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Probabi l i s t ic  a u t o m a t a  (p.a.) are a general iza t ion of finite deter-  
minist ic  au tomata .  We follow the  fo rmula t ion  of finite a u t o m a t a  in 
R a b i n  and Scott  (1959) where the  au toma ta  ~I have two-valued out- 
pu t  and  thus  can be viewed as defining the  set T(~I) of all tapes  ac- 
cepted by  ~I. This  involves no loss of general i ty.  A p.a. is an  au toma-  
ton  which, when  in s ta te  s and  when  inpu t  is ¢, has  a p robab i l i t y  
pi(s, ~) of going in to  any  s ta te  s~ . Wi th  any  cut -poin t  0 ~ X < 1, 
there  is associated the  set  T(~,  X) of tapes  accepted by  ~I wi th  
cu t -po in t  ~. 

Here we develop a general  theory  of p.a.  and  solve some of the  
basic problems.  Aside from the  m a t hem a t i ca l  in te res t  in  pursuing  
th is  na tu ra l  general iza t ion of finite au tomata ,  the  resul ts  also bear  
on quest ions of re l iabi l i ty  of sequent ia l  circuits .  

P.a.  are, in general,  s t ronger  t h a n  determinis t ic  a u t o m a t a  
(Theorem 2). By s tudying  the  way we may  wan t  to use p.a. we are led 
to in t roduce the  concept  of isolated cut-point. I t  t u rns  out  t h a t  every  
p.a. w i th  isolated cu t -po in t  is equ iva len t  to a sui table  de terminis t ic  
au toma ton  (the Reduc t ion  Theorem 3). I t  is in te res t ing  to note  
t h a t  in passing from a minimal  determinis t ic  au toma ton  to 
an  equiva len t  p.a. we can sometimes save s ta tes  (Section VI I ) .  

The  Reduct ion  Theorem is applied to prove the  existence of an  
approximate  ca lcula t ion  procedure for a calcula t ion problem in- 
volving produc ts  of s tochast ic  matr ices  (Section VI I I ) .  The problem 
is of a new k ind  in t h a t  there  is no a-priori  bound  on the  number  of 
operat ions (matr ix  mul t ip l ica t ions)  which we may  have to perform 
and  therefore  classical numerica l  es t imates  of round-off errors do 
not  apply.  

Actual automata (Definit ion 9) have the  proper ty ,  of ten exist ing in 

* Most  of the  results  in th is  paper  were es tabl ished while the  au thor  was vis i t ing 
Bell Telephone Laborator ies ,  Murray-Hi l l ,  in  the  summer  of 1960. This  paper  was 
presented  as an  inv i ted  address a t  the  Annual  SIAN[ Meet ing  a t  Cal i fornia  In- 
s t i tu te  of Technology,  March  1962. 
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actual unreliable circuits, that all transition probabilities are strictly 
positive. Actual automata are proved to give only definite events. 
This points to the restrictions we may have to impose on a 
probabilistic sequential circuit if we want it to perform general tasks, 
namely, some transitions should be prohibited. 

Finally we treat the important problem of stability. Is the opera- 
tion of a p.a. stable (unchanged) under small enough perturbations 
of the transition probabilities? We have an affirmative answer to this 
question in the case of actual automata (Theorem 11) and we discuss 
the problem for the general case. 

INTRODUCTION 

Finite automata  are mathematicM models for systems capable of a 
finite number of states which admit at discrete time intervals certain 
inputs (incoming signals) and emit certain outputs. If the system is in 
state s and the input is ¢ then the system will move into a new state si 
which depends only on s and ~ and will have an output  which depends 
only (is a function of) on s~. Thus the system will transform a sequence 
of inputs into a sequence of outputs and the relevant aspect of the 
system is this transformation. Sequential circuits, and even whole 
digital computers, provided the computer operates using only internM 
memory or just a fixed amount  of tape, are systems which behave like 
finite automata.  There is an extensive literature on finite automata. In  
this paper we follow the notations and use some of the results on autom- 
ata contained in the paper by Rabin and Scott (1959). In  particular 
the formulation given there amounts to assuming that  the set of outputs 
contains just two elements. This is a convenient restriction which we 
follow also here but the results immediately extend to the general case of 
more than two outputs. Because of the restriction to two-vMued outputs 
automata  can be viewed as defining sets of sequences of inputs (tapes) 
and this point of view is adopted throughout this paper. 

Finite automata  exhibit a deterministic behavior. The state s and 
input ~ determine the next state of the automaton. I t  is quite natural to 
consider automata  with stochastic behavior. The idea is that  the au- 
tomaton,  when in state s and when the input is ~, can move into any state 
si and the probability for moving into state sl is a function p~(s, ~) of 
s and ¢. 

A practical motivation for considering probabilistic automata  is tha t  
even the sequential circuits which are intended to be deterministic 
exhibit stochastic behavior because of random malfunctioning of com- 
ponents. This situation was first taken up by yon Neumann (1956) 
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who considered schemes for organizing combinatorial (and to some 
extent also sequential) circuits constructed with specific components so 
as to increase their reliability. 

