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Abstract
A regular language L of finite words is composite if there are regular languages L1, L2, . . . , Lt such
that L =

⋂t

i=1 Li and the index (number of states in a minimal DFA) of every language Li is strictly
smaller than the index of L. Otherwise, L is prime. Primality of regular languages was introduced
and studied in [9], where the complexity of deciding the primality of the language of a given DFA
was left open, with a doubly-exponential gap between the upper and lower bounds. We study
primality for unary regular languages, namely regular languages with a singleton alphabet. A unary
language corresponds to a subset of N, making the study of unary prime languages closer to that of
primality in number theory. We show that the setting of languages is richer. In particular, while
every composite number is the product of two smaller numbers, the number t of languages necessary
to decompose a composite unary language induces a strict hierarchy. In addition, a primality witness
for a unary language L, namely a word that is not in L but is in all products of languages that
contain L and have an index smaller than L’s, may be of exponential length. Still, we are able
to characterize compositionality by structural properties of a DFA for L, leading to a LogSpace
algorithm for primality checking of unary DFAs.
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1 Introduction

Compositionality is a well motivated and studied notion in mathematics and computer science
[2]. By decomposing a problem into several smaller problems, it is possible not only to
increase parallelism, but also to sometimes handle inputs that are otherwise intractable. A
major challenge is to identify problems and instances that can be decomposed. Motivated by
practical barriers of the automata-theoretic approach to formal verification [8], Kupferman
and Mosheiff introduced in [9] the notion of compositionality for regular languages. The
algebraic approach to DFAs associates each DFA with a monoid, and is used in [7] in order to
show that every DFA A can be presented as a wreath product of reset DFAs and permutation
DFAs, whose algebraic structure is simpler than that of A. The definition of decomposition in
[9] is simpler, and is based on the right-congruence relation ∼L between words in Σ∗: given
a regular language L ⊆ Σ∗, we have that two words x, y ∈ Σ∗ satisfy x ∼L y, if for every
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51:2 Unary Prime Languages

word z ∈ Σ∗, it holds that x · z ∈ L iff y · z ∈ L. By the Myhill-Nerode theorem [10, 11],
the equivalence classes of ∼L constitute the state space of a minimal canonical DFA for L.
The number of equivalence classes is referred to as the index of L. Then, according to [9], a
language L ⊆ Σ∗ is composite if there are languages L1, . . . , Lt such that L =

⋂t
i=1 Lt and the

index of Li, for all 1 ≤ i ≤ t, is strictly smaller than the index of L. Otherwise, L is prime1.
The definitions apply also to DFAs, referring to the languages they recognize. Back to formal
verification, by decomposing a specification automaton A to automata A1,A2, . . . , At such
that L(A) =

⋂t
i=1 L(At), one can replace a language-containment problem L(S) ⊆ L(A)

by a sequence of simpler problems, namely L(S) ⊆ L(Ai), for the automata Ai in the
decomposition.

Decompositions of width 2 were studied in [3]. For such decompositions, the question
of deciding whether a given DFA A is composite is clearly in NP, as one can guess the two
factors. It is shown in [9] that there are regular languages whose decomposition require width
3, which was generalized in [12] to languages whose decomposition require arbitrarily large
widths. In fact, the only bound known for the required width is exponential in |A|, which
follows from the bound on the size of the underlying DFAs. Accordingly, the best upper bound
known for the problem of deciding the compositionality of a given DFA is ExpSpace. This is
quite surprising, especially given that the best lower bound for the problem is NLogSpace,
making the gap between the upper and lower bounds doubly-exponential. For the class of
permutation DFAs, whose monoid consists of permutations, compositionality can be decided
in PSpace [9], making the gap exponentially less embarassing, but the general case is still
open.

We study regular languages over a unary alphabet, thus Σ = {1}. Each word 1i ∈ Σ∗
can be identified with its length i ∈ N = {0, 1, 2, . . .}, and a language L ⊆ 1∗ can be viewed
as a subset of N. The association of words with natural numbers strengthens the relation
between the notions of primality in number theory and regular languages. In particular, it is
shown in [9] that for every k ∈ N, we have that the language (1k)∗ is composite iff k is not a
prime power (see Example 1). The fact, however, that each DFA defines a set of numbers,
makes the regular setting much richer [1]. We present two indications of this rich setting.
The first concerns the width of a decomposition, namely the number t of languages in it.
The width of decompositions in number theory is 2. Indeed, every composite number is the
product of two smaller numbers. We show that for unary regular languages, the width is
arbitrarily large. Specifically, if a language L is defined by a unary DFA of size n, then the
width of a decomposition of L may be ω(n), namely the number of distinct prime divisors of
n. This bound is tight.

An additional indication to the richness of the setting is the length of primality witnesses.
Consider a DFA A. It is not hard to see that A is prime iff there exists a word w that
is rejected by A yet accepted by all DFAs B that are potential decomposers of A, namely
L(A) ⊆ L(B) and |B| < |A|. Indeed, such a word w indicates that every product of DFAs that
attempts to decompose A would fail on w. Accordingly, w is termed a primality witness for
A, and a decision procedure for checking primality can be based on a search for a primality
witness. In the general (non unary) case, the best known upper bound for the length of a
primality witness is doubly exponential in A, with no matching lower bound [9]. We study
the length of primality witnesses for unary DFAs and show an exponential tight bound.

