
Separating Regular Languages with First-Order Logic ∗

Thomas Place Marc Zeitoun
LaBRI, Bordeaux University, France

firstname.lastname@labri.fr

Abstract
Given two languages, a separator is a third language that contains
the first one and is disjoint from the second one. We investigate
the following decision problem: given two regular input languages
of finite words, decide whether there exists a first-order definable
separator. We prove that in order to answer this question, sufficient
information can be extracted from semigroups recognizing the
input languages, using a fixpoint computation. This yields an
EXPTIME algorithm for checking first-order separability. Moreover,
the correctness proof of this algorithm yields a stronger result,
namely a description of a possible separator. Finally, we prove
that this technique can be generalized to answer the same question
for regular languages of infinite words.

Categories and Subject Descriptors Theory of computation [For-
mal languages and automata theory]: Regular languages; Theory
of computation [Logic]: Finite Model Theory

Keywords Words, Infinite Words, Regular Languages, Semi-
groups, First-Order Logic, Expressive Power, Ehrenfeucht-Fraı̈ssé
games, Separation.

1. Introduction
In this paper, we investigate a decision problem on word languages:
the separation problem. The problem is parametrized by a class
Sep of separator languages and is as follows: given as input two
regular word languages, decide whether there exists a third language
in Sep containing the first language while being disjoint from the
second one.

More than the decision procedure itself, the primary motivation
for investigating this problem is the insight it gives on the class
Sep. Intuitively, in order to get such a decision procedure, one has
to consider all instances of separable pairs of languages simultane-
ously, which requires a strong understanding of the discriminating
power of Sep. In particular, the separation problem generalizes the

∗ Supported by ANR 2010 BLAN 0202 01 FREC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

membership problem whose motivation is also to understand the
expressive power of the class Sep. In this restricted problem, one
only needs to decide whether a single input regular language already
belongs to Sep. Since regular languages are closed under comple-
ment, testing membership can be achieved by testing whether the
input is separable from its complement. Therefore, membership can
be reduced to separation.

Solving the membership problem is already known to be a
difficult question. However the search for separation algorithms
is intrinsically more difficult. In both cases, the problem amounts to
finding a language in Sep. However, in the membership case, there
is only one candidate which is already known: the input. Therefore,
we start with a fixed recognizing device for this unique candidate
and powerful tools are available, viz. the syntactic monoid of the
language, which is now accepted as the natural tool for solving the
membership problem for word languages. In the separation case,
there can be infinitely many candidates as separators, which means
that there is no fixed recognition device that we can use. An even
harder question then is to actually construct a separator language
in Sep.

First-order logic. In this paper, we choose Sep as the class of
languages definable by first-order sentences (i.e., sets of words that
satisfy some first-order sentence). In this context, the separation
problem can be rephrased as follows: given two regular languages
as input, decide whether there exists a first-order sentence that is
satisfied by all words of the first language, and by no word of the
second one. Thus, such a formula witnesses that the input languages
are disjoint.

Within the monadic second order logic, which defines on finite
words all regular languages, first-order logic is often considered as
the yardstick. It is a robust class having several characterizations [5].
It corresponds to star-free languages, and has the same expressive
power as linear temporal logic [9]. In particular, it was the first
natural class for which the membership problem was proved to be
decidable. This result, known as Schützenberger’s theorem [12, 18],
served as a template and a starting point of a line of research that
successfully solved the membership problem for most of the natural
classes of regular languages. This makes first-order logic the natural
candidate to serve as the example for devising a general approach to
the separation problem.

Schützenberger’s theorem states that first-order definable lan-
guages are exactly those whose syntactic semigroup is aperiodic,
i.e., has only trivial subgroups. Since the syntactic semigroup of
a language is computable and aperiodicity is a decidable property,
this yields a decision procedure for membership. Schützenberger’s
original proof has been refined over the years. Our own proof for
separation by first-order logic actually generalizes a more recent
proof by Wilke [23]. Similar results [13, 20] make it possible to
decide first-order definability for languages of infinite words, or
finite or infinite Mazurkiewicz traces. See [5] for a survey.

Contributions and main ideas. The core of the intuition is to
compute the limit of what can be expressed by first-order sentences,
with respect to a fixed semigroup. From two regular languages,
it is easy to construct a single morphism recognizing them both.
We present an algorithm that computes enough information about
this morphism to answer the separation question for all pairs of
languages that it recognizes. Intuitively, given a morphism from A+

into a finite semigroup S, we need to compute all pairs (s, t) ∈
S × S that cannot be distinguished with first-order logic. By this,
we mean that the preimages of s and t in A+ are not separable by
first-order logic: any first-order language containing one preimage
has to intersect the other one.

To compute all these pairs, a natural idea is to start with trivial
pairs (s, s), and to iteratively compute the missing ones by a
fixpoint algorithm. However, for this approach to work, it turns
out that one needs to compute even more information than just
pairs: we compute FO-indistinguishable sets, i.e. subsets of S that
cannot be distinguished by first-order logic. Notice that being able
to compute these FO-indistinguishable sets also has independent
interest from the separation problem. One can view a morphism
from A+ into a finite semigroup as a machine that computes
information about input words. The associated FO-indistinguishable
sets describe what can and cannot be expressed in first-order logic
about these computations.

The connection between the separation problem and the com-
putation of these indistinguishable pairs or subsets has first been
observed by Almeida [1]. Rephrased in purely algebraic terms, this
amounts to computing the so-called pointlike sets for the algebraic
variety corresponding to the class of separators under investigation.
For the variety corresponding to first-order definable languages,
namely that of aperiodic semigroups, pointlike sets have been shown
computable by Henckell [6] (see also [7], that answers the problem
for even larger classes). Thus, combining this work with Almeida’s
solves the separation problem by first-order definable languages.