Though the generalization from the abstract  deterministic automata  
to the abstract  probabilistic automata  (p.a.) lies near at  hand, there are 
no general results about  p.a. in the literature. In particular, it was not 
even known whether p.a. can do more than deterministic automata.  In  
this paper we develop a general theory of p.a. and answer some of the 
basic questions about  them. 

I t  turns out tha t  in general p.a. are stronger than deterministic 
automata.  We introduce, however, a new concept of isolated cut-point 
and prove the fundamental  Reduction Theorem 3 that  every p.a. with 
isolated cut-point is equivalent to a suitable deterministic automaton. 

In  Section X I  we define actual automata which are automata  such tha t  
all their transition probabilities are strictly positive. These automata  
define a very  limited class of regular events (Theorem 10). The results 
are of some significance for the theory of reliability. They  indicate tha t  
if we want to synthesize general sequential circuits from unreliable 
components we must organize them so that  transitions between certain 
states are prohibited (have probabili ty zero), or else consider the circuit 
as having broken down if these transitions occurred. 

Another problem bearing on theory of reliability is the stability prob- 
lem. The probabilistic automaton is called stable if its behavior is not 
changed by  small perturbations of the transition probabilities. Jn 
synthesizing circuits from unreliable components we surely want to get 
stable circuits. In  Section X I I  we give a stability theorem for actual 
automata.  We also discuss the general stability problem but  leave it 
open. 

I. FINITE AUTOMATA 

In this section we give a brief resume of the basic definitions and some 
basic results which will be used in the sequel, from the theory of finite 
(deterministic) automata.  The exposition follows closely that  in Rabin 
and Scott  (1959). By "au tomaton"  we shall mean, throughout  this 
section, deterministic automaton.  

Let  IS be a finite nonempty set, to be called the alphabet. Letters r, 
(with subscripts) will usually denote elements of E. The set of all finite 
sequences of elements of ~ will be denoted by E*. The elements of E* 
will be called tapes. The letters x, y, z, u, v (with subscripts) will always 
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denote tapes. The empty tape (i.e., the sequence of length zero) will be 
denoted by k. Subsets of ~* (i.e., sets of tapes) will sometimes be called 
events. 

If x = zl " '"  zk is a tape then the length l(x) of x is l(x) = k. If x 
and y are tapes then xy will denote the concatenation of x and y. Note 
that  E* with this operation' xy is a free semi-group with the elements of 

as free generators. 
DEFINITION 1. A :finite (deterministic) automaton over ~ is a system 

91 = (S, M, so, F)  where S is ~ finite set (the set of states), M is a func- 
tion from S X Z into S (the transition table), so E S (the initial state),  
and F _ S (the set of designatedfinaI states). 

M can be extended to a function from S X ~* to S by, M(s ,  A) = s, 
M(s ,  xz)  = M ( M ( s ,  x) ,  ~) (s C S, x C ~*, ~ C ~).  M(s ,  x) is the 
state in which ~l "gets off" the tape x if it started on x in state s. 

DEFINITION 2. A tape x is said to be accepted by ~l if and only if 
M(so ,  x) E F. The set defined by ~i is the set of all tapes accepted by 
~I, and is denoted by  T(~[). An event  U _c E* is called a regular event if 
for some finite automaton ~I, U = T (~ ) .  

Every  finite event  is regular. If U and V are regular so are U F1 V, 
U U V and ~* - U (see Rabin and Scott, 1959). 

In Rabin and Scott  (1959) a necessary and sufficient condition for an 
event  T _ 2~* to be regular was given in terms of right equivalence 
relations. 

DEFINITION 3. Let  T ~ 2", the right-equivalence relation - r generated 
by T is defined as follows. For x, y C B*, x -- T y if and only if for all 
z E 2"  we have: xz E T if and only if yz C T. 

I t  is easy to see tha t  - ~  is an equivalence relation on ~*. Note tha t  
-- r is right-invariant with respect to the multiplication of the semigroup 
2", i.e., for all x, y, z E ~*, if x - - r  y then xz =-~ yz. 

THEOREM 1 (Rabin and Scott, 1959). A set T c_ 2" is a regular event 
i f  and only i f  the number of equivalence classes of ~* by the equivalence 
relation -- r is :finite. I f  the number of equivalence classes is e < ~ then 
for a suitable ?i, T = T(~I) where the automaton ?i has e states. No automa- 
ton with fewer than e states defines T. 

I I .  P R O B A B I L I S T I C  A U T O M A T A  

We shall now define the basic concept of this investigation, namely 
the concept of probabilistic automata.  I t  will be seen that  probabilistic 
automata  are like the usual automata  except tha t  now the transition 
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table M assigns to each pair (s, z) C S × E certain transition probabili- 
ties. 

