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Abstract. In this paper we prove that it is decidable whether the set
pow(L), which we get by taking all the powers of all the words in some
regular language L, is regular or not. The problem was originally posed by
Calbrix and Nivat in 1995. Partial solutions have been given by Cachat
for unary languages and by Horváth et al. for various kinds of expo-
nent sets for the powers and regular languages which have primitive
roots satisfying certain properties. We show that the regular languages
which have a regular power are the ones which are ’almost’ equal to their
Kleene-closure.

1 Introduction

Calbrix and Nivat defined the power pow(L) of a language L in a paper about
prefix and period languages of rational ω-languages [3]:

pow(L) = {wi | w ∈ L, i ≥ 1}.

It is easy to see that there are examples of regular languages L for which pow(L)
is regular, and examples for which pow(L) is not regular. Take, for instance, the
regular language ab∗ whose power is not even context-free. Calbrix and Nivat
posed the problem of characterizing those regular languages whose powers are
also regular, and to decide whether a given regular language has this property.
They conjectured that “rational languages such that their power is also rational
are ‘almost’ a union of rational subsemigroups of Σ∗ and the point is to give the
right sense to this almost”. Cachat [2] gave a partial solution to this problem
showing that for a regular language L over a one-letter alphabet, it is decidable
whether pow(L) is regular. Unfortunately Cachat’s result cannot be extended
to arbitrary alphabets since he translated unary languages into sets of natural
numbers to reach his solution. Horváth et al. [5] provided more partial results.
They looked at arbitrary alphabets and did a case analysis based on the primitive
roots of the regular languages in question. However, the case when L∩√

L is not
regular and

√
pow(L) \ L is finite was left open, and thus a complete solution

to the original problem was not given. They also considered other exponent
sets instead of the whole set of natural numbers and an algorithm based on [2]
to decide whether the power of a regular language with finite primitive root
is regular or not. We will use the results of [5] (and [2] resp.) as part of the
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decision procedure. There exist several other papers that study regular languages
containing powers of their words or consisting solely of non-primitive words,
see [4,6]. Recently Anderson et al. [1] presented a characterization of regular
languages consisting only of powers.
In this paper we characterize the regular languages whose power is also regular.
First we present a short overview of the notions and results needed to proceed
with the paper, and then we go on to solve the decidability problem posed by
Calbrix and Nivat by reducing it to decidable subproblems.

2 Preliminaries

In this section we briefly recall some definitions and known results needed
throughout the rest of the paper. Let Σ be a fixed finite nonempty alphabet. By
Σ∗ we mean the free monoid generated by Σ, that is the set of all words over
Σ. The empty word we denote by λ, and Σ+ = Σ∗ \ {λ}. A language over Σ is
a subset L of Σ∗. For a word p ∈ Σ∗, |p| denotes the length of p, and for a set
M , |M | denotes the cardinality of M . For a natural number k, pk denotes the
concatenation of k copies of the word p, and p0 = λ. As usual, p∗ denotes the
set {pk : k ≥ 0}, and p∗q the set {pkq : k ≥ 0}. For two words u, v ∈ Σ∗ and a
language L ⊆ Σ∗, by saying that u ≡ v(PL) we mean the following

xuy ∈ L if and only if xvy ∈ L for all x, y ∈ Σ∗.

For a word w ∈ Σ∗ the congruence class [w]PL consists of all words congruent
with w according to PL, that is [w]PL = {v ∈ Σ∗ | w ≡ v(PL)}. Since PL is a
congruence relation, Σ∗/PL = {[w] | w ∈ Σ∗} is a monoid, which is called the
syntactic monoid of L and denoted by Synt(L).
A non-deterministic finite automaton (NFA) is a quintuple A = {Σ, Q, I, F, σ}
with the usual conventions, i.e. Σ is the input alphabet, Q is the set of states,
I is the set of initial states, F is the set of final states and σ : Q × Σ → 2Q

is the transition function. We will use σ as an extended transition function
taking words as second arguments instead of only letters, interpreted as follows
σ(p, ab) = {q ∈ σ(q1, b) | q1 ∈ σ(p, a)}. A finite automaton is deterministic
(DFA) if I is a singleton and p, q ∈ σ(r, w) implies p = q.
When talking about regular languages we will often mean languages accepted by
some finite automaton or languages which are unions of some of the equivalence
classes of a congruence relation of finite index. As it is well known from Rabin
and Scott [8] these language classes are in fact the same. We note here that the
size of the syntactic monoid for a regular language L is at most 2|Q|2 , if Q is the
set of states of some NFA accepting L.