However, this approach does not meet our requirements of
understanding how precisely first-order logic can discriminate
between two regular languages. Indeed, the motivations and the
proofs of [6, 7] are purely algebraic and provide no intuition on
the underlying logic. In particular, the techniques only give a
yes/no answer to the separation problem, without any insight on a
possible separator. Our contributions differ from those of [6, 7] in
several ways.

• First, we give a new and self-contained proof that the separation
problem by first-order languages is decidable. It is independent
from those of [6, 7], and relies on elementary ideas and notions
from language theory only, making it accessible to computer
scientists. We do not use any involved construction from semi-
group theory: we work directly with the logic itself. As men-
tioned above, the proof refines the algorithm for membership of
Wilke [23].

• Second, not only we obtain a yes/no answer, but also an insight
of a potential separator, by bounding its expected quantifier rank.

• Third, as a consequence of our algorithm, we obtain an EXPTIME
upper bound (while complexity is not investigated in [6], a rough
analysis yields an EXPSPACE upper bound).

• Fourth, when the input languages are separable, our approach
makes it possible to compute a first-order formula that defines a
separator, by backtracking the proof of our algorithm.

• Finally, the techniques of [6, 7] are tailored to work with finite
words only. We also solve the separation problem for languages
of infinite words by first-order definable languages, by a smooth
extension of our techniques.

Since we do not follow the proofs of [6, 7], it is not surprising that
we obtain a different algorithm. However, we are able to derive two
variations of it, which allows us to give an alternate and elementary
correctness proof of Henckell’s original algorithm.

Related work. First-order logic has a number of important frag-
ments. The separation question makes sense when choosing such
natural subclasses as classes of separators. It has already been solved
for the case of local fragments [17], such as locally testable (LT) and
locally threshold testable languages (LTT), although the problem is
already NP-hard starting from 2 DFAs as input, while membership is
known to be polynomial [2]. It is also decidable for the fragment of
first-order logic made of boolean combinations of Σ1(<) sentences,
as obtained independently in [4, 16]. Finally, the problem has also
been investigated for the fragment FO2(<) of first-order logic using
2 variables only, and again has been proven to be decidable [16].

Paper outline. We first give the necessary definitions and termi-
nology: languages and semigroups for finite words are defined in
Section 2 and first-order logic is defined in Section 3. Section 4 is
devoted to the presentation of our algorithm solving first-order sepa-
ration through the computation of sets that cannot be distinguished
by first-order logic. Sections 5 and 6 are then devoted to proving
the correctness and completeness of this algorithm, respectively. In
Section 7, we present alternate versions of our algorithm. Finally, in
Section 8, we generalize the results to infinite words. Due to space
limitations, the proofs of Sections 7 and 8 are omitted, and will be
made available in the journal version of the paper.

2. Preliminaries
In this section, we provide terminology for words, semigroups and
languages. All the definitions are for finite words. We delay the
definitions for infinite words to Section 8.

Semigroups. A semigroup is a set S equipped with an associative
operation s · t (often written st). A monoid is a semigroup S having
an identity element 1S , i.e., such that s · 1S = 1S · s = s for all
s ∈ S. Finally, a group is a monoid such that every element s has
an inverse s−1, i.e., such that s · s−1 = s−1 · s = 1S . Given a finite
semigroup S, it is folklore and easy to see that there is an integer
ω(S) (denoted by ω when S is understood) such that for all s of S,
sω is idempotent: sω = sωsω .

Words, Languages, Morphisms. We fix a finite alphabet A. We
denote by A+ the set of all nonempty finite words and by A∗ the set
of all finite words over A. If u, v are words, we denote by u · v or
by uv the word obtained by the concatenation of u and v. Observe
that A+ (resp. A∗) equipped with the concatenation operation is a
semigroup (resp. a monoid).

For convenience, we only consider languages that do not contain
the empty word. That is, a language is a subset of A+ (this
does not affect the generality of the argument). We work with
regular languages, i.e., languages definable by nondeterministic
finite automata (NFA).

We shall exclusively work with the algebraic representation of
regular languages in terms of semigroups. We say that a language L
is recognized by a semigroup S if there exists a semigroup morphism
α : A+ → S and a subset F ⊆ S such that L = α−1(F). It is well
known that a language is regular if and only if it can be recognized
by a finite semigroup.

When working on separation, we consider as input two regular
languages L0, L1. It will be convenient to have a single semigroup
recognizing both of them, rather than having to deal with two
objects. Let S0, S1 be semigroups recognizing L0, L1 together
with the associated morphisms α0, α1, respectively. Then, S0 × S1

equipped with the componentwise multiplication (s0, s1)·(t0, t1) =

(s0t0, s1t1) is a semigroup that recognizes both L0 and L1 with the
morphism α : w 7→ (α0(w), α1(w)). From now on, we work with
such a single semigroup recognizing both languages, and we call α
the associated morphism.

Semigroup of Subsets. As explained in the introduction, our sepa-
ration algorithm works by computing special subsets of a semigroup
recognizing both input languages. Intuitively, these subsets are those
that cannot be distinguished by first-order logic. More precisely,
by special subset, we mean that any first-order definable language
has an image under α that either contains all elements of the sub-
set, or none of them. For this reason, we work with the semigroup
of subsets.

Let S be a semigroup. Observe that the set 2S of subsets of S
equipped with the operation

T · T ′ = {s · s′ | s ∈ T, s′ ∈ T ′}
is a semigroup, that we call the semigroup of subsets of S. Note that
S can be viewed as a subsemigroup of 2S , since S is isomorphic
to the semigroup

{
{s} | s ∈ S

}
⊆ 2S . We denote by S,T,R, . . .

subsemigroups of a semigroup of subsets.
Downset ↓ S, and Expansion ↑ S. For S ⊆ 2S a subsemigroup of
2S , let us define two sets containing S:

• The downset of S consists of all subsets of sets in S:

↓ S = {T ∈ 2S | ∃T ′ ∈ S, T ⊆ T ′}.

