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Probabilistic automata (p.a.) are a generalization of finite deter-
ministic automata. We follow the formulation of finite automata in
Rabin and Scott (1959) where the automata ¥ have two-valued out-
put and thus can be viewed as defining the set T'(¥) of all tapes ac-
cepted by . This involves no loss of generality. A p.a. is an automa-
ton which, when in state s and when input is o, has a probability
p:(s, ¢) of going into any state s; . With any cut-point 0 < A < 1,
there is associated the set T(, A) of tapes accepted by I with
cut-point A.

Here we develop a general theory of p.a. and solve some of the
basic problems. Aside from the mathematical interest in pursuing
this natural generalization of finite automata, the results also bear
on questions of reliability of sequential circuits.

P.a. are, in general, stronger than deterministic automata
(Theorem 2). By studying the way we may want to use p.a. we are led
to introduce the concept of isolated cui-point. It turns out that every
p.a. with isolated cut-point is equivalent to a suitable deterministic
automaton (the Reduction Theorem 3). It is interesting to note
that in passing from a minimal deterministic automaton to
an equivalent p.a. we can sometimes save states (Section VII).

The Reduction Theorem is applied to prove the existence of an
approximate calculation procedure for a caleulation problem in-
volving produects of stochastic matrices (Section VIIT). The problem
is of a new kind in that there is no a-priori bound on the number of
operations (matrix multiplications) which we may have to perform
and therefore classical numerical estimates of round-off errors do
not apply.

Actual automata (Definition 9) have the property, often existing in

* Most of the results in this paper were established while the author was visiting
Bell Telephone Laboratories, Murray-Hill, in the summer of 1960. This paper was
presented as an invited address at the Annual STAM Meeting at California In-
stitute of Technology, March 1962.
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actual unreliable circuits, that all transition probabilities are strictly
positive. Actual automata are proved to give only definite events.
This points to the restrictions we may have to impose on a
probabilistic sequential circuit if we want it to perform general tasks,
namely, some transitions should be prohibited.

Finally we treat the important problem of stability. Is the opera-
tion of a p.a. stable (unchanged) under small enough perturbations
of the transition probabilities? We have an affirmative answer to this
question in the case of actual automata (Theorem 11) and we discuss
the problem for the general case.

INTRODUCTION

Finite automata are mathematical models for systems capable of a
finite number of states which admit at discrete time intervals certain
tnputs (Iincoming signals) and emit certain oulpuls. If the system is in
state s and the input is ¢ then the system will move into a new state s;
which depends only on s and ¢ and will have an output which depends
only (is a function of) on s; . Thus the system will transform a sequence
of inputs into a sequence of outputs and the relevant aspect of the
system is this transformation. Sequential circuits, and even whole
digital computers, provided the computer operates using only internal
memory or just a fixed amount of tape, are systems which behave like
finite automata. There is an extensive literature on finite automata. In
this paper we follow the notations and use some of the results on autom-
ata contained in the paper by Rabin and Scott (1959). In particular
the formulation given there amounts to assuming that the set of outputs
contains just two elements. This is a convenient restriction which we
follow also here but the results immediately extend to the general case of
more than two outputs. Because of the restriction to two-valued outputs
automata can be viewed as defining sets of sequences of inputs (tapes)
and this point of view is adopted throughout this paper.

Finite automata exhibit a deterministic behavior. The state s and
input o determine the next state of the automaton. It is quite natural to
consider automata with stochastic behavior. The idea is that the au-
tomaton, when in state s and when the input is ¢, can move into any state
s; and the probability for moving into state s; is a function p,(s, ¢) of
s and ¢.

A practical motivation for considering probabilistic automata is that
even the sequential circuits which are intended to be deterministic
exhibit stochastic behavior because of random malfunctioning of com-
ponents. This situation was first taken up by von Neumann (1956)
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who considered schemes for organizing combinatorial (and to some
extent also sequential) circuits constructed with specific components so
as to increase their reliability.