Definition 1. A word p is primitive if there is no word q 	= p and no positive
integer n such that p = qn. We denote the language of all primitive words over
a given alphabet Σ by Q.

Definition 2. The (primitive) root of a word p ∈ Σ+ is the unique primitive
word q such that p = qn for some n ≥ 1.

√
p denotes the root of p. For a language

L,
√

L = {√p : p ∈ L ∧ p 	= λ} is the root of L.
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The next result is known as the theorem of Fine and Wilf. Intuitively it tells
us how far two periodic events (strings) have to match in order to guarantee a
common period, that is to guarantee that the two sequences are ultimately the
same.

Theorem 1. Let x, y ∈ Σ∗, n = |x|, m = |y|, d = gcd(n, m). If two powers xp

and yq of x and y have a common left factor of length at least equal to n+m−d,
then x and y are powers of the same word.

The following is a well known theorem by Lyndon and Schützenberger.

Theorem 2. [7] If umvn = wk for non-empty words u, v, w and natural num-
bers m, n, k ≥ 2 then

√
u =

√
v =

√
w.

This is a basic property of words that will prove useful to us later on through
a theorem by Shyr and Yu, which we present here with a short proof to better
illustrate our argument.

Corollary 1. [9] Let u, v be primitive words such that u 	= v. Then there is at
most one non-primitive word in u+v+.

Proof. Let w = umvn be non-primitive. Then either m = 1 or n = 1 by Theorem
2. So, by symmetry let uvn = wi for some primitive word w and i ≥ 2. We may
choose n to be minimal with that property. It is enough to show that all uvn+k

are primitive. By contradiction, suppose that uvn+k is not primitive for some
k ≥ 1, that is there exists some z ∈ Q and j ≥ 2 such that zj = uvn+k. It follows
that wivk = zj.

First consider the case k ≥ 2. Since i, j, k ≥ 2, we can apply the Lyndon-
Schützenberger theorem and get that

√
w =

√
v =

√
z, but then u = v, a

contradiction.
Now let us see the case k = 1. Non-primitivity is invariant to cyclic shifts, so

wi and zj being non-primitive gives us that vnu and vnuv are non-primitive too.
Hence there are words w1, z1 ∈ Q such that wi

1 = vnu and zj
1 = vnuv, moreover

|w1| = |w| and |z1| = |z|. From here zj
1 = wi

1v. As v is a prefix of wi
1, we have

that zj
1 has both periods |z1| and |w1|. Now we can apply the theorem of Fine

and Wilf and get that z1 = w1 = v. This means w = z = v and then u = v, a
contradiction again. ��
Corollary 2. For all words x, y, z ∈ Σ∗ with y 	= λ with |√xyz| 	= |√y|, there
is at most one non-primitive word in the language xy+z.

Proof. Suppose there exist numbers i, j ≥ 1 with i < j such that both xyiz and
xyjz are non-primitive. Non-primitivity is invariant to cyclic shifts, so zxyi and
zxyj are non-primitive too.

If zx is non-primitive then we can apply the Lyndon-Schützenberger theorem
on zxyj and get that

√
zx =

√
y. This would mean

√
zxy =

√
y and from here

|√xyz| = |√y|, a contradiction.
If zx is primitive then from Theorem 1 we have that only one of the words

zxyi and zxyj is non-primitive, contradicting our original assumption. ��
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3 The Power of a Regular Language

There are easy examples for non-trivial regular languages that do not have a
regular power. Besides the one mentioned in the introduction one could take
aaa(aa)∗ whose power {ak : k is not a power of 2} is not even context-free (in
particular, powers of regular languages are not semi-linear, in general).

In fact, as it turns out, it is quite difficult to come up with examples of
regular languages L with regular power other than the ones for which L = L∗ or
L = L∗\K, where either K is finite or K =

⋃
w∈S w∗ for some finite set of words

S. This seems to justify the conjecture formulated by Calbrix and Nivat cited
before. Hence, rather than trying to solve the case left open in [5] one might try
a new approach.