• The expansion of S consists of all unions of sets in S:

↑ S =
{ ⋃
T∈T

T | T ⊆ S
}
.

Clearly, we have S ⊆ ↓ S and S ⊆ ↑ S. It is also easy to check
that since S is a semigroup, so are ↓ S and ↑ S.
Union TSU. For S ⊆ 2S a subsemigroup of 2S , we define TSU ⊆ S,
the union of S, as the set

TSU =
⋃
T∈S

T ⊆ S

We call index of S the size of its union, i.e., |TSU|.

3. First-Order Logic and Separation
This section is devoted to the definition of first-order logic on words.
See [5, 21] for details on these classical notions.

First-Order Logic. We view words as logical structures composed
of a sequence of positions labeled overA. We denote by< the linear
order over the positions. We work with first-order logic FO(<) using
unary predicates Pa for all a ∈ A that select positions labeled with
an a, as well as a binary predicate for the linear order<. A language
L is said to be first-order definable if there exists an FO(<) formula
ϕ such that L = {w ∈ A+ | w |= ϕ}. We write FO the class of
first-order definable languages.

There are many known characterizations of the class of first-
order definable languages. Kamp’s Theorem [9] states that it is
exactly the class of languages definable in linear temporal logic
LTL. It was then also proved that this is also the class of star-free
languages [12] (i.e., languages definable by a regular expression
that may use complement, but does not use the Kleene star). This
result bridged the gap with Schützenberger’s Theorem [18], which
characterizes star-free languages as those that are recognized by an
aperiodic semigroup. These results were later generalized to infinite
words [10, 13, 20].

Let ϕ be an FO(<) formula. The quantifier rank of ϕ is the
length of the largest sequence of nested quantifiers in ϕ. We denote

by FO[k] the class of languages that are definable by FO(<)
formulas of quantifier rank at most k. By definition, we have
FO =

⋃
k∈N FO[k]. For w,w′ ∈ A+ and k ∈ N, write

w ≡k w′ if w,w′ satisfy the same FO(<) formulas of quantifier
rank at most k.

One can verify that ≡k is an equivalence relation of finite index.
Therefore, there are finitely many FO[k] languages.

Ehrenfeucht-Fraı̈ssé games. It is well known that the expressive
power of logics can be expressed in terms of games. These games
are called Ehrenfeucht-Fraı̈ssé games. We define below the specific
Ehrenfeucht-Fraı̈ssé game for FO(<).

The board of the game consists of two words w,w′ ∈ A+ and
there are two players called Spoiler and Duplicator. The game is set
to last a predefined number k of rounds. When the game starts, both
players have k pebbles.

At the start of each round `, Spoiler chooses either w or w′. If
he chose w (resp. w′) he drops a pebble on some position x` in w
(resp. x′` in w′). Duplicator must answer by dropping a pebble on
some position x′` in w′ (resp. x` in w). Moreover, Duplicator must
ensure that all pebbles that have been placed up to this point verify
the following condition: for all i, j 6 `, xi, x

′
i have the same label,

and xi < xj if and only if x′i < x′j .
Duplicator wins if she manages to play for all k rounds, while

Spoiler wins as soon as Duplicator is unable to play. It is classical
that the equivalence ≡k can be redefined in terms of Ehrenfeucht-
Fraı̈ssé games (see [8, 11, 19] for example).

Lemma 1. For all k ∈ N and w,w′ ∈ A+, we have w ≡k w′ if
and only if Duplicator has a winning strategy for playing k rounds
in the Ehrenfeucht-Fraı̈ssé game played on w,w′.

Lemma 1 has two simple and well-known consequences that will
be used to prove our algorithm. First, using Ehrenfeucht-Fraı̈ssé
games, it is easy to show that ≡k is a congruence for all k.

Lemma 2. (1) If u1 ≡k v1 and u2 ≡k v2, then u1 · u2 ≡k v1 · v2.
(2) For all u ∈ A+ and all k > 0, we have u2k

≡k u2k−1.

Proof. For item 1, by Lemma 1, Duplicator has a winning strategy in
the k-round game played on ui and vi for i = 1, 2. These strategies
can be easily combined into a winning strategy in the k-round
game played on u1 · u2 and v1 · v2. By Lemma 1, it follows that
u1 · u2 ≡k v1 · v2.

Property 2 is shown similarly by induction on k, again using
Lemma 1. See [19] for details.

Separation. Given languages L,L0, L1, we say that L separates
L0 from L1 if

L0 ⊆ L and L1 ∩ L = ∅.
The pair (L0, L1) is said to be FO-separable if some language

L ∈ FO separates L0 from L1. Since FO is closed under comple-
ment, (L0, L1) is FO-separable if and only if (L1, L0) is. Therefore,
we simply say that L0 and L1 are FO-separable in this case. We use
the same terminology for the class FO[k]. Note that since there are
finitely many FO[k] languages for any fixed k, FO[k]-separability is
easy: it suffices to test all of these potential separators. In particular,
if L0, L1 are FO[k]-separable, then there exists a smallest separa-
tor: the saturation of L0 by ≡k. Note that this is not true for full
first-order logic, since removing a single word from an FO language
yields again an FO language (however, the formula defining this new
language might have a larger quantifier rank). Since languages in
FO[k] are unions of ≡k-classes, we obtain the following useful fact.
Fact 3. Two languages L0 and L1 are FO[k]-separable if and only
if for all w0 ∈ L0 and w1 ∈ L1, we have w0 6≡k w1.