1 We note that a different notion of primality, relative to the concatenation operator rather than to
intersection, has been studied in [4].
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In spite of the above two hardness indications, we are able to describe a LogSpace
algorithm for checking primality of unary DFAs. Our algorithm is based on the trivial
observation that a unary DFA A is lasso shaped, and the not-at-all trivial observation that A
is composite iff it can be decomposed to clean quotients – once quotients obtained by folding
the cycle of length ` of A’s lasso to a cycle of length d, for d that is a strict divisor of `. All
the clean quotients over-approximate the language of A, and the algorithm essentially has to
check whether each rejecting state q of A is covered by some clean quotient, in the sense
that this clean quotient rejects all words that A rejects in a run that reaches q. As we show,
the above condition can be checked in logarithmic space.

2 Preliminaries

A deterministic finite automaton (DFA hereafter) is a 5-tuple A = 〈Σ, Q, qI , δ, F 〉, where Q
is the finite set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → Q is a transition
function, qI ∈ Q is an initial state, and F ⊆ Q is a set of accepting states. For each state
q ∈ Q, we use Aq to denote the DFA A with q as the initial state. That is, Aq = 〈Σ, Q, q, δ, F 〉.
We extend δ to words in the expected way, thus δ : Q × Σ∗ → Q is defined recursively by
δ(q, ε) = q and δ(q, w1w2 · · ·wn) = δ(δ(q, w1w2 · · ·wn−1), wn). We sometimes omit the initial
state qI as a parameter of δ and write δ(w) instead of δ(qI , w) in order to refer to the state
that A visits after reading w. The DFA A naturally induces an equivalence relation ∼A over
the set of words Σ∗ defined by v ∼A w iff δ(v) = δ(w).

The run of A on a word w = w1 . . . wn is the sequence of states s0, s1 . . . sn such that
s0 = qI and for each 1 ≤ i ≤ n it holds that δ(si−1, wi) = si. Note that sn = δ(qI , w). The
DFA A accepts w iff δ(qI , w) ∈ F . Otherwise, A rejects w. The set of words accepted by A is
denoted L(A) and is called the language of A. We say that A recognizes L(A). A language
recognized by some DFA is called a regular language. Two DFAs A and B are equivalent if
L(A) = L(B). The complement of a regular language L over Σ is comp(L) = Σ∗ \ L.

We refer to the size of a DFA A, denoted |A|, as the number of states in A. A DFA A is
minimal if every DFA B equivalent to A satisfies |B| ≥ |A|. Every regular language L has a
single (up to isomorphism) minimal DFA A such that L(A) = L. The index of L, denoted
ind(L), is the size of the minimal DFA recognizing L.

Quotient DFA. Consider a DFA A = 〈Σ, Q, qI , δ, F 〉. We say that an equivalence relation
∼⊆ Q×Q is coherent with δ if for every two states p, q ∈ Q, if p ∼ q then δ(p, a) ∼ δ(q, a)
for all a ∈ Σ. Then, the quotient A′ of A by ∼ is the DFA obtained by merging the states of
A that are equivalent with respect to ∼. Formally, A′ = 〈Σ, Q′, [qI ], δ′, F ′〉, where Q′ is the
set of equivalence classes [p] of the states p ∈ Q, the transition function δ′ is such that for all
a ∈ Σ we have that δ′([p], a) = [δ(p, a)], and F ′ is composed of the classes [p] such that there
is q ∈ F such that p ∼ q. Note that the coherency of ∼ with respect to δ guarantees that
the definition of δ′ is independent of the choice of the state p in [p]. On the other hand, we
do not require states related by ∼ to agree on membership in F , and define F ′ so that the
language of A′ over-approximates that of A. Formally, L(A) ⊆ L(A′), as every accepting
run of A induces an accepting run of A′.

Composite and Prime DFAs. A DFA A is composite if there are t ≥ 1 and DFAs A1, . . . ,At

such that for all 1 ≤ i ≤ t, it holds that |Ai| < |A|, and
⋂t

i=1 L(Ai) = L(A). Thus, L(A)
can be described by means of an intersection of DFAs all strictly smaller than A. Otherwise,
A is prime. We refer to t as the width of the decomposition of A. For t ≥ 2, we say that A
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s0 s1 s2 sk−1 q0 q1 q2 ql−1

Figure 1 A lasso-shaped unary DFA.

is t-composite if it has a decomposition of width t. Otherwise, A is t-prime. Then, the width
of a composite A is the minimal t ≥ 1 such that A is t-composite. Note that non-minimal
DFAs are 1-composite, and so compositionality is of interest mainly for minimal DFAs, where
|A| = ind(L(A)). We identify a regular language with its minimal DFA. Thus, we talk
also about a regular language being composite or prime, referring to its minimal DFA. The
Prime-DFA problem is to decide, given a DFA A, whether A is prime.