Indeed, as we will shortly see, we can give an equivalent criterion for a regular
language to have a regular power, i.e., we can now give sense to that ‘almost’.

Theorem 3. Let L be a regular language. Then pow(L) is regular if and only if
pow(L) \L is a regular language such that its primitive root is a finite language.

Proof. The class of regular languages is closed under union and taking the dif-
ference of two sets, therefore if pow(L) \ L is a regular language then so is
(pow(L) \ L) ∪ L = pow(L).

Now let us look at the ”only if” part. If pow(L) is regular then so is Ldiff =
pow(L) \ L. Note that Ldiff consists solely of non-primitive words. Let n be the
number of states of the minimal deterministic automaton accepting Ldiff . Now
suppose that

√
Ldiff is infinite. In this case there must be some w ∈ Ldiff such

that |√w| > n. On the other hand the pumping property of regular languages
tells us that w = xyz for some xz, y /∈ {λ} with |y| ≤ n such that xyiz ∈ Ldiff

for all i ≥ 0, so xyiz is non-primitive for all i. Corollary 2 says that in this case
|√xyz| = |√y| ≤ |y| ≤ n, contradicting the assumption |√w| > n. ��
Lemma 1. Let L be a regular language given by an NFA having n states. If
pow(L) is regular, then we have

pow(L) ⊆ L ∪ {√u
i | u ∈ L ∧ |u| ≤ max(n2, m) ∧ i ≥ 1},

where m is the size of Synt(L).

Proof. We have seen in Theorem 3 that pow(L) being regular means that it
has to be a subset of L ∪ ⋃

u∈U u+ for some finite set U of words. We need
to prove that for every w ∈ Ldiff there is a u ∈ L such that w ∈ √

u
+ and

|u| ≤ max(n2, m).
Take the shortest u ∈ L such that w is a power of u. If |u| > max(n2, m) then

according to the pumping property of regular languages u can be written as xyz
for some y 	= λ 	= xz such that xyjz ∈ L for all j ≥ 0. Here we can distinguish
two cases.
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1. If |y| is a multiple of |√u| then |√u| ≤ n. As u ∈ √
u

+ ∩L we can apply the
pumping argument on powers of

√
u as if it was a unary language. If k is

the smallest number for which
√

u
k ∈ L then k ≤ n, or else there would be

some numbers p, q with p < q < k such that from the initial state we reach
the same state by reading

√
u

p or
√

u
q, and we could cut out

√
u

q−p from
the word. From here we get that there is a word

√
u

k ≤ n2 having the same
root as w.

2. We are left with the case when in any decomposition u = xyz, |y| is not a
multiple of |√xyz| and |u| > m. Then we find a decomposition u = xyz with
0 < |y| ≤ m and [xy] = [x] in Synt(L). This way we know that xyjz ∈ L,
for all j ≥ 1. As a consequence of Corollary 2 we also know that at most
one of these xyjz can be a non-primitive word. At the same time Ldiff has
finite root, hence for all but finitely many values of j, (xyjz)+ ⊆ L, so we
find some j such that xyjz ∈ L and xyjz is primitive and at the same time
(xyjz)+ ⊆ L . Due to [xy] = [x] in Synt(L) we can conclude (xyz)+ ⊆ L.
However, we supposed that w ∈ Ldiff is some power of xyz, a contradiction.

So for every w ∈ Ldiff there is some u ∈ L, with |u| ≤ max(n2, m) such that√
w =

√
u and this concludes the proof. ��

To make it easy to see why the latter half of the previous theorem can be checked
effectively, we should replace max(n2, m) with a bound depending only on the
number of states n of the automaton accepting L.

Remark 1. Let L be a regular language given by an NFA having n states. If
pow(L) is regular, then we have

pow(L) ⊆ L ∪ {ui | u ∈ L ∧ |u| ≤ 2n2 ∧ i ≥ 1},
where m is the size of Synt(L).

Proof. This is clear because n2 < 2n2
and the syntactic monoid is a divisor of

the monoid of Boolean n × n matrices, so Synt(L) has size at most 2n2
. ��

Let us recall the following result from the paper by Calbrix and Nivat about
languages which are equal to their power.

