1930 : configuration des pores sur un grain de pollen

maximiser le nombre de calottes sphériques d'un rayon donné sur une sphère

Autres questions "sphériques" : des grains de pollen ...

Tammes 1930 : configuration des pores sur un grain de pollen

maximiser le nombre de calottes sphériques d'un rayon donné sur une sphère

placer n points sur une sphère pour maximiser la distance entre deux points les plus proches

Autres questions "sphériques" : des grains de pollen ...

Tammes 1930 : configuration des pores sur un grain de pollen

maximiser le nombre de calottes sphériques d'un rayon donné sur une sphère

placer n points sur une sphère pour maximiser la distance entre deux points les plus proches

trouver le plus petit rayon possible d'une sphère centrale tangente à n sphères unitaires

Autres questions "sphériques" : des grains de pollen ...

Tammes 1930 : configuration des pores sur un grain de pollen

maximiser le nombre de calottes sphériques d'un rayon donné sur une sphère

placer n points sur une sphère pour maximiser la distance entre deux points les plus proches

trouver le plus petit rayon possible d'une sphère centrale tangente à n sphères unitaires

résolu pour n = 3, ..., 14, et 24 (1943 – 2015) :

...au nombre de contact

nombre de contact : combien de sphères unitaires peuvent toucher la même sphère centrale unitaire dans \mathbb{R}^d

...au nombre de contact

nombre de contact : combien de sphères unitaires peuvent toucher la même sphère centrale unitaire dans \mathbb{R}^d

résolu pour d=2:6, d=3:

...au nombre de contact

nombre de contact : combien de sphères unitaires peuvent toucher la même sphère centrale unitaire dans \mathbb{R}^d

résolu pour d=2:6, d=3:

...au nombre de contact

nombre de contact : combien de sphères unitaires peuvent toucher la même sphère centrale unitaire dans \mathbb{R}^d

résolu pour d=2 : 6, d=3 :12 (1953), d=4 : 24 (2003), d=8 : 240, d=24 : 196560 (1979)

Conclusion

Merci pour votre attention !

50

۱

5

50

50

Daria Pchelina

۲

60

9 ()

Arrangements optimaux de disques et de sphères

21 / 21

(8)

S

un empilement est triangulé

chaque disque a une "couronne"

Pour trouver les tailles de disques avec des empilements triangulés, nous parcourons toutes les combinaisons possibles de couronnes symboliques de deux disques (nombre fini) :

couronne symbolique

(Fernique, Hashemi, Sizova 2019)

Pour trouver les tailles de disques avec des empilements triangulés, nous parcourons toutes les combinaisons possibles de couronnes symboliques de deux disques (nombre fini) :

(Fernique, Hashemi, Sizova 2019)