A primality witness for a DFA A is a word w ∈ Σ∗ such that w /∈ L(A) and w ∈ L(B)
for all B with L(A) ⊆ L(B) and |B| < |A|. Note that such a word w indeed witnesses that
A is prime, as w is a member in every intersection of DFAs that attempts to compose A.
Moreover, every prime DFA A admits at least one primality witness, as otherwise L(A) would
be equal to the intersection of the languages of all the DFAs B satisfying L(A) ⊆ L(B) and
|B| < |A|.

2.1 Unary DFAs
A DFA A = 〈Σ, Q, qI , δ, F 〉 is unary if its alphabet Σ is of size 1. Discussing unary DFAs,
we denote the alphabet by 1, its single letter by 1, and we identify a word 1i ∈ 1∗ with its
length i ∈ N = {0, 1, 2, . . .}. Thus, the language of a unary DFA A is viewed as a subset of N.
Likewise, we refer to the transition function of a unary DFA as δ : N→ Q, where δ(i) is the
state that A visits after reading 1i. Clearly, i ∈ L(A) iff δ(i) ∈ F . Finally, note that a unary
DFA must be lasso shaped. Indeed, as |Q| is finite, there must be k, j ∈ N such that k < j and
δ(j) = δ(k). Then, as A is deterministic, we have that δ(k+ i) = δ(j + i) for all i ≥ 0. When
j is minimal, we say that A is a (k, `)-DFA, for ` = j−k. Thus, A is lasso-shape with a prefix
of lenght k and cycle of length `. We refer to the states δ(0), . . . , δ(k) by s0, . . . , sk−1, q0,
and to the states δ(k + 1), . . . , δ(j − 1) by q1, . . . , q`−1 (see Figure 1). Note that since k < j,
it must be that ` > 0. When we want to fix only one of the two parameters of the lasso,
we use the notations (∗, `)-DFA, for fixing only the cycle, and (k, ∗)-DFA for fixing only the
prefix. In particular, a (0, ∗)-DFA consists of a single cycle.

As demonstrated in Example 1 below, taken from [9], primality questions about unary
languages are strongly related to primality questions in number theory.

I Example 1. Let Lk = {x : x ≡ 0 mod k}. Clearly, the minimal DFA that recognizes Lk is
a (0, k)-DFA, and so ind(Lk) = k. We show that Lk is composite iff k is not a prime power.

Assume first that k is not a prime power. Thus, there exist co-prime integers 1 < p, q < k

such that p · q = k. It then holds that Lk = Lp ∩ Lq. Since ind(Lp) < k and ind(Lq) < k, it
follows that Lk is composite.

For the other direction, assume that k is a prime power. Let p, r ∈ N be such that p is a
prime and k = pr. Let x = (p+ 1)pr−1. Note that x /∈ Lk. We claim that x is a primality
witness for Lk, and conclude that Lk is prime.

Recall that ind(Lk) = k. Consider a language L′ such that L ⊆ L′ and ind(L′) < ind(L).
We show that x ∈ L′. Assume by contradiction that x /∈ L′. Let A′ be a DFA for L′. Since
ind(L′) < ind(Lk) = k and x > k, the rejecting run of A′ on x must traverse the cycle of
A′. Let ` be the length of this cycle, and note that 0 < ` < k. Note that for all i ≥ 0, we
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have that i`+ (p+ 1)pr−1 is not accepted by A′, and hence, i`+ (p+ 1)pr−1 6∈ L′. On the
other hand, since ` 6≡ 0 mod k, there exists i ≥ 0 such that i` ≡ −pr−1 mod k. For this
value of i, we have that i`+ (p+ 1)pr−1 ∈ L \ L′, and thus, L 6⊆ L′, and we have reached a
contradiction. Therefore, x ∈ L, and we are done. J

I Remark 2. Since DFAs can be complemented by dualizing the set of final states, we can
dualize the definition of composite and prime DFAs and consider definitions that are based
on union of DFAs. Specifically, L is ∪-composite if there are DFAs A1, . . . ,At such that for
all 1 ≤ i ≤ t, it holds that |Ai| < |A|, and

⋃t
i=1 L(Ai) = L(A). Otherwise, A is ∪-prime.

Clearly, L is ∩-composite iff comp(L) is ∪-composite.

3 Decompositions of Unary DFAs

In this section we study decompositions of unary DFAs. We characterize these decompos-
itions by means of clean quotients, which will become handy when we study the width of
decompositions, the length of primality witnesses, and the complexity of the Prime-DFA
problem for unary DFAs.

3.1 Clean quotients of unary DFA
Let A = 〈1, Q,Σ, qI , δ, F 〉 be a unary (k, `)-DFA. Recall (see Figure 1) that we refer to
the states leading to the cycle of A by s0, s1, . . . , sk−1, and to the states in the cycle by
q0, q1, . . . , q`−1. A clean quotient Ad of A is a (k, d)-DFA obtained by quotienting A by
folding its cycle to a cycle of length d, for some strict divisor d of `. Formally, Ad is induced
by the equivalence relation ∼d defined by

si ∼d sj if and only if i = j;
qi ∼d qj if and only if i ≡ j mod d.