Though the generalization from the abstract deterministic automata
to the abstract probabilistic automata (p.a.) lies near at hand, there are
no general results about p.a. in the literature. In particular, it was not
even known whether p.a. can do more than deterministic automata. In
this paper we develop a general theory of p.a. and answer some of the
basic questions about them.

It turns out that in general p.a. are stronger than deterministic
automata. We introduce, however, a new concept of 7solated cut-point
and prove the fundamental Reduction Theorem 3 that every p.a. with
1solaled cul-point is equivalent to a suitable deterministic automaton.

In Section X1 we define actual automate which are automata such that
all their transition probabilities are strictly positive. These automata
define a very limited class of regular events (Theorem 10). The results
are of some significance for the theory of reliability. They indicate that
if we want to synthesize general sequential circuits from unreliable
components we must organize them so that fransitions between certain
states are prohibited (have probability zero), or else consider the circuit
as having broken down if these transitions occurred.

Another problem bearing on theory of reliability is the stability prob-
lem. The probabilistic automaton is called stable if its behavior is not
changed by small perturbations of the transition probabilities. Tn
synthesizing circuits from unreliable components we surely want to get
stable circuits. In Section XII we give a stability theorem for actual
automata. We also discuss the general stability problem but leave it
open.

I. FINITE AUTOMATA

In this section we give a brief resume of the basic definitions and some
basic results which will be used in the sequel, from the theory of finite
(deterministic) automata. The exposition follows closely that in Rabin
and Scott (1959). By “automaton” we shall mean, throughout this
section, deterministic automaton.

Let 2 be a finite nonempty set, to be called the alphabet. Letters 7, o
(with subscripts) will usually denote elements of 2. The set of all finite
sequences of elements of = will be denoted by =*. The elements of =*
will be called tapes. The letters z, y, 2, u, v (with subscripts) will always
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denote tapes. The empty tape (i.e., the sequence of length zero)) will be
denoted by A. Subsets of =¥ (i.e., sets of tapes) will sometimes be called
events.

Ifx = o1 -+ o1 s a tape then the length [(z) of xis l(z) = k. If 2
and y are tapes then zy will denote the concatenation of x and y. Note
that =* with this operation zy is a free semi-group with the elements of
2 as free generators.

DrrintTioN 1. A finite (deterministic) automaton over T is a system
N = (8, M, so, F) where S is a finite set (the set of states), M is a func-
tion from S X Z into S (the fransition lable), s; € S (the initial state),
and F C 8§ (the set of designated final states).

M can be extended to a function from S X =* to S by, M(s, A) = s,
M(s, x0) = M(M(s, z), o) (s € S,z € 2%, ¢ € Z). M(s, x) is the
state in which U “gets off”’ the tape x if it started on z in state s.

DerNiTION 2. A tape z is said to be accepted by A if and only if
M(sy, x) € F. The set defined by U is the set of all tapes accepted by
9, and is denoted by T(%). An event U C =™ is called a regular event if
for some finite automaton A, U = T(9).

Every finite event is regular. If U and V are regular so are U N V,
UU Vand =% — U (see Rabin and Scott, 1959).

In Rabin and Scott (1959) a necessary and sufficient condition for an
event T C ¥ to be regular was given in terms of right equivalence
relations.

DerINITION 3. Let T C =¥ the right-equivalence relation = r generaled
by T is defined as follows. For z, y € =¥, 2 =,y if and only if for all
2 € =¥ we have: 2z € T if and only if yz € 7.

It is easy to see that =, is an equivalence relation on =*. Note that
= ¢ Is reghi-tnvariant with respect to the multiplication of the semigroup
=¥ ie,forallz,y,2z € 2% if 2 =, y then 2z =, yz.

TrrorEM 1 (Rabin and Scott, 1959). A set T C =* is a regular event
if and only if the number of equivalence classes of = by the equivalence
relation =r ts finite. If the number of equivalence classes is ¢ < o« then
Jor a suitable A, T = T(N) where the automaton U hase states. No automa-
ton with fewer than e states defines T.

I1. PROBABILISTIC AUTOMATA

We shall now define the basic concept of this investigation, namely
the concept of probabilistic automata. It will be seen that probabilistic
automata are like the usual automata except that now the transition
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table M assigns to each pair (s, ¢) € S X Z certain transition probabili-
ties.