Lemma 2. [3] Let L be a regular language of Σ∗. Then pow(L) = L if and only
if there are regular languages (Li)1≤i≤n such that L =

⋃n
i=1 L+

i .

The statement above is useful for testing if a language is equal to its power
or not, we only need to specify the languages Li for an effective construction.
Using the syntactic monoid of L gives us the tool we need. We can translate
pow(L) = L into the following statement involving the congruence classes of PL:

⋃

u∈L

[u]+ ⊆ L =
⋃

u∈L

[u] ⊆
⋃

[u]+.

Given an automaton accepting L we can effectively construct its syntactic
monoid and from here we can effectively define the set of words in the class
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[u] for all u ∈ L. In the case of a regular language PL induces a finite number of
classes, so we can decide whether the equality holds or not. Hence, we can state
the following.

Proposition 1. For a regular language L it is decidable whether pow(L) = L
holds or not.

Now we are ready to proceed with the algorithm. Theorem 3 reduces the original
problem to an equivalent one of deciding whether the language, in some sense,
lacks only a “few” words to be equal to its power. Lemma 1 provides the means
to find those “few” missing words and after adding them to our starting language
Proposition 1 will tell us whether the result is a power or not, that is whether
the power of the original language is regular or not.

Theorem 4. For a regular language L it is decidable whether pow(L) is regular.

Proof. We propose the following algorithm:

1. Input: an NFA A = {Σ, Q, I, F, σ}.
2. Output: “YES”, if pow(L(A)) is regular, and “NO” otherwise.
3. U = ∅
4. FOR all words w ∈ L(A) shorter than 2|Q|2 :
5. —IF w∗ \ L(A) 	= ∅ THEN:
6. ——IF pow((

√
w)∗ ∩ L(A)) is regular THEN add w to U

7. ——ELSE output ”NO”
8. compute the syntactic monoid for L′ = L(A) \ ⋃

u∈U (
√

u)∗

9. IF L′ = pow(L′) then output “YES”
10. ELSE output “NO”

The enumeration of words in L(A) shorter than 2|Q|2 can be done in finite
time due to the length limit. The condition in line 5 can be checked effectively
too. First we have to perform the difference of two regular languages, then check
whether the result is empty or not. As it is stated in [5], the condition in line 6 can
be verified using Cachat’s algorithm ([2]), because (

√
w)∗ ∩ L(A) is isomorphic

to a unary language, which can be computed effectively. In step 8 we have to
compute the syntactic monoid for a regular language, which is the difference of
a regular language and the finite union of some regular languages, all effectively
presented. If a regular language L is equal to M ∪N for some regular languages
M and N , such that

√
M ∩ √

N = ∅, then from the closure properties of the
regular class we get that pow(L) is regular if and only if both pow(M) and
pow(N) are regular. Moreover, L and M being powers implies N being a power
as well. Therefore, in step 9 we only need to check whether a regular language
is equal to its power or not; by Proposition 1 this is decidable too. Hence, the
algorithm terminates after finitely many steps; however, the complexity is at
least exponential due to both Cachat’s algorithm and the exponential length
bound on the words we need to check in step 4. ��
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4 Conclusion

We managed to characterize regular languages that have regular power following
the conjecture of Calbrix and Nivat formulated in [3] and we gave an effective
albeit inefficient procedure to decide this property. Although the decision pro-
cedure is not a direct extension of previous results ([2,5]), Cachat’s algorithm is
needed in an essential step, which identifies those ”few words” in pow(L) missing
from L.

Acknowledgements

The author would like to thank the referees and, in particular, Volker Diekert for
their suggestions on correcting the proofs and improving the overall presentation
of the paper.

References

1. Anderson, T., Rampersad, N., Santean, N., Shallit, J.: Finite Automata, Palin-
dromes, Powers, and Patterns. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 52–63. Springer, Heidelberg (2008)

2. Cachat, T.: The Power of One-Letter Rational Languages. In: Kuich, W., Rozen-
berg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 145–154. Springer,
Heidelberg (2002)

3. Calbrix, H., Nivat, M.: Prefix and Period Languages of Rational omega-Languages.
In: Dassow, J., Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory
1995, pp. 341–349. World Scientific, Singapore (1996)
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