Example 1. Let K0 = (aa)∗, K1 = (aa)∗a and

L0 = (bK0bK1)+,

L1 = (bK0bK1)∗bK0.

It is well known that a2k

and a2k−1 cannot be distinguished by any
FO-sentence of quantifier rank k, see e.g. [19]. Therefore, K0 and
K1 are not FO-separable. Reusing this argument then shows that
L0 and L1 are not FO-separable either. We shall explain below how
this is detected by our algorithm.

4. FO-indistinguishable Sets for a Morphism
In this section, we define our main tool for solving the separation
problem for first-order logic: FO-indistinguishable sets. The idea
behind this notion is the following. Let α : A+ → S be a morphism
into a finite semigroup. Given a natural k, one associates to each≡k-
class τ in A+ the subset α(τ) of S, which consists of the images
under α of all words in τ . This information is exactly what we need
to answer the separation question by FO[k]-definable languages for
any pair of languages that are both recognized by α. Indeed, two
languages L0, L1 recognized by α are not FO[k]-separable if and
only if there exists such a subset intersecting both α(L0) and α(L1).

Observe that when k gets larger, these subsets can only get
smaller, because ≡k-classes are unions of ≡k+1-classes. Since
S is finite, the refinement stabilizes at some index `: the subsets
generated as images of ≡`-classes are the same as those generated
as images of ≡k-classes, for all k > `. These stabilized subsets are
what we call FO-indistinguishable sets.

The application of the notion of FO-indistinguishable sets to the
separation problem is twofold.

• First, being able to compute all FO-indistinguishable sets for α
provides a yes-no answer to the separation question for any pair
of languages recognized by α.

• Moreover, the stabilization index ` is also of particular interest:
it is a bound such that if there exists a separator, then it can be
chosen with quantifier rank `.

The section is organized as follows. First we give a formal
definition of FO-indistinguishable sets and we state a reduction
from the separation problem to the computation of these sets. In
the second subsection, we give a fixpoint algorithm for computing
all FO-indistinguishable sets associated to a given morphism α.
Finally, in the last subsection, we run this fixpoint algorithm on the
languages of Example 1.

4.1 Definition and reduction from the separation problem

FO-indistinguishable sets. Let α : A+ → S be a semigroup
morphism. We define the following subsets of 2S :

• Ik[α], the set of FO[k]-indistinguishable sets for α.
• I[α], the set of FO-indistinguishable sets for α.

Let T = {s1, . . . , sn} ⊆ S. We have

• T ∈ Ik[α] if there exist w1, . . . , wn ∈ A+ with

w1 ≡k w2 ≡k · · · ≡k wn, and

α(w1) = s1, . . . , α(wn) = sn.
• T ∈ I[α] if for all k ∈ N, we have T ∈ Ik[α].

From the definitions and from the inclusion ≡k+1 ⊆ ≡k, we obtain
the following facts.
Fact 4. (a) Ik[α] ⊇ Ik+1[α] ⊇ I[α] for all k > 0.
(b) I[α] =

⋂
k Ik[α].

Fact 5. Both Ik[α] and I[α] are closed under taking subsets:
Ik[α] = ↓ Ik[α] and I[α] = ↓ I[α].

Conversely however, it may be the case that {r, s}, {s, t} and
{t, r} are all FO-indistinguishable, while {r, s, t} is not.
Lemma 2 entails the following fact.
Fact 6. All Ik[α] and I[α] are subsemigroups of 2S .

As stated in Fact 4 (a), the sets in Ik[α] can only get refined as
k gets larger. Therefore, they stabilize at some index `. However, it
may be the case that Ik[α] = Ik+1[α] even if stabilization is not
reached yet. This rules out the naive search for this index. In the
following proposition, we give a bound on this stabilization index
depending on the size of A and S.

Proposition 7. For all k > |A|2|S|
2

, we have Ik[α] = I[α].

Proposition 7 yields a first algorithm for computing I[α]. Indeed,
when k is fixed, one can easily compute Ik[α] using a brute-force
algorithm that enumerates all equivalence classes of ≡k. However,
since the number of such classes is non-elementary in k, this
algorithm is very slow. We will present a more efficient fixpoint
algorithm at the end of the section. In Section 6, we will obtain
the bound |A|2|S|

2

as a corollary of the completeness proof of this
more efficient algorithm.

From FO-separation to FO-indistinguishable sets. We now make
the link with the separation problem. The following theorem shows
that computing I[α] answers the FO-separation problem for input
languages recognized by α. Moreover, the second part of the theo-
rem yields a bound on the expected quantifier rank of a separator.

Theorem 8. Let L0, L1 be two regular languages recognized by a
morphism α : A+ → S into a finite semigroup. Then, L0 and L1

are FO-separable if and only if for all T ∈ I[α], α(L0) ∩ T = ∅
or α(L1) ∩ T = ∅.

Moreover, if L0, L1 are FO-separable, then the actual separator
can be chosen with quantifier rank |A|2|S|

2

.

Proof. Suppose first thatL0 andL1 are FO-separable, that is, FO[k]-
separable for some k. Let T ∈ I[α]. By contradiction, assume
that there exist s0 ∈ α(L0) ∩ T and s1 ∈ α(L1) ∩ T . Then
s0, s1 ∈ T ∈ I[α] ⊆ Ik[α]. By definition of Ik[α], there exist
w0 ∈ α−1(s0) ⊆ L0 and w1 ∈ α−1(s1) ⊆ L1 such that
w0 ≡k w1, which by Fact 3 contradicts FO[k]-separability.