DeriniTIiON 4. A probabilistic automaton (p.a.) over the alphabet Z
isasystem A = (8, M, s, F) where S = {s, ..., s,} is a finite set
(the set of states), M is a function from S X Z into [0, 1]"™ " (the
transition probabilities table) such that for (s,0) € 8§ X 2

M(87 U) = (p0(87 U)) T p"(87 U));
0 é pi(sr 0-)7 >; pi(S, U) = 17

sy € S (the indtial state), and F & S (the set of designated final staies).

Probabilistic automata are models for systems (such as sequential
circuits) capable of a finite number of states s, ..., s, . The system
may receive inputs ¢ € . When in state s and if the input is o then the
system can go into any one of the states s; € S and the probability of
going into s; is the (4 4+ 1)th coordinate p,(s, o) of M (s, o). These
transition probabilities p,(s, ¢) are assumed to remain fixed and be
independent of time and previous inputs. Thus the system also has defi-
nite transition probabilities for going from state s to state s; by a se-
quence = € Z* of inputs. These probabilities are caleulated by means of
products of certain stochastic matrices which we shall now define.

DrrinitioN 5. For ¢ € Z and 2 = oy02 -+ - 0, define the n -+ 1 by
n + 1 matrices A(s) and A(z) by

A(o) = [pi(si, 0)loziznozizn
A(z) = A(a1)A(os) -+ A(on) = [pf(siax)]ﬁgign,()gién-
ReMark. An easy caleulation (involving induction on m) will show
the (¢ + 1,7 4+ 1) element p;(s;, z) is the probability of % for moving
from state s; to state s; by the input sequence z.

DerviTioN 6. If A = (8, M, s, Fyand F = {s;,, ..., 85}, I =
{40, ..., 1.4, define

p(z) = ;pi(so ;@)
p(x) clearly is the probability for ¥, when started in so, to enter into a
state which is member of F by the input sequence z.

1[0, 1] is the closed unit interval 0 < = < 1. [0, 1]**is the set of all n 4+ 1-tuples
(o, -+. ,%n) where 0 < a; = 1.
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III. SETS OF TAPES DEFINED BY P.A.

A p.a. I may be used to define sets of tapes in 8 manner similar to
that of deterministic automata except that now the set of tapes will
depend not just on ¥ but also on a parameter A.

Derintrion 7. Let % be p.a. and X be a real number, 0 < X < 1.
The set of tapes T'(3, A) is defined by

T, N\) = {z|z € 2% 2 < pla)}.

If z € T(¥H, \) we say that z is accepled by U with cut-point . T (9, \)
will also be called the set defined by U with cut-point A.

ReMARK. Deterministic automata can be considered as a special case
of p.a. Namely, if in Definition 1 M (s, ¢} = s; then we can view this
ag if ¥ will enter state s; with probability 1. Thus in rewriting the deter-
ministic automaton as a p.a. the stochastic vectors M (s, o) = (ps, ...,
p.) Will have exactly one coordinate 1 and all the others 0. It is readily
seen that in this case p(z) = 1, for ¢ € =¥, if and only if z € T(%).
Hence for any A, 0 £ X < 1, we have T'(¥) = T(H, 7). Thus every set
definable by a deterministic automaton is trivially definable by some
p.a. In the next section we shall see the converse is not true and that
therefore p.a. give a strictly larger class of definable sets.

IV.PROBABILISTIC AUTOMATON DEFINING NONREGULAR EVENT
The following matrices were suggested by E. F. Moore.

1 1
el 2] ff 1)
2 2

It can be readily verified that if

[R

P51'Pﬁz' .P5n= I:WL p:l’ 8; € {0’1}
g r
then p = - 840,41 - -+ & where p is written in binary expansion.

TurorEM 2. Let A = (S, M, so, F) be an automaton over = = {0, 1}
such that 8 = {so, s}, A(0) = Py, A(1) = Py, F = {s}. There exists o
0 = A < 1suchthat T(3, \) is not definable by a deterministic automaton
(s mot a regular event).