DEFINITION 4. A probabilistic automaton (p.a.) over the alphabet 
i s a s y s t e m ~ l  = ( S , M ,  s 0 , F } w h e r e  S -- [so, . . . , s , l  is a finite set 
( the set of states), M is a function from S X Z into [0, 1] ~+11 (the 
transition probabilities table) such that  for (s, z) ~ S X 

M(s,  (~) = (po(s, o), . . . ,  p~(s, (r) ), 

o <= p (s, p (s, = 1, 
i 

so C S (the initial state), and F ~ S (the set of designated final states). 
Probabilistic automata  are models for systems (such as sequential 

circuits) capable of a finite number of states So, . . . ,  s~. The system 
may receive inputs ~ C E. When in state s and if the input is a then the 
system can go into any one of the states s~ C S and the probabili ty of 
going into si is the (i + 1)th coordinate p~(s, z) of M(s,  ~). These 
transition probabilities p~(s, ~) are assumed to remain fixed and be 
independent of time and previous inputs. Thus the system also has defi- 
nite transition probabilities for going from state s to state s~ by  a se- 
quence x ~ ~* of inputs. These probabilities are calculated by  means of 
products of certain stochastic matrices which we shall now define. 

DEFINITION 5. For ~ C % and x = z~z2 " "  ~,. define the n + 1 by 
n ~- 1 matrices A(z )  and A(x )  by 

A ( z )  = [p~(s~, ~)]0<~_<~,0<~<~ 

A(x )  = A(e~)A((~2) . . .  A(a,~) = [ps(si, x)]0__<i__<~,0=<y<=~. 

REMARK. An easy calculation (involving induction on m) will show 
the (i ~- 1, j ~- 1) element pj(s i ,  x) is the probabili ty of ?I for moving 
from state s~ to state s~ by  the input sequence x. 

DEFINITION6. If ?i = ( S , M ,  s 0 , F } a n d F  = {si0, . . . ,  s ~ } , I  = 
{i0, . . . ,  i~}, define 

p(x)  = p (s0, 
iEI  

p(x)  clearly is the probability for ~i, when started in so, to enter into a 
state which is member of F by the input sequence x. 

[0, 1] is t h e  c losed  u n i t  i n t e r v a l  0 =< x _--< 1. [0, 1] ~+~ is t h e  se t  of all n + L t u p l e s  
(x0 , . . .  , x~) w h e r e  0 _--< x~ =< 1. 



P R O B A B I L I S T I C  A U T O M A T A  235 

III .  SETS OF TAPES DEFINED BY P.A. 

A p.a. ~i m a y  be used to define sets of tapes in a manner  similar to 
tha t  of deterministic au tomata  except tha t  now the set of tapes will 
depend not just  on ~I but  also on a parameter  X. 

DEFINITmN 7. Let  g[ be p.a. and X be a real number,  0 =< X < 1. 
The set of tapes T(g[, },) is defined b y  

T(~,  x) = {~Ix ~ ~*, x < p(~)}. 

If  x C T ( ~ ,  ~) we say tha t  x is accepted by ~ with cut-point ~. T ( ~ ,  ~) 
will also be called the set defined by  ~ with cut-point ~. 

REMARK. Deterministic au tomata  can be considered as a special case 
of p.a. Namely,  if in Definition 1 M ( s ,  ~r) = s~ then we can view this 
as if ~ will enter s tate s~ with probabil i ty 1. Thus in rewriting the deter- 
ministic au tomaton  as a p.a. the stochastic vectors M ( s ,  z) = (po, • • . ,  
p~) will have exactly one coordinate 1 and all the others 0. I t  is readily 
seen t ha t  in this case p(x)  = 1, for x C ~*, if and only if x C T ( ~ ) .  
Hence for any  ~, 0 -< h < 1, we have T(~I) = T(?I, ~,). Thus every set 
definable by  a deterministic au tomaton  is trivially definable by  some 
p.a. In  the next section we shall see the converse is not t rue and tha t  
therefore p.a. give a strictly larger class of definable sets. 

IV. PROBABILISTIC AUTOMATON DEFINING NONREGULAR EVENT 

The following matrices were suggested by  E. F. Moore. 

P0 = 1 0 P1 = 
, • 

I t  can be readily verified tha t  if 

~ C {0, 1} 

then p = • ~.3~-1 • • • 31 where p is writ ten in binary expansion. 
T~EOREM 2. Let ~1 = (S, M,  so, F} be an automaton over N = {0, I} 

such that S = {So, sl}, A(0)  = P0 ,  A(1)  = P1,  F = {sl}. There exists a 
0 <- X < i such that T(~I, ~) is not definable by a deterministic automaton 
(is not a regular event). 

PROOF: I f  x = 3132 " ' "  0n C Y~*, then by  the above, p(x)  = 
• 3 ~ - 1  " "  3 1 .  

The values p(x )  are dense in the whole interval [0, 1]. This implies 
tha t  ff 0 -< X < Xl < 1 then T(~I, Xl) c T(92, X) where the inclusion is 
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proper. The sets T(~, ~), 0 < k < 1, therefore form a nondenumerable 
pairwise different collection of sets. But  there is only a denumerable 
collection of regular events. Therefore there exists a ~ such tha t  T( 92, },) 
is not regular. 