Note that ∼d is coherent with δ, and so L(A) ⊆ L(Ad). As with general quotient DFAs,
the latter containment may be strict.

I Example 3. In Figure 2, we describe a (4, 6)-DFA A, and its two clean quotients: the
(4, 3)-DFA A3 and the (4, 2)-DFA A2.

s0 s1 s2 s3 q0 q1 q2 q3 q4 q5

A:

s0 s1 s2 s3 q0 q1 q2

A3:
s0 s1 s2 s3 q0 q1

A2:

Figure 2 The DFA A and its clean quotients A3 and A2.

Omega function. For n ∈ N, the omega function ω(n) maps n to the number of distinct
prime divisors of n. Formally, for every integer n, if the decomposition of n into prime
factors is n = pg1

1 p
g2
2 . . . pgt

t , then ω(n) = t. For example, as 45 = 3 · 3 · 5, then ω(45) = 2.
The asymptotic behavior of ω is tricky, as it behaves irregularly. Indeed, if n is a prime
number, then ω(n) = 1. On the other hand, if n is a primorial, namely n = p1p2 . . . pt is the
product of the first t prime numbers, then ω(n) ∼ ln(n)

ln(ln(n)) [5]. Note that for every t ∈ N,
the primorial n = p1p2 . . . pt is the smallest integer satisfying ω(n) ≥ t. Accordingly, ln(n)

ln(ln(n))
serves as an upper asymptotical bound for ω(n).

MFCS 2020
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In Subsection 3.2, we relate compositionality with compositionality by clean quotients.
Here, we bound the width of such compositions:

I Lemma 4. Every unary (k, `)-DFA that has a decomposition into clean quotients is ω(`)-
composite.

Proof. Let A be a unary (k, `)-DFA, and assume that L(A) =
⋂m

i=1 L(Adi
) for some strict

divisors di of `. Let p1, p2, . . . , pω(`) be an enumeration of the prime strict divisors of `, and
for every 1 ≤ i ≤ ω(`), let `i = `/pi. For all 1 ≤ i ≤ ω(`), we get L(A) ⊆ L(A`i

) since A`i

is a quotient of A, hence L(A) ⊆
⋂ω(`)

i=1 A`i . Conversely, for every 1 ≤ i ≤ m, there exists
1 ≤ j ≤ ω(`) such that di divides `j , thus the DFA Adi

is a subquotient of the DFA A`j
,

which implies that L(Adi
) ⊇ L(A`j

). Since this is true for every 1 ≤ i ≤ m, it follows that
L(A) =

⋂ω(m)
i=1 Adi

⊇
⋂ω(`)

i=1 A`i
. Hence L(A) =

⋂ω(`)
i=1 A`i

, thus A is ω(`)-composite. J

Bézout’s Identity. We use in our proofs a weaker version of Bézout’s Identity, a well known
theorem in number theory. For the sake of completeness, we state here the specific part of
the result that we use, along with its proof.

I Lemma 5. Consider an integer b ∈ N. If b has a strict divisor, then for all a < b we have
that b has a strict divisor that can be expressed as a linear combination λa− µb, for some
λ, µ ∈ N.

Proof. Let U be the set of integers definable as a linear combination λa − µb for some
λ, µ ∈ N. We prove that the minimal strictly positive element d of U satisfies the statement.
First, since a ∈ U , then d ≤ a < b. Now, since d ∈ U , there exist λ0, µ0 ∈ N satisfying
d = λ0a− µ0b. Let β ∈ N be the minimal integer satisfying βd ≥ b. Then 0 ≤ βd− b < d,
yet βd− b = βλ0a− (βµ0 + 1)b, is an element of U . Since we chose d as the minimal strictly
positive integer of U , this implies that βd− b = 0. Hence, d divides b and we are done. J

Key Lemma. Recall that every clean quotient Ad of A is such that L(A) ⊆ L(Ad), and
that the latter containment may be strict. We now prove the existence of clean quotients of
A for which this strict containment is good enough for our decomposition goal. Intuitively,
each clean quotient rejects large parts of the language rejected by A. Formally, we have the
following.

I Lemma 6. Let A be a unary (k, `)-DFA. For every unary (kB, `B)-DFA B such that `B < `

and L(A) ⊆ L(B), there is a strict divisor d of ` such that the clean quotient Ad rejects all
the words w > kB rejected by B.

Proof. Let A = 〈1, Q, qI , δ, F 〉, and let B be a unary (kB, `B)-DFA such that `B < ` and
L(A) ⊆ L(B). Since `B < `, then, by Lemma 5, there exists a strict divisor d of ` that can
be expressed as a linear combination d = λ`B − µ` for some λ, µ ∈ N.