Proor: If z = &8 --- & € 2% then by the above, p(z) =
. OnBp—y * - 01.

The values p(z) are dense in the whole interval [0, 1]. This implies
that if 0 = X < N < 1 then T(9,N) < T(%, A) where the inclusion is
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proper. The sets 7(, A), 0 = X < 1, therefore form a nondenumerable
pairwise different collection of sets. But there is only a denumerable
collection of regular events. Therefore there existsa A such that T(9, ))
is not regular.

Remark. The above argument is a pure existence proof. We can,
however, present a specific A such that 7(%, \) is not regular. Namely,
let w;, ,w, , ..., be any enumeration of =* then for A = .wyws - - -, T(, A)
is not regular; we omit the proof.

The above A is irrational. It can in fact be shown that if A is rational
then T(9, A) is a regular event.

V. ISOLATED CUT-POINTS

Let 9 be a p.a. and 0 = \ < 1. Given a tape z € =* we devise the
following probabilistic experiment K to test whether z € T(9, )).
We run z through 9 a large number N of times and count the number
m(E) of times that I ended in a state in F. If A < m(E)/N we accept
z and otherwise we reject it. Because of the probabilistic nature of the
experiment it is of course possible that we sometimes accept z even
though z € T(¥U, ) or reject it even though x € T(¥, A). By the law
of large numbers, however, there exist for each x such that p(x) #= A
and each 0 < ¢ a number N (z, ¢) such that

m(E)

meE T(%[,)\))él——e.

Pr (E A<
That is, the probability of obtaining the correct answer by the experi-
ment F (consisting of running x N (z; ¢) times through 9 and counting
successes) is greater than 1 — e.

To perform the above stochastic experiment we must know N (z, €)
which depends on | p(z) — X |. Thus we have actually to know p(z)
in advance if we want to ascertain whether x € T(3, \) with probability
greater than 1 — ¢ of being correct. Once we know p(z), however, the
whole experiment ¥ is superfluous.

The way out is to consider values A such that | p(z) — A | is bounded
from below for all z € =¥,

DeriNiTION 8. A cut-point X is called isolated with respect to 9 if
there exists a 0 < § such that

8 = |p(x) — A| forall z € =% (1)
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Remark. It is readily seen that there exists an integral valued func-
tion N (8, €) such that for an isolated \ and any & € =¥

Pr<E|k<%<—>xE T(%,)\)) =z1—e

Thus the proposed stochastic experiment for determining whether
z € T(U, \) can be performed without any a-priori knowledge of p(z).
This fact makes it natural to consider isolated cut-points.

VI. THE REDUCTION THEOREM

TrrorREM 3. Let U be a probabilistic automaton and N be an vsolated
cut-point satisfying (1). Then there exists a deterministic aufomaton B
such that T(A, N) = T(B). If A has n states and F consists of just one
state then B can be chosen to have e states where

e <1+ (1/8)""2 (2)

Proor: Let the set of states S be {so, ..., s} and F = {s, 4}. For
every tape z, A (x) isann X n matrix and p(z) is the upper left corner
element of A(x).

Let @1, ..., 2x be tapes which are pairwise tnequivalent by =ran
(cf. Definition 3). Thus for every ¢ < k,j < k, 1 5 j, there exists a
tape y such that

zy € T(A,N), wy ¢ T(UN) (3)

or vice-versa. Let the first row of A(z:), 1 < ¢ < m, be (&', -+, &°)
and the last column of A(y), for the particular y appearing above, be
(m, -, ma). From A(zy) = A(z)A(y) and A(zy) = A(z)A(y)
it follows that

play) = &'m~+ - +&m,  ply) =&nt -+ &,
Combining with (3) we get
N<Eamt oo g, Emt oo FEm SN (@)
Since \ is isolated and 8 < | p(z) — A | for 2z € Z¥, (4) implies
2B —&)mt 4 & = B (3)

2 If F contains r states then the boundis e £ (1 + (r/8))* ! and the proof is es-
sentially the same.
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Taking absolute values and observing that the 7;, as elements of a
stochastic matrix, satisfy | 4, | = 1, (5) leads to