REMARK. The above argument is a pure existence proof. We can, 
however, present a specific }, such that  T(~ ,  ~) is not regular. Namely, 
let wl,  w2, . . . ,  be any enumeration of Z* then for ~ =.  wlw2 • •., T(~I, ~) 
is not regular; we omit the proof. 

The above ~ is irrational. I t  can in fact be shown tha t  if ~ is rational 
then T(~ ,  ~) is a regular event. 

v. ISOLATED CUT-POINTS 

Let 92 be a p.a. and 0 < ~ < 1. Given a tape x E ~* we devise the 
following probabilistic experiment E to test whether x E T(~I, ~). 
We run x through ~i a large number N of times and count the number 
re(E) of times tha t  ~I ended in a state in F. If  }, < m(E) /N  we accept 
x and otherwise we reject it. Because of the probabilistic nature of the 
experiment it is of course possible tha t  we sometimes accept x even 
though x ~ T(~,  ~) or reject it even though x E T(~ ,  },). By the law 
of large numbers, however, there exist for each x such tha t  p(x) # 
and each 0 < ~ a number N(x, ~) such tha t  

Pr [ X . . . < N ( x , e - - - ~ x E  T(~t,X) > 1 - E .  

That  is, the probability of obtaining the correct answer by the experi- 
ment E (consisting of running x N(x,  e) times through g and counting 
successes) is greater than 1 - e. 

To perform the above stochastic experiment we must know N(x,  e) 
which depends on I p(x) - X I. Thus we have actually to know p(x) 
in advance if we want to ascertain whether x E T(~I, ~) with probability 
greater than  1 - e of being correct. Once we know p(x), however, the 
whole experiment E is superfluous. 

The way out is to consider values h such tha t  ] p(x) - ~ [ is bounded 
from below for all x E ~*. 

D~INITION 8. A cut-point ~ is called isolated with respect to ~ if 
there exists a 0 < 8 such tha t  

~ ]p(x) -- ~[ for all x E ~*. (1) 
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REMARK. I t  is readily seen that  there exists an integral valued func- 
tion N(8, e) such that  for an isolated X and any x C Z* 

Pr E l k  <N(~ ,e~- -~x  C T(g,X) > 1 - -  e. 

Thus the proposed stochastic experiment for determining whether 
x C T(g[, X) can be performed without any a-priori knowledge of p(x ) .  
This fact makes it natural to consider isolated cut-points. 

VI .  TI-IE R E D U C T I O N  T t t E O R E M  

THEOREM 3. Let ~ be a probabilistic automaton and k be an isolated 
cut-point satisfying (1). Then there exists a deterministic automaton 
such that T(~,  k) = T($ ) .  I f  ~ has n states and F consists of just  one 
state then ~ can be chosen to have e states where 

e < [i -]- (1/6)~-1. 2 (2) 

PnooF: Let the set of states S be {so, . . . ,  s~_l} and F = {s~_l}. For 
every tape x, A (x) is a n n  X n matrix and p(x)  is the upper left corner 
element of A ( x ) .  

Let xl ,  . . . ,  xk be tapes which are pairwise inequivalent by -r((~,x) 
(cf. Definition 3). Thus for every i =< k, j =< k, i ~ j ,  there exists a 
tape y such tha t  

x~y C T ( ~ ,  X), x~y ~ T ( ~ ,  X) (3) 

or vice-versa. Let the first row of A(x~),  1 <= i <= n, be (~1 ~, - . - ,  ~ )  
and the last column of A (y), for the particular y appearing above, be 
(~, ,  " " ,  w) .  From A(x~y) = A ( x ~ ) A ( y )  and A ( x j y )  = A ( x i ) A ( y )  
it follows that  

p(x~y) = ~ + . . .  + ~ ,  p(x~y) = ~J~ + . . .  + ~iJ~. 

Combining with (3) we get 

X < 5~w + - . .  + ~ , ~ ,  5Jn~ + - . .  + ~J,~ < X. (4) 

Since k is isolated and ~ =< I p(x )  - X ] for x C Z*, (4) implies 

2~ < (~d - 5J),~ + --.  + ( ~ '  - ~ J ) ,~ .  (5) 

If  F c o n t a i n s  r s t a t e s  t h e n  t h e  b o u n d  is e == (1 + (r /~))  ~-1 a n d  t h e  p roof  is es-  
s e n t i a l l y  t h e  s a m e .  
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T a k i n g  abso lu te  values  and  observ ing  t h a t  the  v t ,  as e lements  of a 
s tochast ic  mat r ix ,  sa t is fy  I vt I < 1, (5) leads to 

26 < [~1 t -  ~J l  -]- " ' "  + [ ~ i  ~ J l  for  i ~ j .  (6) 