Conversely, assume that for all T ∈ I[α], either α(L0) ∩ T or
α(L1)∩T is empty. Then by Proposition 7, the same property holds
for all T ∈ I`[α], for ` = |A|2|S|

2

. Hence by definition of I`[α],
for all w0 ∈ L0 and w1 ∈ L1, we have w0 6≡` w1. So, again by
Fact 3, L0 and L1 are FO[`]-separable. This proves the equivalence
and the last assertion of the statement.

4.2 An algorithm to compute FO-indistinguishable sets
Let α : A+ → S be a morphism into a finite semigroup. We
describe a fixpoint algorithm for computing I[α]. We start from sets
that are trivially in I[α] (i.e., singletons {α(w)}) and then use a
saturation procedure to generate more sets, until we reach a fixpoint.
Let us first describe this saturation procedure.
Saturation. Let S be a subsemigroup of 2S . We define Sat(S), the
saturation of S, as the subsemigroup of 2S generated by

S ∪
{
Tω ∪ Tω+1 | T ∈ S

}
. (1)

The fixpoint algorithm consists in iteratively applying satura-
tion until stabilization, starting from S = α(A+), viewed as a
subsemigroup of 2S consisting of singletons. We set Sat0(S) = S,
and Sati+1(S) = Sat(Sati(S)) for all i ∈ N. By definition, for
all i ∈ N, Sati(S) ⊆ Sati+1(S) ⊆ 2S . Therefore, there exists i

such that Sati(S) = Sati+1(S). We denote this subsemigroup by
Sat∗(S). Note that computing Sat∗(S) from S is straightforward,
by repeatedly applying saturation. In the following proposition, we
state correctness and completeness of our algorithm: sets in I[α]
are exactly the subsets of elements of Sat∗(α(A+)).

Proposition 9. Let ` = |A|2|S|
2

. Then we have

I[α] = I`[α] = ↓ Sat∗(α(A+)).

Since Sat∗(S) is computable, Proposition 9 immediately implies
that so is I[α]. Using Theorem 8, this yields the decidability of the
separation problem for first-order logic. Moreover, a simple analysis
of the saturation procedure shows an EXPTIME upper bound on the
complexity of the problem.

Corollary 10. LetL0, L1 be two regular languages recognized by a
morphism α : A+ → S into a finite semigroup. Then one can decide
in EXPTIME with respect to |S| whether L0, L1 are FO-separable.

Proof. By Theorem 8, it suffices to prove that one can compute
I[α] in EXPTIME in the size of S. Indeed, it then suffices to test
whether there exists T ∈ I[α] such that α(L1) ∩ T 6= ∅ and
α(L2) ∩ T 6= ∅. This can also be achieved in EXPTIME by testing
all possible candidates T . By Proposition 9, we know that computing
I[α] can be done by computing Sat∗(α(A+)).

By definition, Sat∗(α(A+)) ⊆ 2S , therefore Sat∗(α(A+)) =

Sat|2
S |(α(A+)). This means that the number of steps the algorithm

needs to reach the fixpoint is at most exponential in S. Therefore, it
suffices to prove that each step can be done in EXPTIME to conclude
that the whole computation can also be done in EXPTIME. Each step
requires computing Tω ∪ Tω+1 for at most |2S | subsets T . Each
computation can be done in EXPTIME, since Tω is equal to some
Tm for m 6 |2S | such that Tm = T 2m. Finally, computing the
subsemigroup of 2S generated by a subset of 2S can also be done
in EXPTIME.

Proposition 7 is a simple consequence of Proposition 9. Indeed,
for k > `, we have I[α] ⊆ Ik[α] ⊆ I`[α] by Fact 4 (a). Since
for ` = |A|2|S|

2

, Proposition 9 yields I`[α] = I[α], we obtain
I[α] = Ik[α], which is exactly Proposition 7.

An interesting observation about our saturation algorithm is
that it can be viewed as a generalization of Schützenberger’s Theo-
rem [12, 18]. Indeed, a language is first-order definable if and only
if it can be recognized by an aperiodic semigroup. One definition of
aperiodicity is that a semigroup is aperiodic if and only if it satisfies
the identity sω = sω+1. The counterpart to this definition can be
found in the main operation of our saturation procedure, Opera-
tion (1). This raises another question: could Operation (1) be re-
placed to reflect alternate definitions of aperiodicity while retaining
Proposition 9? We shall see in Section 7 that this is indeed possible.

It now remains to prove Proposition 9. We show that

I[α] ⊆ I`[α] ⊆ ↓ Sat∗(α(A+)) ⊆ I[α].

The first inclusion is obvious by Fact 4. In Section 5, we prove
that ↓Sat∗(α(A+)) ⊆ I[α]. This corresponds to correctness of
the algorithm: all computed sets indeed belong to I[α]. Finally, in
Section 6, we focus on the proof of the most difficult direction, which
is the second one: I`[α] ⊆ ↓ Sat∗(α(A+)). It implies completeness
of the algorithm, that is, that any FO-indistinguishable set for α –
i.e., belonging to I[α] – is actually contained in some element of
the set Sat∗(α(A+)) computed by the algorithm.

We finish this section by running the algorithm, to show that it
detects that the languages of Example 1 are not FO-separable.

4.3 Example 1, contd.
To start our algorithm, we first need a semigroup morphism recog-
nizing both L0 and L1. Observe that both languages are recognized
by the automaton below, with 4 as final state for L0, and 2 as final
state for L1. Therefore, its transition semigroup S recognizes both
languages1. The recognizing morphism α : A+ → S thus maps a

1 2 3

4 5

b
a

b

a

a

b

a

Figure 1. Automaton recognizing both L0 and L1

word to the partial function from states to states that it defines. We
still denote the images of letters a, b by a, b ∈ S, respectively. It is
then easy to see that L0 = α−1(b2a) and L1 = α−1({b, b2ab}).