We prove that the clean quotient Ad of A rejects all the words w > kB rejected by B.
Assume by way of contradiction that there is a word w > kB accepted by Ad. If w < k,
w ∈ L(Ad) immediately implies that w ∈ L(A). Then, as L(A) ⊆ L(B), we have that
w ∈ L(B), and we reach a contradiction. If w ≥ k, then by definition of the quotient Ad,
the equivalence class of the state δ(w) ∈ Q in Ad contains an accepting state of A since
w ∈ L(Ad). Therefore, there exists an integer α ∈ N such that w + αd is accepted by A.
Since adding a multiple of ` to w + αd yields another element of L(A), we obtain that
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x = w + αd+ αµ` ∈ L(A). Since L(A) ⊆ L(B), it follows that x is also accepted by B. Now,
by the definition of d, we have that

x = w + αd+ αµ` = w + αλ`B.

Therefore, since B accepts x, and w > kB by supposition, B also accepts the word w, and we
reach a contradiction. J

3.2 Characterizing compositionality
Consider a unary (k, `)-DFA A = 〈1, Q, qI , δ, F 〉. We say that a rejecting state q of A is
covered by a quotient A′ of A if the state [q] of A′ is rejecting. That is, q is covered by A′
iff A′ rejects all the words w such that δ(w) = q. We show that we can determine if A is
composite by checking whether some of its rejecting states are covered by clean quotients.
Our analysis distinguishes between several cases, as detailed below. We start with (k, `)-DFAs
satisfying k = 0.

I Lemma 7. Consider a unary (0, `)-DFA A. The following are equivalent:
1. A is ω(`)-composite;
2. A is composite;
3. For every rejecting state qi of A, the word `+ i is not a primality witness of A;
4. Every rejecting state of A is covered by a clean quotient.

Proof. It is clear that Item 1 implies Item 2. Moreover, Item 2 implies Item 3: indeed, if A
is composite, then it has no primality witness.

We now show that Item 3 implies Item 4. Consider a rejecting state qi of A. We argue
that either the word wi = i + ` ∈ N is a primality witness, or there is a clean quotient of
A covering qi. Assume that wi is not a primality witness for A. Thus, there is a unary
(kB, `B)-DFA Bi such that |Bi| < |A|, L(A) ⊆ L(Bi), and wi 6∈ L(Bi).

As k = 0, we have that |A| = `, and so `B ≤ |B| < |A| = `. Hence, by Lemma 6, there
is a clean quotient Adi

of A that rejects all the words longer than kB that are rejected by
B. In particular, since kB ≤ |B| < |A| ≤ i+ `, the DFA Adi

rejects wi. However, as Adi
is

a quotient of A, then Adi
either accepts all words w with δ(w) = qi or it rejects them all.

Therefore, as δ(wi) = qi and Adi rejects wi, we conclude that the clean quotient Adi rejects
all words w with δ(w) = qi, implying it covers qi.

To conclude, we show that Item 4 implies Item 1. Assume that every rejecting state qi

of A is covered by a clean quotient Adi
. Let I ⊆ {0, . . . , ` − 1} be such that i ∈ I iff qi is

rejecting. We show that L(A) =
⋂

i∈I L(Adi), which implies that A is ω(`)-composite by
Lemma 4. First, by definition of a quotient DFA, we have that L(A) ⊆ L(Adi

) for all i ∈ I,
and thus L(A) ⊆

⋂
i∈I L(Adi

). Second, each word w that A rejects reaches a rejecting state
qi of A. Therefore, Adi also rejects w, and so L(A) ⊇

⋂
i∈I L(Adi). J

We continue to (k, `)-DFAs with k > 0. Consider such a DFA A, and consider the state
sk−1, namely the last state visited by A before entering the cycle, and the state q`−1, namely
the last state of the cycle. Let Ã be the quotient DFA of A induced by the equivalent
sk−1 ∼ q`−1. Thus, Ã is obtained from A by merging sk−1 and ql−1. Clearly, |Ã| < |A|.

The following lemmas handle three possible cases.

I Lemma 8. Consider a unary (k, `)-DFA A with k > 0. If sk−1 and q`−1 are both in F or
are both not in F , then A is composite.

MFCS 2020



51:8 Unary Prime Languages

Proof. The agreement of sk−1 and q`−1 on membership in F guarantees that L(Ã) = L(A).
Hence, A is not minimal, and is thus composite with t = 1. J

I Lemma 9. Consider a unary (k, `)-DFA A with k > 0. If sk−1 6∈ F and q`−1 ∈ F , then A
is composite iff ` > 1.

Proof. If ` = 1, then A is prime with primality witness k−1. If ` > 1, then A is 2-composite.
Indeed, consider the language N \ {k − 1}. Clearly, it can be accepted by a (k − 1, 1)-DFA.
Since L(A) is the intersection of L(Ã) and N \ {k − 1}, we are done. J

I Lemma 10. Consider a unary (k, `)-DFA A with k > 0. If sk−1 ∈ F and q`−1 6∈ F , then
the following assertions are equivalent:
1. A is 2-composite;
2. A is composite;
3. The word k − 1 + (|A| − 1)! is not a primality witness of A;
4. The rejecting state q`−1 of A is covered by a clean quotient.

Proof. It is clear that Item 1 implies Item 2. Moreover, Item 2 implies Item 3: indeed, if A
is composite, then it has no primality witness.