26 —& |+ -+ & — &' for i (6)

An argument involving volumes in n-dimensional space will now be
used to infer from (6) a bound on k. The n-tuples (&, - - -, &) will be
considered as points of Euclidean n-space. Let ¢;, 1 = ¢ £ k be the set

o= fla, B E S8 1SS0 26 - 8) =0
Each ¢, is a translate of the set
o= {la, 808, 15550 28 =0
The set ¢ is readily seen to be an (n — 1)-dimensional simplex which
is a subset of the hyperplane z; + --- + z, = 8. The n — 1 dimensional

volume V,_1(c) of o, expressed as a function of 3, is ¢8™ " where ¢ is
some constant not depending on é.

From 2, £ = 1it follows that (&, -+ -, &) € o; implies
2 Ei=1+3, 0<¢,1<j=n
I
Thus o; € 7 where
= (b, B 25 =14+802E,1 7= nk
M

Figure 1 shows the sets o;, 1 £ ¢ < k, and r, for the two-dimensional
case n = 2and for k = 3. The point with coordinates (&°, £&") is denoted
by P;,1 <225 3.

e

|

Fia. 1. The sets o; and r for n = 2 and &k = 3
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A point (&, ---, &) € o s an inlerior point of ¢; (in the topology
of the hyperplane z; + -+« + 2, =1+ §) fandonlyif 0 < & — &'
for 1 £ p = n. Because of (6) o;and o;, 7 # j, have no interior points
in common. For otherwise, if (&, ---, &) is interior to both ¢; and
o;, we would have 0 < &, — £,°, 0 < &, — &,’ and hence

|£pi_5pj1< |£p_gpi|+]-§p_5pj|’ 1=p=n

Hence
DB B <28+ 2D —& =58+,

contradicting (6).
Thus for 7 # j, o; and o; have no interior points in common. This
implies

ket™™ = V(o) + -+ F Vaalor) £ Vaualr) = (1 + 8"

Hence k < [1 -+ (1/6)]"". Thus the number of ¢ equivalence classes
of the relation =z ) is at most [1 4 (1/8)]"". By Theorem 1, T(9, \)
is definable by an automaton B with e states.

VII. SAVING OF STATES

From the proof of the Reduction Theorem 3 and the estimate (2)
given there, it seems possible that in passing from a p.a. % to an equiv-
alent deterministic automaton we may have to increase the number of
states. In other words, the p.a. is more economical in terms of number of
states. The following theorem shows that this does in fact happen in
certain cases.

TuroreM 4. There exisis an automaton N with just two states and a
sequence M, , 1 = n < o, of isolated cut-points such that for each n, the
automaton B, with the least number of states which satisfies T(A, A,) =
T(B.) has at least n states.

Proow: Let £ = {0, 2}, § = {s, s1}, and F = {s}. Let the transi-
tion probabilities be such that

[t 9 o[} 1.

It is easy to verify that if 2 = 88 - - - 8, € =" then

&
3n——-1 "

0n , On-
p(x):‘g“i‘?l’k‘l‘
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Remembering that 8; € {0, 2} we see that the topological closure C of
the set P = {p(z) | 2 € =%} is precisely Cantor’s discontinuum.

Thus all the points A, 0 £ A < 1, which satisfy A ¢ C are isolated
cut-points for ¥. Consider now the real number (written in ternary
notation) A, = - 22 --- 211 where the number of digits is n + 1. For
z € =¥ to satisfy \, < p(z) it is necessary and sufficient that = have the
form z = 2,22 - -- 2 where z; € =¥ and the number of 2’s is at least n.
Thus the set T(, \,) is nonempty and if x € T(9, \,) thenn = I(z).
It follows from elementary theory of automata (see Rabin and Scott,
1959, Theorem 7) that the minimal deterministic automata 9B, for
which T(%, A\,) = T(%B,) has at least n 4 1 states (in fact, 8B, has
exactly n 4+ 1 states).