We use Theorem 8 to show that L0 and L1 are not FO-separable:
we have to find an FO-indistinguishable set T ∈ I[α] intersecting
both α(L0) and α(L1). We claim that {b2a, b2ab} ∈ α(L0) ×
α(L1) is indeed detected as FO-indistinguishable. We actually show
that it is computed as an element of ↓Sat∗(α(A+)), which by
Proposition 9 implies that it is FO-indistinguishable.

The algorithm starts with Sat0(S) consisting of singletons.
Then, note that {a}ω = {a2} and {a}ω+1 = {a}. Therefore, by
definition of Operation (1), we have {a, a2} ∈ Sat(S). Since Sat(S)
is a subsemigroup, the algorithm also computes X = {a, aa} ·
{b} = {ab, aab} as an element of Sat(S). Now by (1), Y = Xω ∪
Xω+1 ∈ Sat2(S). Computing Y shows that {bab, bab2} ⊆ Y .
Finally, since Sat2(S) is a semigroup, it contains T = {b} · Y ·
{a, a2}, which itself contains {b2a, b2ab}, as claimed.

5. Correctness of the Algorithm
In this section we prove correctness of our algorithm computing
FO-indistinguishable sets, that is the inclusion ↓Sat∗(α(A+)) ⊆
I[α] in Proposition 9. Recall that we work with a morphism
α : A+ → S into a finite semigroup S. We prove the following
proposition.

Proposition 11. For every k ∈ N, Sat∗(α(A+)) ⊆ Ik[α].

By Fact 4, we have I[α] =
⋂
k Ik[α]. Therefore, it is immediate

from Proposition 11 that Sat∗(α(A+)) ⊆ I[α]. Since ↓ I[α] =
I[α] by Fact 5, it follows that ↓ Sat∗(α(A+)) ⊆ I[α]. It remains
to prove Proposition 11, which we do in the rest of the section.

We show by structural induction that ↓ Sat∗(α(A+)) consists of
FO-indistinguishable sets only. We start from singletons, which are
obviously FO-indistinguishable. Then, we apply:

• Operation (1), which can be seen, using Ehrenfeucht-Fraı̈ssé
games, to preserve FO-indistinguishability.

• Closure under subsemigroup, which preserves it by Fact 6.
• Finally, closure under ↓, which also preserves it by Fact 5.

Formally, let k ∈ N and T ∈ Sat∗(α(A+)), and let us prove
that T ∈ Ik[α]. By definition T ∈ Sati(α(A+)) for some i ∈ N.
We proceed by induction on i. For i = 0, this is obvious since

1 Recall that the transition semigroup consists of partial mappings induced
by words from the state set to itself. It is easy to see that it recognizes the
language accepted by the automaton, see [15, Sec. 3.1].

Sat0(α(A+)) =
{
{α(w)} | w ∈ A+

}
, and by definition, any

singleton {α(w)} is in Ik[α].
Assume now that i > 1. Recall that Sati(α(A+)) is the

semigroup generated by

R = Sati−1(α(A+)) ∪ {Tω ∪ Tω+1 | T ∈ Sati−1(α)}.
Assume first that the result is proved for every set in R and set

T ∈ Sati(α(A+)). Then T = T1 · · ·Tn with T1, . . . , Tn ∈ R. By
assumption T1, . . . , Tn ∈ Ik[α]. By Fact 6, Ik[α] is a semigroup.
Therefore, T = T1 · · ·Tn ∈ Ik[α].

It remains to prove that all sets in R belong to Ik[α]. Let R ∈ R.
If R ∈ Sati−1(α(A+)), this is by induction hypothesis. Therefore,
assume that R = Tω ∪ Tω+1 for a set T ∈ Sati−1(α(A+)). By
induction hypothesis, T ∈ Ik[α]. By definition, this means that
there exists a set of words W ⊆ A+ such that α(W) = T and
for all w,w′ ∈ W , we have w ≡k w′. Consider the set of words
W ′ = W 2kω ∪W 2kω+1. By definition, α(W ′) = R. Therefore,
it suffices to prove that for any two words w,w′ ∈ W ′, we have
w ≡k w′ to conclude that R ∈ Ik[α].

Let w ∈ W be some arbitrary chosen word. By Lemma 2 (1),
it is immediate that any word of W ′ is ≡k-equivalent to either
u0 = w2kω ∈W 2kω or to u1 = w2kω+1 ∈W 2kω+1. To conclude
that all words of W ′ are ≡k-equivalent, it remains to prove that
u0 ≡k u1, which follows directly from Lemma 2 (2).

6. Completeness of the Algorithm
In this section, we prove the most interesting inclusion from Propo-
sition 9: I`[α] ⊆ ↓Sat∗(α(A+)) for ` = |A|2|S|

2

.
For the rest of the section, we fix a morphism α : A+ → S

into a finite semigroup. Recall that we identify α(A+) with the
subsemigroup

{
{α(w)} | w ∈ A+

}
, so we view α as a morphism

into this subsemigroup of 2S . We prove our result in a proposition
that is itself proved by induction. In order to state this proposition,
we need additional terminology.
Set generated by an ≡k-class. Let B be an alphabet, S be a
subsemigroup of 2S , and β : B+ → S be a morphism. For k ∈ N
and τ an ≡k-class of words in B+, the β-generated set by τ is
Tβ(τ)U =

⋃
w∈τ β(w).

The main idea behind the proof is that for k large enough, the
α-generated sets by ≡k-classes are all computed by Sat∗. Let us
formalize this result as an inductive property.

Proposition 12. Let S be a subsemigroup of 2S and β : B+ → S

be a surjective morphism. Set k > |B| · 2|TSU|2 . Then for every
≡k-class τ , we have Tβ(τ)U ∈ ↓Sat∗(S).