An a r g u m e n t  involving vo lumes  in n-d imensional  space will now be 
used to infer f rom (6) a bound  on k. T h e  n- tuples  ( ~ ,  . . . ,  ~,) will be  
considered as po in ts  of Eucl idean  n-space.  Le t  a i ,  1 -< i -< k be  the  set  

at = { ( ~ ,  . . - ,  (~) I ~ /  -<- ( J ,  1 = j =< n, ~ ( ~ i -  ~.i) = 6}. 
3" 

E a c h  at is a t rans la te  of the  set  

a =  {(~,...,~)I0__< ~ j , l _ - < j S - n , Z ~ j = s } .  
J 

T h e  set  ~ is readi ly  seen to be  an  (n - 1) -d imensional  s implex which 
is a subset  of the  hype rp l ane  xz -}- • • • -f- x ,  = 6. T h e  n - 1 d imensional  
vo lume  V ,_ l ( a )  of ~, expressed as a func t ion  of 6, is c8 ~-1 where  c is 
some cons tan t  not  depending  on 6. 

F r o m  ~ -  ~ / =  1 it follows t h a t  (~1, "" ", ~,) C ai implies 

~ j =  1 - ] - 8 ,  0 <  ~ , 1  < j < n. 
j- 

T h u s  ~t ----- r where  

T = { ( ~ ,  . . . ,  ~ , ) [ ~ j  = 1 -k 6, 0 -<_ ~j ,  1 _-< j =< n}. 
J 

Figure  1 shows the  sets a t ,  1 <- i -< k, and  r, for  the  two-d imens iona l  
case n = 2 and  for k = 3. T h e  poin t  wi th  coordinates  (~/ ,  ~2 t) is denoted  
b y P ~ , l  --- i - <  3. 

[ 

FIG.  1. T h e  s e t s  ~ a n d  r f o r  n = 2 a n d  k = 3 
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A point (~1, " " ,  G) E ¢~ is an interior point of ~ (in the topology 
of the hyperplane x~ q- . . .  -F x~ = 1 + 5) if and only if 0 < G - G ~ 
for 1 -<_ p _= n. Because of (6) ¢i and ~j-, i ¢ j ,  have no interior points 
in common. For otherwise, if ( ~ ,  . . . ,  G) is interior to both  z~ and 
z j ,  we would have 0 < G - G ~, 0 < G -- G j and hence 

l e / -  < - e / I  - 1 __< p =< n. 

Hence 

p /~ p 

contradicting (6). 
Thus for i ~ j ,  a~ and z5 have no interior points in common. This 

implies 

]~C~ n-1 --'~ Vn- l ( (71)  Ju ' ' '  -}- Vn - l ( (Yk )  ~ V n - I ( T )  = 5 ( 1  I'~ ~ ) n - 1 .  

Hence k -<__ [1 q- (1/~)] ~-1. Thus the number  of e equivalence classes 
of the relation ~ r(~.x) is a t  most  [1 q- (1/~)] ~-1. By Theorem 1, T ( ~ ,  ~) 
is definable by  an au tomaton  ~ with e states. 

VII. SAVING OF STATES 

From the proof of the Reduction Theorem 3 and the estimate (2) 
given there, it seems possible tha t  in passing f rom a p.a. ~i to an equiv- 
alent deterministic au tomaton  we may  have to increase the number  of 
states. In  other words, the p.a. is more economical in terms of number  of 
states. The  following theorem shows tha t  this does in fact  happen in 
certain cases. 

THEOREM 4. There exists an automaton ~I with jus t  two states and a 
sequence ~ , 1 <= n ~ ~ , of isolated cut-points such that for each n, the 
automaton ~ with the least number qf states which satisfies T(  ~l, )~) = 
T ( ~ )  has at least n states. 

P~ooF: Let  ~ = {0, 21, S = Is0, sll, and F = {Sl}. Let  the transi- 
tion probabilities be such tha t  

A(0 )  = 1 0 A(2 )  = 

I t  is easy to verify tha t  if x = ~ 2  • • • G C Z *  then 

p ( x )  = ~- + + . . .  + 3~_~. 
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Remembering that  8~ E {0, 2} we see that  the topological closure C of 
the set P = {p(x) I x E E*} is precisely Cantor 's  discontinuum. 

Thus all the points ~, 0 < ~ < 1, which satisfy ~, (E C are isolated 
cut-points for ~I. Consider now the real number (written in ternary 

notation) kn = • 22 . . .  211 where the number of digits is n -]- 1. For  
x E E* to satisfy ~ < p ( x )  it is necessary and sufficient tha t  x have the 
form x = x122 • • • 2 where Xl C ~* and the number of 2's is at  least n. 
Thus the set T(~I, ),n) is nonempty and if x E T ( ~ ,  ),n) then n <= l ( x ) .  

I t  follows from elementary theory of automata  (see Rabin and Scott, 
1959, Theorem 7) tha t  the minimal deterministic automata  !8n for 
which T ( ~ ,  k,) = T(!8~) has at  least n 9- 1 states (in fact, !8~ has 
exactly n 9- 1 states).  