REMARK. An analysis of the possible values of p(x) will show that
for the A\, as above

lim inf | p(z) — M| = i

sE S+ 3n+1
Thus in (2) we can take = 37" which gives for the number of states
the bound 1 4+ 3™ In this case the bound turns out to be much too
large. We do not know whether in other examples the bound is sharper
or whether the bound in Theorem 3 can in fact be greatly improved.

VIII. APPROXIMATE CALCULATION OF MATRIX PRODUCTS

Let H be a finite set H = {P;, - - -, P} of stochastic n X n matrices
and let 0 < e be a given real number. The elements of all matrices P € H
are assumed to be finite decimal fractions.” Consider the following com-

putational task. At discrete time intervals m = 1, 2, ---, we are pre-
sented with matrices P, € H, P;, € H, ---. Let ©,, = 418y +++ tm,
m = 1,2, - -. After each time m we wish to know, within ¢, the element

P.,,(1, n) of the product
I, = Penl? Shiziznizign = PuPy -+ Py,

of the matrices given thus far. Since we are thinking here in terms of
actual calculation (using, say, an actual computer with a fixed memory)
it is not possible, in general, to solve our problem by calculating II,,, ,
at all times m, with complete accuracy. The elements p., (¢, j) will
have more and more decimals and recording and calculating with these

8 This restriction on the matrices P € H is not essential and is included just
in order that we can say that the matrices P € H are actually “‘given.”
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numbers will become impossible with increasing m. Nor is it possible to
adopt a simple rounding-off procedure because the number m of matrix
multiplications that we have to perform is not bounded in advance.
Thus a fixed rounding-off procedure may result in a cumulative error
which will become larger than e.

We shall apply our reduction theorem (Theorem 3) to show that
under certain conditions on H this problem of approximate calculation
can be actually solved. The solution rests on the following:

THEOREM 5. Let = = {1, -+, k} and for x = iy -+ 1, € 2% let p,
denote the (1, n) element of the product Py P,, -« P,, . Assume that H
is such that V. = {p. |z € 2%} is nowhere dense in the interval [0, 1].
Then for every O < e there exists an inleger h, real numbers M, + -+, M,
and deterministic automata ¥y , - - -, Wy over Z such that

Proor: V nowhere dense means that the topological closure ¥V does
not contain any nontrivial interval. Thus there exists, for some integer
h, a sequence \;, 1 < 7 < h, satisfying (i) andalsoX; ¢ Vior2 < ¢ <
h— 1.

Congsider the p.a. ¥ over = having the states so, -, s»— , the set
{s.a} of designated final states, and transition probabilities such that
the matrix corresponding to ¢z € Z is P;. We have for z € =¥, p(z) =
P . The numbers A;,2 < 7 = h — 1 are isolated cut-points for U. Thus
by Theorem 3 the set T(H, A:), 2 £ ¢ = h — 1, is definable by some
deterministic automaton 7T(%;). Hence \; < p,for 2 £ ¢ £ h — 1
(p. = \;is not possible since A; is isolated) iff x € T(¥,). Let ¥, and
s be automata such that 7(;) = =* and T(%) = ¢. The automata
A, 1 = ¢ = hosatisfy (ii).

Remark. The condition coneerning V is satisfied, for example, by the
set H = {A4(0), A(2)} of 2 X 2 matrices defined in Theorem 4. In this
case V is Cantor’s discontinuum. We do not have, however, a criterion
for deciding whether a given H satisfies the condition.

The method for approximate caleulation of p,, (1, n) in the case that
H gatisfies the condition of Theorem 5 is now as follows. Given 0 < &,
let N;, Ui, 1 <7 = h, satisfy the conditions (i) and (ii) of Theorem 5.
Using just a fized amount of computer memory it is possible to simulate
the automata %;, 1 = ¢ £ h. As the matrices P;, , P;,, - - -, are given,
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the indexes 4;, 42, - - -, are fed into the simulated automata. At each
time instant m the computer checks which automata 9(; accepted z,, =
2y * - im . There exists precisely one j, such that z, € T(¥;,) —
T(¥Uj,41). For z;, we have | p.,,(1, n) — A, | < e and we take )\, as
the approximation for p,,,(1, n).