Before proving Proposition 12, we explain how to use it to prove
the inclusion I`[α] ⊆ ↓ Sat∗(α(A+)) of Proposition 9.

Proof of Completeness in Proposition 9. Put S = α(A+), viewed
as a subsemigroup of 2S . We define a surjective morphism β :

A+ → S by β(w) = {α(w)}. Recall that ` = |A|2|S|
2

and let
T ∈ I`[α].

By definition of I`[α], there exists an ≡`-class τ such that
T ⊆ Tβ(τ)U. By definition, TSU ⊆ S, hence |TSU| 6 |S|.
Therefore, ` > |A| · 2|TSU|2 and we can apply Proposition 12,
so that Tβ(τ)U ∈ ↓Sat∗(S). Since T ⊆ Tβ(τ)U and ↓Sat∗(S) is
closed under taking subsets, we get T ∈ ↓Sat∗(S). We conclude
that I`[α] ⊆ ↓Sat∗(S).

It remains to prove Proposition 12. We set β, k > |B| · 2|TSU|2

and τ a ≡k-class as in the statement of the proposition. We need
to prove that Tβ(τ)U ∈ ↓ Sat∗(S). The proof is a generalization

of Wilke’s argument [23] for deciding first-order definability. We
proceed by induction on the following parameters listed by order of
importance:

1. the index |TSU| of S,

2. the size of B.

The proof is divided in three main parts:

• first, we consider the case when |B| = 1.
• otherwise, we distinguish two subcases, depending on a property

of β called tameness.

6.1 Special Case: |B| = 1.
In that case, B is a singleton {b}. With this hypothesis, we actually
prove a slightly stronger result than Proposition 12, which will be
useful later in the induction. Recall that τ is a ≡k-class over B.

Lemma 13. Tβ(τ)U ∈ Sat∗(S).

Note that by definition, Sat∗(S) ⊆ ↓Sat∗(S). Therefore, Propo-
sition 12 is indeed a consequence of Lemma 13 when |B| = 1.

Proof of Lemma 13. Using Lemma 2, it is easy to see that any ≡k-
class over the singleton alphabet {b} is either a singleton {bn}, or
of the form {bk | k > K} for some K ∈ N.

Let w ∈ τ be a word of minimal length. By hypothesis, w = bn

for some n > 1. A standard semigroup theory argument shows that
there exists m 6 |S| 6 2|TSU| such that β(bm) = β(bω).

If n 6 m, it is simple to see that k > n, whence we deduce that
τ = {w}. Hence Tβ(τ)U = β(w) ∈ Sat∗(S) and we are done.

Otherwise, n > m. If Tβ(τ)U 6= β(w), then by choice of k and
by the preliminary remark, we have Tβ(τ)U =

⋃
i>0 β(bω+i). To

conclude, we prove that
⋃
i>0 β(bω+i) ∈ Sat∗(S). Note that⋃

i>0

β(bω+i) = (β(b)ω ∪ β(b)ω+1) · · · (β(b)ω ∪ β(b)2ω−1).

Therefore, it suffices to prove that for all i, we have

β(b)ω ∪ β(b)ω+i ∈ Sat∗(S).

By definition, for any i > 0, β(b)ω+i = β(bω+i) ∈ S ⊆ Sat∗(S).
Moreover, observe that

β(b)ω ∪ β(b)ω+i = (β(b)ω+i)ω ∪ (β(b)ω+i)ω+1.

Therefore the result is immediate by Operation (1).

This terminates the case |B| = 1. For the remainder of the proof,
we now assume that |B| > 2. As explained above, we distinguish
two cases depending on a property of β.

Tameness. We say that β is tame if for all b ∈ B, all t ∈ TSU, there
exist R`, Rr ∈ S such that t ∈ β(b) ·Rr and t ∈ R` · β(b).

6.2 Case 1: β is tame
This is the base case: we don’t use induction. We use tameness to
prove that TSU ∈ Sat∗(S) and hence that all subsets of TSU are
computed as elements of ↓Sat∗(S). Since by definition, Tβ(τ)U ⊆
TSU for any FO-class τ , this terminates the proof of this case. The
fact that TSU ∈ Sat∗(S) is a consequence of the following lemma:

Lemma 14. There exists a group G ⊆ S such that TGU = TSU.

We first use Lemma 14 to finish the proof of this case. Let
G = {T1, . . . , Tn} be a group as given by the lemma. To obtain
TSU ∈ Sat∗(S), it suffices to prove that TGU ∈ Sat∗(S). Since G is
a group, we get Tωi = 1G, so Ti = Tω1 · · ·Tωi−1T

ω+1
i Tωi+1 · · ·Tωn

for all i. Combining these equalities gives us the inclusion

TGU ⊆ (Tω1 ∪ Tω+1
1) · · · (Tωn ∪ Tω+1

n).

By definition (1) of Sat, it follows that TGU ∈ Sat(S) ⊆
Sat∗(S), and we are done with the proof in Case 1.

It remains to prove Lemma 14. We first prove that while S might
not be a group itself, it is what we call a pseudo-group.

Pseudo-groups. Let T be a subsemigroup of 2S . We say that T is a
pseudo-group if for all T ∈ T and t ∈ TTU, there exist R`, Rr ∈ T
such that T ·Rr 3 t and R` · T 3 t.
Lemma 15. S is a pseudo-group.

Proof. We only do the existence proof for R`. The proof for Rr is
symmetrical. Since β is surjective, there exists w ∈ B+ such that
T = β(w). We proceed by induction on the length of w. If w is of
length 1, it is immediate by tameness that there exists R` ∈ S such
that R` · T 3 t and we are finished.