REMARK. An analysis of the possible values of p ( x )  will show tha t  
for the k, as above 

1 
lim inf I p ( x )  -- k~ I = 3n+1. 
xE2:* 

Thus in (2) we can take 8 = 3 -~-1 which gives for the number of states 
the bound 1 + 3 ~+1. In this case the bound turns out to be much too 
large. We do not know whether in other examples the bound is sharper 
or whether the bound in Theorem 8 can in fact be greatly improved. 

VIII .  A P P R O X I M A T E  CALCULATION OF M A T R I X  PRODUCTS 

Let H be a finite set H = {P1, • • ", Pk} of stochastic n X n matrices 
and let 0 < e be a given real number. The elements of all matrices P E H 
are assumed to be finite decimal fractions. 3 Consider the following com- 
putational task. At  discrete time intervals m = 1, 2, . . - ,  we are pre- 
sented with matrices P~I E H,  Pi~ E H,  - - . .  Let  x,~ = ili2 . . .  ira, 

m = 1, 2, • • .. After each time m we wish to know, withi~ s, the element 
p ~ ( 1 ,  n) of the product  

1I~,, = [p,~(i ,  j ) ] l < i < n , ~ < j < n  = P ~ , P ~  "'" P~m 

of the matrices given thus far. Since we are thinking here in terms of 
actual calculation (using, say, an actual computer with a fixed memory) 
it is not possible, in general, to solve our problem by calculating II~. ,  
at  all times m, with complete accuracy. The elements p~m(i, j )  will 
have more and more decimals and recording and calculating with these 

8 This restr ict ion on the matrices P C H is not  essential and is included ius t  
in order t ha t  we can say tha t  the matrices P C H are actually "g iven ."  
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numbers will become impossible with increasing m. Nor is it possible to 
adopt a simple rounding-off procedure because the number m of matrix 
multiplications that  we have to perform is not bounded in advance. 
Thus a fixed rounding-off procedure may result in a cumulative error 
which will become larger than e. 

We shall apply our reduction theorem (Theorem 3) to show that  
under certain conditions on H this problem of approximate calculation 
can be actually solved. The solution rests on the following: 

Tt~EOaE~ 5. Let  2 = {1, . . . ,  k} and for  x = ili2 " "  in C 2 "  let px 
denote the (1, n )  element  of  the product  P i l P ~  " '"  Pi,~ • A s s u m e  that H 

is such that V = {p~ I x ~ E*} is  nowhere dense in  the interval  [0, 1]. 
Then  fo r  every 0 < e there exis ts  an integer h, real numbers  X~ , • • . ,  ),~ , 

and de terminis t ic  au tomata  ~i~ , • • . ,  ~[h over ~ such that 

( i )  0 = ) k  1 < )k2 < " ' "  < )kh = 1, Xi+l --  X4 < e, 1 -<_ i < h. 

(ii) X~ _-< p~ < X~+~ iff x C T(g[~) -- T(g[~+~), 1 < i < h. 

PI~OOF: V nowhere dense means that  the topological closure 12 does 
not contain any nontrivial interval. Thus there exists, for some integer 
h, a sequence X~, 1 < i < h, satisfying (i) and also X~ ~ ~ for 2 -< i -< 
h - 1. 

Consider the p.a. g[ over X having the states So, . . . ,  Sn--~, the set 
{s~_~} of designated final states, and transition probabilities such that  
the matrix corresponding to i C E is P i .  We have for x C 2* ,  p ( x )  = 

p~. The numbers X~, 2 -< i <- h - 1 are isolated cut-points for g[. Thus 
by  Theorem 3 the set T(g[, Xg), 2 - i < h - 1, is definable by  some 
deterministic automaton T(g[~). Hence Xl < px for 2 < i -<_ h - 1 
(p~ = X~ is not possible since X~ is isolated) iff x C T(~[~). Let g[~ and 
g[h be automata  such that  T(~I )  -- 2" and T(g[h) = 4. The automata  
~I~, 1 - i -< h satisfy (ii). 

REMARK. The condition concerning V is satisfied, for example, by the 
set H = {A(0), A(2)} of 2 X 2 matrices defined in Theorem 4. In this 
case V is Cantor 's  diseontinuum. We do not have, however, a criterion 
for deciding whether a given H satisfies the condition. 

The method for approximate calculation of p ~  (1, n) in the ease tha t  
H satisfies the condition of Theorem 5 is now as follows. Given 0 < e, 
let X~, g[~, 1 -< i -< h, satisfy the conditions (i) and (ii) of Theorem 5. 
Using just a f i xed  amount  of computer memory it is possible to simulate 
the automata  g[~, 1 <- i -< h. As the matrices P h ,  P ~ ,  " " ", are given, 
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the indexes ii, i2, ..., are fed into the simulated automata. At each 
time instant m the computer checks which automata ~f¢ accepted xm = 
iii2 ... i~. There exists precisely one jm such that x~ C T(~fjm) - 
T(Njm+I ). For Xj~ we have ] pxm(1, n) -- XJm ] < e and we take Xj,, as 
the approximation for px~(l, n). 