Thus we have proved the existence of an approximate calculation
procedure which can actually be carried out by a computer. We do not
know of a classical numerical-analysis method for obtaining this result.
In fact, an example due to R. E. Stearns shows that without assump-
tions on H, a computational procedure need not exist.

Im

IX. ACTUAL AUTOMATA

In certain actual situations it is natural to assume about an automa-
ton Y that all transitions between states have strietly positive (though
sometimes very small) probabilities. This motivates the following defini-
tion.

DeriniTioN 9. A p.a, U is called an actual automaton if for all s € S,
s; € 8, and ¢ € Z the transition probability p.(s, ¢) of moving from
state s to state s; under input ¢ satisfies 0 < p(s, o).

X.PRODUCTS OF POSITIVE STOCHASTIC MATRICES

It turns out that actual automata have very special properties. To
study them we need some results about products of strictly positive
stochastic matrices. The following Lemma 6 is a restatement, in our
notation, of Theorem 4.1.3 of Kemeny and Snell (1960); the proof is
included for the sake of completeness. Corollary 7 and Lemma 8 are
closely related to Theorems 4.1.4-4.1.6 of Kemeny and Snell (1960)
except that we treat products of several matrices instead of powers of a
single matrix. The possibility of this generalization was pointed out by
Mr. A. Paz.

DeriNitioN 10. If a = [a)i<i<s 18 & column vector then || « || is
defined as || « || = max;a; — min; a;. If 4 isann X n matrix having
columns a; , -+, a, then || 4 || is defined by || 4 || = max; || a:ll.

LevMa 6. If P = [pijli<s, i<n 18 @ stochastic matrix and A = min; ; pi;
and if @ = [ail1<i<a 15 & column vector then

[ Pl = (1 —24)fal.

Proor: Let Pa = [bii<i<n . We may assume, without loss of gen-
erality, that by = max;b;, by = min;b;,a, = max; a;, and a, = min;a, .
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We have
b = P11y + Dol + -+ P1aln < puty + Pral2 -+ P13z + Praly
= Oy — p12(a1 - az)-

Similarly, replacing in the sum for b, the a; by @z, b = as +
pzl((ll - dg). Thus H Pa H = b1 —_— b2 é (al —_ 0/2)(1 — P12 — pm). But
a — 0 = || @] and, since A < p;; and A £ py, we have 1 — ppp —

P = 1 — 2A. This establishes the lemma.
CoroLLary 7. If H = {P;, - -+, Pi} where the matrices P;, 1 S ¢ < k

are stochastic and all the elements of the P; are greater than 0 < A
then forany 1 £ 4, -+, im = k,

H P51Pi2 le ” = (1 - 2A)m——1-

Proor: The column vectors a;, -+, @, of P, satisly || «;|| £ 1.
By Lemma 6, the columns 8, -+, Bn of P, P, satisfy || 8] =
1 — 2A. Repeating this argument m — 1 times we get the result.

For any m X n matrix 4 = [a;;] we define |A| = max; ; |a:]. This
|A| clearly has the usual properties of a norm.

Lemma 8. If P is a stochastic n X n matrix and « = [#:i<i<n 18 2
column vector then

Pa— o = | afl.

Proor: Let (pi, - -+, p.) be the first row of P and let b; be the first
element of Pa. Then

|b—0/11 = {plal‘l‘ +pnan—0:1| épzlaz—aﬂ—l-
+pulon —af = | ]
The same applies to all the other elements of Pa.

CoRrOLLARY 9. If P is a stochastic n X n mairiz and A is an n X n
matriz then |PA — Al < || A ||.

XI. ACTUAL AUTOMATA AND DEFINITE EVENTS

It will turn out that the sets accepted by actual automata are just
those described in the following.

Derinttion 11. A set T C =¥ is called a definite event if for some
integer & the following holds. If ¥ < I(z) then z € T if and only if
x = yzwhere k = l{(z) andz € T.