To prove that Item 3 implies Item 4, we argue that either the word w = k− 1 + (|A| − 1)!
is a primality witness of A, or there exists a clean quotient of A covering q`−1. Assume that
the word w is not a primality witnesses of A. Thus, there exists a unary (kB, `B)-DFA B
such that |B| < |A|, L(A) ⊆ L(B), and w 6∈ L(B). In order to use Lemma 6, we show that
the cycle of B is strictly smaller than the cycle of A. Assume by way of contradiction that
`B ≥ `. Since kB + `B = |B| < |A| = k + `, this implies that kB < k. Therefore, B reaches
its cycle while reading the word k − 1. Since sk−1 ∈ F , the word k − 1 is accepted by A.
Since L(A) ⊆ L(B), the word k − 1 is also accepted by B, which thus accepts all words in
(k − 1) + µ`B. Indeed, the run of B on all of them reaches the same accepting state. In
particular, B accepts the witness w = k− 1 + (|A|− 1)!, and we have reached a contradiction.

Now that we have proven that `B < `, we can apply Lemma 6 to guarantee the existence
of a clean quotient Ad of A that rejects (in particular) the word w. However, as Ad is a
quotient of A, then Ad either accepts all words w′ with δ(w′) = q`−1 or it rejects them all.
Therefore, as δ(w) = q`−1 and Ad rejects w, we conclude that the clean quotient Ad rejects
all words w′ with δ(w′) = q`−1, hence it covers q`−1.

We conclude by showing that Item 4 implies Item 1. Assume that the rejecting state
q`−1 of A is covered by a clean quotient Ad. We show that L(A) = L(Ã) ∩ L(Ad). Since
both Ã and Ad are quotients of A, then L(A) ⊆ L(Ã) ∩ L(Ad). Now consider a word w

rejected by A. Then, either δ(w) = q`−1, in which case, as Ad covers q`−1, the word w

is also rejected by Ad, or δ(w) 6= q`−1, in which case it is also rejected by Ã. Therefore,
L(A) ⊇ L(Ã) ∩ L(Ad). J

4 The Width of Unary Languages

Recall that [9, 12] shows that in the general (non unary) case, the width of composite
languages may be arbitrarily large. This is in contrast with composite numbers, which are
always 2-composite. The languages used in [9, 12] for showing the strict hierarchy are over
alphabets of size O(t). In this section we show that the hierarchy is strict even for unary
languages, which are closer to number theory. We show that the width of a unary language
of index n is closely related to the omega function ω(n) that counts the number of distinct
prime divisors of n.
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First, our results from Section 3 provide an upper bound on the width of a composite
(k, `)-DFA A: If k = 0, then, by Lemma 7, we have that A is ω(`)-composite, and if k > 0,
then, by Lemmas 8, 9, and 10, we have that A is 2-composite. We thus have the following.

I Theorem 11. Every unary composite language of index n is max(2, ω(n))-composite.

We prove that such a large width is sometimes required.

I Theorem 12. For every n ∈ N with ω(n) ≥ 2, there is a composite unary language of
index n and width ω(n).

Proof. Let n ∈ N, and consider the decomposition n = pg1
1 p

g2
2 . . . p

gω(n)
ω(n) of n into prime

factors. Assume that ω(n) ≥ 2. For every 1 ≤ i ≤ ω(n), let γi = n/pgi

i , and let Li = {x : x 6≡
0 mod γi}. We set L =

⋂ω(n)
i=1 Li, and prove that L is ω(n)-composite and (ω(n)− 1)-prime.

It is easy to see that L can be recognized by a (0, n)-DFA, and that each Li can be
recognized by a (0, γi)-DFA. To conclude, we show that if L is expressed as the intersection
of m < ω(n) languages, then at least one of these language has an index bigger or equal
to n. This implies that the index of L is n (using the particular case m = 1), and that
L =

⋂ω(n)
i=1 Li has minimal width amongst the decompositions of L into languages of indices

smaller than n. Formally, we prove the following:

B Claim. Let m < ω(n), and let B1, . . . ,Bm be m unary DFAs satisfying
⋂m

i=1 L(Bi) = L.
Then, there exists 1 ≤ i ≤ m, such that |Bi| ≥ n.

Since m < ω(n) and
⋂m

i=1 L(Bi) = L =
⋂ω(n)

i=1 Li, there exist 1 ≤ i ≤ m and 1 ≤ j1 <

j2 ≤ ω(n) such that Bi rejects both n+ γj1 /∈ Lj1 and n+ γj2 /∈ Lj2 . We prove that |Bi| ≥ n.
Let k, ` ∈ N be the integers such that Bi is a (k, `)-DFA. If k ≥ n, we are done. Otherwise,

B reaches its cycle while reading the word n+ γj for both j ∈ {j1, j2}. As the cycle of B is of
length `, we also have that n+ γj + ` · pj 6∈ L(Bi). Therefore, as L ⊆ L(Bi), it must be that
n+ γj + ` · pj 6∈ L. Thus, there exists 1 ≤ j′ ≤ ω(n) such that n+ γj + ` · pj 6∈ Lj′ . Hence,

n+ γj + ` · pj ≡ 0 mod γj′ . (1)