Thus we have proved the existence of an approximate calculation 
procedure which can actually be carried out by a computer. We do not 
know of a classical numerical-analysis method for obtaining this result. 
In fact, an example due to R. E. Stearns shows that without assump- 
tions on H, a computational procedure need not exist. 

IX. ACTUAL AUTOMATA 

In certain actual situations it is natural to assume about an automa- 
ton ~f that all transitions between states have strictly positive (though 
sometimes very small) probabilities. This motivates the following defini- 
tion. 

DEFINITION 9. A p.a, ~f is called an actual automaton if for all s C S, 
s~ ~ S, and ~ C ~ the transit ion probabil i ty  p~(s, ~) of moving f rom 
state  s to state s~ under input  ¢ satisfies 0 < p~(s, rr). 

X. PRODUCTS OF POSITIVE STOCHASTIC MATRICES 

I t  turns out tha t  actual  au tomata  have very  special properties. To 
s tudy them we need some results about  products of strictly positive 
stochastic matrices. The following Lemma  6 is a restatement ,  in our 
notation, of Theorem 4.1.3 of Kemeny  and Snell (1960); the proof is 
included for the sake of completeness. Corollary 7 and Lemma 8 are 
closely related to Theorems 4.1.4-4.1.6 of IKemeny and Snell (1960) 
except tha t  we t reat  products of several matrices instead of powers of a 
single matrix.  The possibility of this generalization was pointed out by  
Mr. A. Paz. 

DEFINITION I0. If a = [a~]1_<i<~ is a column vector then [I a ]I is 
defined as II a I] = maxi al - min~ a~. If A is an n X n matrix having 
columns ~, --., an then [I A I[ is defined by II AI] = max~ II a; II. 

LEMMA 6. I f  P = [p~]~_<¢,;'<~ is a stochastic matrix  and A = min<~ Pij 
and i f  a -- [a~]l_<~_<~ is a column vector then 

II P ~  II -<- (1 -- 2A) [I a I]. 

P~OOF: Let  P a  = [bl],<_~<,~. We may  assume, without  loss of gen- 
erality, t ha t  b, = max~ b~, b2 = min~ b~, a, = max~ a~, and a2 = min~ a~. 
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We have 

bl = pnal  -k p12a~ 4- "'" -4- pl~a~ <= p11al -q- p12a2 q- pl.~al q- . . .  4- plea1 

= a l  - p l y ( a 1  - a ~ ) .  

Similarly, replacing in the  sum for b,_ the  al by  a2, b2->_ a2 q- 
p ~ ( a ~ -  a~). Thus  I IP~H = b l -  b2 =< (a~- -  a 2 ) ( 1 -  p ~ 2 -  p2~). Bu t  
al -- a2 = 1] a I] and,  since A =< p~2 and  A =< p2~, we have 1 --  p~2 - 
p~l _-< 1 - 2A. This  establishes the lemma. 

COROLLARY 7. If  H = {P1, " • • , Pk} where the  matr ices P~,  1 -< i -< ]c 
are s tochast ic  and  all the elements of the P~ are greater  t h a n  0 < A 
then  for a n y l = < i ~ , . - . , i ~  <= /% 

PROOF: The  column vectors  a ~ , . . . ,  ~ of P ~  satisfy 11 ~ I I  < 1. 
B y  L e m m a  6, the columns 5 1 , ' " ,  5m of P~,~_,P~ satisfy H/~ I1 < 
1 --  2~. Repea t ing  this a rgumen t  ra - 1 t imes we get  the result. 

For  a n y  m X n matr ix  A = [a~] we define IAI = max<j  [a~[. This  
IAI clearly has the  usual  propert ies  of a norm.  

LEMM~ 8. I f  P is a s tochast ic  n X n matr ix  and ~ = [a~]l<~<~ is a 
co lumn vec tor  then  

IRa- < <-- I la l l .  

, p~) be the first row of P and  let bl be the  first PROOF: Let  ( p l ,  . . .  
e lement  of P a .  T h e n  

Ib - all = lplal q- " "  q- p~a,~ - al I <= p2 la~ - all q- "'" 

+ pn - < < II II. 

The  same applies to all the other  elements of P a .  
ConoLLaRY 9. I f  P is a stochastic n X n ma t r i x  and  A is an n )4 n 

matr ix  then IPA -- A t <= 11 A I1. 

XI. ACTUAL AUTOMATA AND DEFINITE EVENTS 

I t  will t u rn  ou t  t h a t  the  sets accepted by  ac tual  a u t o m a t a  are jus t  
those described in the  following. 

DEFINITION 11. A set T C ]~* is called a definite event if for some 
integer ]c the following holds. If  k =< l ( x )  then  x C T if and only  if 
x = yz  where £ = l ( z )  and  z C T. 