In (Perles, Rabin, and Shamir, 1963) the properties of definite sets
and the (deterministic) automata defining them are studied in detail.
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TarOREM 10. If U is an actual automaton and \ is an isolated cut-point
then T(, X) is a definile sel. Conversely, every definite set is definable by
some actual automaton with isolated cut-point.

Proor: Let 0 < § < |p(z) — A| and assume that all elements of the
stochastic matrices A(o), ¢ € = (see Definition 5) are greater than
0 < A. We assume that 9 has just one designated final state, say s, .
The proof is essentially the same for the general case.

Let k be such that (1 — 2A)" " < 25. Forany z = oy -+ o3 € =¥ of
length k the matrix A4 (z) equals A (o) - -+ A(o3) and thus, by Corollary
7, satisfies || A(2) || £ (1 — 20)"" < 2s.

Since p(z), for € =¥, is the (1,n) element of A(z) we have, by
Corollary 9, |p(ye) — p(2)] = [A(y)A(2) — A(2)] < || A(2) | Thus
for z satisfying I(z) = k, |p(yz) — p(2)| < 256. Hence yz € T(H, \) if
and only if z € T(, \) which proves that T(%, \) is definite.

The converse is proved by explicit construction of the actual auto-
maton defining the definite set 7. We leave out the details.

XII. THE STABILITY PROBLEM

Consider a p.a. ¥ and an isolated cut-point A. It is natural to ask
whether the set T(%, \) remains unchanged (stable) under small per-
turbations of the transition probabilities of . Results along this line we
shall eall stability theorems.

TuroreM 11. Let A = (S, M, sy, F) be an actual automaton and X\ be
an isolated cut-point. There exists an 0 < e such that for every aulomaton
A = (8, M, s, F) with transition probabilities differing from those of
A by less than €, \ is an isolated cut-point of A" and T(A, N) = T(A', 7).

Proor: Let A(c) and A'(s) be the matrices corresponding to ¢ € =
in the automata % and 9 respectively. Let A be the smallest element in
the A(¢) and A’ be the smallest element in the matrices A’ (o). We shall
show that for every 0 < §; we can find an 0 < e so that

[4(0) = A'(0)] < ¢ o €2 (7)
implies for all = o1 - -+ o
|A(z) — A'(2)| = |A(0r) -+ Aom) — A" (o1) -+~ A'(om)| <8 (8)

This, of course, implies the theorem.
Let & be such that (1 — 2A)*" < §,/3. We can choose 0 < ¢ small
enough so that (7) will imply (a) (1 — 2A")¥! < 8/3, (this can be
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done because A = lim..oA"); (b) for all z such that I(z) < k, [4(z) —
A'(2)] < 8/3.

If I(z) = k then (8) holds trivially because of (b). If & £ [(x) then
x = yz where [(z) = k. The matrix 4 (z) is a produet of £ of the matrices
A(o) and therefore, by Corollary 7, || A(2) | £ (1 — 24)"" < 8,/3.
Similarly, using (a), we have || A"(2) || < 61/3. Now

[A(z) — A'(2)] £ [A()A(e) — A(2)]
+ A" (A" () — A'()] + [A(2) — 4"(2)].

By Corollary 9 and (b) each of the summands on the right is less than
51 / 3.

Remark. Theorem 11 eould not hold in full generality for arbitrary
p-a. with isolated cut-point. For assume that 9 is a p.a. with isolated
cut-point A such that T(%, \) is not a definite event. An automaton 9’
may satisfy (7) and yet have ounly strictly positive transition prob-
abilities. In this case either A is not an isolated cut-point of %', or 7'(3’, \)
is a definite event and hence T(A', \) = T(9, ).

Thus a proposed formulation of a conjectured general stability theorem
would be: If ¥ is a p.a. and X is isolated cut-point then there exists an
0 < e such that for every automaton %’ with conditions as in Theorem
11 and such that the matrices A’ (o) have zeros where A (o) had zeros, A
is an isolated cut-point of A’ and T, N) = T, N). H. Kesten con-
structed a neat counterexample to this conjecture. Thus the problem of
giving suitable extensions of Theorem 11 is completely open.

RecErvep: April 12, 1963
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