As pj divides both n and ` · pj but not γj , we get from Equation 1 that γj′ is not divisible by
pj , which is possible only if j′ = j. Therefore, γj′ = γj , and as n is divisible by γj , Equation 1
becomes ` · pj ≡ 0 mod γj . Then, since pj and γj are co-prime, it follows that ` ≡ 0 mod γj .
Finally, since this equation holds for both j = j1 and j = j2, and j1 6= j2, it must be that
` ≡ 0 mod n by definition of γj1 and γj2 . This implies that ` ≥ n, hence |Bi| ≥ n. J

5 Primality Witnesses For Unary Languages

Recall that every prime DFA A has a primality witness: a word that is rejected by A yet
accepted by all DFAs B that are potential decomposers of A, namely L(A) ⊆ L(B) and
|B| < |A|. Note that indeed A is prime iff it has a primality witness w: since w is accepted
by all the potential decomposers of A, then w is accepted by all products of potential
decomposers, implying they strictly contain A.

For general DFAs, [9] provides a doubly-exponential upper bound on the length of a
minimal primality witnesses, with no lower bound. In this section we describe a tight
exponential bound for unary DFAs, and we start with the lower bound:

I Theorem 13. For every n ≥ 1, there is a unary prime language Ln that is recognized by a
DFA with O(n) states, yet the shortest primality witness for Ln is of length exponential in n.

MFCS 2020



51:10 Unary Prime Languages

Proof. For n ∈ N, let An be the unary (2n+ 1, 2)-DFA whose language is the union of the
odd numbers and the singleton 2n. Thus, L(An) = {2λ + 1 : λ ∈ N} ∪ {2n}. We define
Ln = L(An). Clearly, An has 2n+ 3 states, which is linear in n. We prove that Ln is prime,
yet the size of its smallest primality witness is exponential in n.

Let p1, p2, . . . , pm be an enumeration of the prime numbers smaller than or equal to n+ 1,
moreover for every 1 ≤ i ≤ m, let gi be the highest power such that pgi

i ≤ n+ 1. Finally, let
P = pg1

1 · p
g2
2 · . . . · pgm

m . We prove that the word 2(n+P ) is a primality witness for Ln. Since
2(n+ P ) is even and is different from 2n, then it is rejected by An. We show that 2(n+ P )
is accepted by every unary (kB, `B)-DFA B that satisfies |B| < |An| and Ln ⊆ L(B).

We distinguish between the two cases, according to the parity of `B – the length of the
cycle of B. If `B is odd, then, in order to ensure that Ln ⊆ L(B), all the states in the cycle of B
have to be accepting. Therefore B accepts every word greater than kB < |B| < |An| = 2n+ 3.
In particular, it accepts 2(n+ P ).

If `B is even, let `′ ≥ 1 be such that `B = 2`′. Then, since kB+ 2`′ = |B| < |An| = 2n+ 3,
we obtain that kB < 2n+ 1, and `′ ≤ n+ 1. Since Ln ⊆ L(B), the run of B on the word 2n
is accepting. Since kB < 2n+ 1, the accepting run of B on 2n reaches its cycle. Thus, B also
accepts all words obtained by adding to 2n a multiple of `B = 2`′. However, 2P is a multiple
of 2`′, as the definition of P ensures that every divisor of integers smaller than n + 1, in
particular `′, is also a divisor of P . Therefore, B accepts the word 2(n+P ), and we are done.

Next, we prove that P is exponential in n. Recall that there are m prime numbers
smaller than or equal to n + 1. By the Prime Number Theorem, the integer m can be
approximated with (n+ 1)/ ln(n+ 1). Also, for every 1 ≤ i ≤ m, the definition of gi implies
that pgi

i ≥
√
n+ 1. As a consequence, we get

P = pg1
1 · p

g2
2 · . . . · pgm

m ≥
√
n+ 1m = (n+ 1) m

2 ∼ (n+ 1)
n+1

2 ln(n+1) = e
n+1

2 .

Finally, we prove that every word smaller than 2(n+ P ) is not a primality witness for
Ln. Let x ∈ N be such that x < 2(n + P ) and x 6∈ Ln. We prove that there is an NBW
B such that |B| < |An| and x 6∈ L(B). Since x 6∈ Ln, then it is of the form 2(n + λ), for
some λ ∈ N satisfying 0 < |λ| < P . Therefore, there exists an index 1 ≤ i ≤ m such
that the prime power pgi

i does not divide |λ|. Let B be the unary (0, 2pgi

i )-DFA whose
language is the union of the odd words and the words equivalent to 2n modulo 2pgi

i . That
is, L(B) = {2κ + 1 : κ ∈ N} ∪ {2pki

i + 2n : κ ∈ N}. Note that Ln ⊆ L(B). Moreover, as
pgi

i ≤ n+ 1, we have that |B| = 2pgi

i ≤ 2(n+ 1) < |An|. Finally, x 6∈ L(B). Indeed, since x is
even, it is not in {2κ + 1 : κ ∈ N}. Also, as we chose i so that pgi

i does not divide |λ|, we
also have that x 6∈ {2pki

i + 2n : κ ∈ N}. Thus, x is not a primality witness for Ln, and we
are done. J

We continue with a matching upper bound.