I n  (Perles, Rabin ,  and Shamir,  1963) the propert ies  of definite sets 
and the (determinis t ic)  a u t o m a t a  defining t h e m  are studied in detail. 
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THEOREM 10. I f  ~ is an actual automaton and ~ is an isolated cut-point 
then T( ~I, ~ ) is a definite set. Conversely, every definite set is definable by 
some actual automaton with isolated cut-point. 

P~ooF: Let  0 < ~ < IP(X) -- ~1 and assume tha t  all elements of the 
stochastic matrices A ( z ) ,  z C ~ (see Definition 5) are greater  than  
0 < A. We assume tha t  ~I has just  one designated final state, say s~-i • 
The proof is essentially the same for the general case. 

Let  k be such tha t  (1 - 2A) k-1 < 2& For  any  z = zl " ' "  zk C Z* of 
length k the matr ix  A (z) equals A (~1) • • • A (¢k) and thus, by  Corollary 
7, satisfies II A(z )  I1 < (1 -- 2A) ~-1 < 2~. 

Since p(x) ,  for  x E Z*, is the (1, n) element of A ( x )  we have, b y  
Corollary 9, In@z) - p(z)] =< [A(y)A(z )  - A(z)] < II A(z )  II. Thus 
for z satisfying l(z) = k, Ip(yz) - p(z)l  < 2~. Hence yz C T ( ~ ,  ~) if 
and only if z C T ( ~ ,  ~) which proves tha t  T ( ~ ,  ~) is definite. 

The converse is proved by  explicit construction of the actual  auto- 
maton  defining the definite set T. We leave out the details. 

x I I .  THE STABILITY PROBLEM 

Consider a p.a. 9A and an isolated cut-point  X. I t  is natural  to ask 
whether  the set T ( ~ ,  X) remains unchanged (stable) under small per- 
turbat ions  of the transit ion probabilities of ~. Results along this line we 
shall call stabil i ty theorems. 

THEOREM 11. Let ~ = (S, M,  So, F) be an actual automaton and ~ be 
an isolated cut-point. There exists an 0 < e such that for every automaton 
~ ' =  (S, M t, So, F) with transition probabilities differing from those of 

by less than e, X is an isolated cut-point of Nt and T ( ~ ,  )~) = T ( ~  t, ~). 
PROOF: Let  A ( z )  and At(z )  be the matrices corresponding to ~ C Z 

in the au tomata  N and 91 t respectively. Let  A be the smallest element in 
the A (~) and A t be the smallest element in the matrices At (z ) .  We shall 
show tha t  for every 0 < ~1 we can find an 0 < e so tha t  

• IA(a) - At(z)[  < e, a C Z (7) 

implies for all x = ~ • • • am 

]A(x) -- At(x) l  = I A ( ~ )  . ' -  A(a~)  - A'(z~) - . .  A'(~m)l < ~ (8) 

This, of course, implies the theorem. 
Let/~ be such tha t  (1 -- 2A) ~-1 < ~/3 .  We can choose 0 < e small 

enough so tha t  (7) will imply (a) (1 -- 2At) k-1 < ~ /3 ,  (this can be 
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• ! 

done because A = hm~0A ); (b) for all z such that  l(z)  < k, IA(z)  - 
A ' ( z ) l  < 81/3. 

If l (x)  <= k then (8) holds trivially because of (b). If k -< l (x)  then 
x = yz where l(z)  = k. The matrix A (z) is a product of k of the matrices 
A@) and therefore, by Corollary 7, II A ( z )  I] --< (1 - 2A) k-1 < 81/3. 
Similarly, using (a), we have II A ' ( z )  [I < 81/3. Now 

I d ( x )  - d ' ( x ) l  <= I A ( y ) A ( z )  - A ( z ) l  

+ IA'(y)A'(z) - A ' ( z )  I + IA(z)  - A'(z)]. 

By Corollary 9 and (b) each of the Summands on the right is less than 
81/3. 

REM~nK. Theorem 11 could not hold in full generality for arbitrary 
p.a. with isolated cut-point. For assume that  ~ is a p.a. with isolated 
cut-point h such that  T(9 ,  },) is not a definite event• An automaton ?l' 
may satisfy (7) and yet  have only strictly positive transition prob- 
abilities. In this case either ~ is not an isolated cut-point of ~',  or T( ~ ,  ~,) 
is a definite event and hence T ( ~ ' ,  ~) # T ( ~ ,  ~). 

Thus a proposed formulation of a conjectured general stabilitytheorem 
would be: If ~i is a p.a. and h is isolated cut-point then there exists an 
0 < e such tha t  for every automaton ~ '  with conditions as in Theorem 
11 and such that  the matrices A ' ( z ) have zeros where A ( ~ ) had zeros, )~ 
is an isolated cut-point of ~I' and T(~',  h) = T(~t, ~). H. Kesten con- 
structed a neat counterexample to this conjecture. Thus the problem of 
giving suitable extensions of Theorem 11 is completely open• 
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