I Theorem 14. Every prime DFA A has a primality witness of length at most exponential
in |A|.

Proof. Consider a prime (k, `)-DFA A. If k = 0 then, by Lemma 7, there is a primality
witness for A of length smaller than 2`. If k > 0 then, by Lemmas 8, 9, and 10, there is a
primality witness for A of length smaller than |A|!. In order to reduce the |A|! bound to
an exponential one, we do a more careful analysis of the length of the primality witness in
Item 3 of Lemma 10, reducing it from k − 1 + (|A| − 1)! down to k − 1 + P , where P is the
product of the maximal prime powers pgi

i smaller than |A| (the same P used in the proof of
Theorem 13). Essentially, this follows form the fact the DFA B in the proof of Lemma 10
accepts all words in {(k − 1) + µ`B : µ ∈ N}, in particular it accepts k − 1 + P , as `B can be
decomposed into prime factors in {p1, . . . , pm}. J
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6 Solving the Prime-DFA problem

The Prime-DFA problem is to decide, given a DFA A, whether A is prime. As discussed
in [9], the Prime-DFA problem for general DFAs is in ExpSpace and is hard for NLogSpace.
In this section we show that for unary DFAs, the problem can be solved in deterministic
logarithmic space.

I Theorem 15. The Prime-DFA problem for unary DFAs is in LogSpace.

Proof. We first describe a deterministic algorithm for the problem, and then explain its
correctness and argue it uses logarithmic space.

Algorithm 1 Algorithm for deciding compositionality.

Function IsComposite(A : unary 〈k, `〉-DFA)
if k ?= 0 then /* by Lemma 7 */

foreach qi /∈ F do
if not IsCleanlyCovered(A, qi) then return false

return true
if sk−1 ∈ F ⇔ q`−1 ∈ F then return true /* by Lemma 8 */
if sk−1 /∈ F ∧ q`−1 ∈ F then return ` 6 ?= 1 /* by Lemma 9 */
if sk−1 ∈ F ∧ q`−1 /∈ F then /* by Lemma 10 */

return IsCleanlyCovered(A, q`−1)

Function IsCleanlyCovered(A : unary 〈k, `〉-DFA, qi /∈ F )
foreach 1 < d < ` such that d divides ` do

nb_final := 0
foreach 0 ≤ j < ` with j ≡ i mod d do

if qj ∈ F then nb_final := nb_final + 1
if nb_final ?= 0 then return true

return false

Let A = 〈Σ, Q, qI , δ, F 〉 be a unary (k, `)-DFA. The main decision procedure is straightfor-
ward from the cases considered in Subsection 3.2, and uses a constant local space. However,
a call to the function “IsCleanlyCovered”, which takes as input a DFA A and a rejecting state
qi from its cycle, requires a logarithmic space. We prove that “IsCleanlyCovered” return true
iff there exists a strict divisor d of ` such that the clean quotient Ad of A covers qi.

First, the function searches for divisors d by checking every decomposition d ·m of ` with
d,m ∈ {2, 3, . . . `−1}. Then, given d, let Ad = 〈Σ, Q′, [qI ], δ′, F ′〉. Recall that Ad has a cycle
of length d. To perform in logarithmic space, the function cannot construct Ad explicitly
and has to perform on-the-fly. It counts in nb_final how many accepting states belong to
the equivalence class [qi] by increasing a counter on all states qj ∈ F for which i ≡ j mod d.
By the definition of a quotient automaton, Ad rejects all the words w for which δ(w) = qi iff
[qi] /∈ F ′; that is, iff qj /∈ F for every i ≡ j mod d. Hence, qi is covered by Ad iff the counter
nb_final stays zero. These operations are doable within space logarithmic in |A| since all
the numerical values are bounded by ` and thus representable in O

(
log2(|A|)

)
bits with a

binary encoding. J
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7 Discussion

We studied primality for unary regular languages, and showed that while the setting is
richer than that of primality in number theory, we can decide primality of a given unary
DFA in deterministic logarithmic space. Beyond the interest in unary languages and their
relation to number theory, we believe that our results can contribute to an improved upper
bound in the general (non unary) case, where the best known algorithm for the Prime-DFA
problem requires exponential space. A promising direction for closing the doubly-exponential
gap is to consider more special cases. Different semantic fragments of regular languages
induce different structural properties of the their DFAs. For example, languages closed for
letter-swapping are recognized by DFAs that are products of lassos, and bounded semilinear
languages, namely languages L for which there exists k > 0 and words u1, . . . , uk ∈ Σ∗
such that L ⊆ u∗1 . . . u∗k, are recognized by DFAs that are concatenation of lassos, as well as
deterministic Parikh automata [6] – all are good candidates for a tighter analysis. Likewise,
the considerations we made for lasso-shape DFAs may be extendible to DFAs that are trees
with back edges. Another interesting direction is to allow richer compositions, in particular
ones that allow both intersection and union.
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