Assume now that the result holds for words of length m and that
w is of length m + 1. This means that w = bu with u a word of
length m. By induction hypothesis, there exists R′` ∈ S such that
such that R′` · β(u) 3 t. This means that there exists at least one
r′ ∈ R′` such that {r′} · β(u) 3 t. Using tameness again, we get
R` ∈ S such that R` · β(b) 3 r′. It follows that R` · β(w) 3 t,
which concludes the proof.

We now finish the proof of Lemma 14. We prove that any
pseudo-group T ⊆ S that is not already a group contains a strict
subsemigroup R that remains a pseudo-group, and such that TRU =
TTU. Applying this result iteratively to S yields the desired group G.

Let T ⊆ S be a pseudo-group that is not already a group. An
easy and standard argument implies that there must exist R ∈ T
such that R · T (T or T · R (T. By symmetry assume that it
is the former and set R = R · T. By definition, R is closed under
product and is therefore a semigroup. It remains to prove that R is a
pseudo-group and that TRU = TTU.

R is a pseudo-group. Set RT ∈ R and r ∈ TRU. We want to
construct Rr, R` ∈ R such that r ∈ RT · Rr and r ∈ R` · RT .
We begin with Rr . Since T is a pseudo-group, there exists Tr ∈ T
such that r ∈ RTR · Tr , therefore it suffices to set Rr = RTr ∈ R.
It remains to construct R`. Using again the fact that T is a pseudo-
group, we get T` ∈ T such that r ∈ T` · RT . In particular, this
means that there exists t` ∈ T` such that r ∈ {t`} ·RT . Using our
pseudo-group hypothesis once again, we obtain T ′ ∈ T such that
t` ∈ R · T ′. It follows that r ∈ RT ′ · RT , and it suffices to set
R` = RT ′ ∈ R.
TRU = TTU. By definition, we have TRU ⊆ TTU. We prove the
reverse inclusion. Set t ∈ TTU. Since T is a pseudo-group, there
exists T ∈ T such that t ∈ RT . By definition, RT ∈ R, hence
t ∈ TRU, which ends the proof.

6.3 Case 2: β is not tame.
This is the case where we use induction. By hypothesis on β, there
exist b ∈ B and t ∈ TSU such that there exists no Rr ∈ S
verifying t ∈ β(b) · Rr or no R` ∈ S verifying t ∈ R` · β(b).
By symmetry, we assume the former, i.e., there exists no Rr ∈ S
verifying t ∈ β(b) ·Rr . We set t and b as these objects for the rest
of this proof.

Recall that we have k > |B| · 2|TSU|2 as in the statement
of Proposition 12. Set τ a ≡k-class. Our goal is to construct
Rτ ∈ Sat∗(S) such that Tβ(τ)U ⊆ Rτ . To use induction, we
set

B′ = B \ {b}, k′ = |B′| · 2|TSU|2 ,

B̃ = {b} k̃ = |B̃| · 2|TSU|2 = 2|TSU|2

We define ∆ as the set of ≡k′ -classes of words over the alphabet
B′ and Λ as the set of ≡k̃ -classes of words over the alphabet {b}.

The morphism β can be restricted to the alphabet B′. It follows
by choice of k′ that we can apply the induction hypothesis on the
second parameter (the size of the alphabet). This yields the following
result.
Fact 16. For all δ ∈ ∆, there exists Rδ ∈ Sat∗(S) such that
Tβ(δ)U ⊆ Rδ .

Similarly, β can be restricted to the alphabet {b}. Moreover,
since {b} is of size one, by choice of k̃ we can apply Lemma 13 to
every λ ∈ Λ and get the following stronger result.
Fact 17. For all λ ∈ Λ, we have Tβ(λ)U ∈ Sat∗(S).

We now give an overview of the proof. Set C = {λ · δ | λ ∈
Λ and δ ∈ ∆} as a new alphabet. Modulo some prefix in B′∗ and
suffix in b∗ (both possibly empty), any word w in τ can be viewed
as a sequence of factors in b+B′+. Therefore, by looking at all pairs
of classes in Λ,∆ induced by these factors, w can be seen as a word
w ∈ C+. For this sketch, assume that the prefix and suffix are both
empty. Moreover, β can be adapted over C as a new morphism γ
by setting γ : λ · δ 7→ Tβ(λ)U ·Rδ and we get β(w) ⊆ γ(w). We
then prove three results.

1. by choice of k, one can construct a ≡k -class τ over C for a
well-chosen k such that Tβ(τ)U ⊆ Tγ(τ)U.

2. by choice of b and t, the index of T = γ(C+) is strictly smaller
than the index of S. Therefore, we can apply induction to γ and
get R ∈ Sat∗(T) such that Tγ(τ)U ⊆ R.

3. by definition of γ, we get Sat∗(T) ⊆ Sat∗(S) and therefore
R ∈ Sat∗(S).

By combining the three items, it suffices to take Rτ = R ⊇
Tγ(τ̃)U ⊇ Tβ(τ)U to end the proof. Intuitively, this is what we
do. However, there is a slight difference: observe that with the
definitions of this sketch, C is a set of pairs of ≡k′ and ≡k̃ -classes,
and is non-elementary large. Therefore, this definition would yield
a much larger bound on k than what claimed. To overcome this
problem, we shall use γ(C+) ⊆ 2S as alphabet instead of C. We
now turn to the actual proof.

Set R as the semigroup β(b) · ↑ S. Observe that by definition,
for all λ ∈ Λ, all words in λ have alphabet {b}. Therefore,
Tβ(λ)U ∈ β(b) ∪ R. It follows that for all λ ∈ Λ and δ ∈ ∆,
Tβ(λ)U ·Rδ ∈ R. We set T as the subsemigroup of R generated by

{Tβ(λ)U ·Rδ | λ ∈ Λ and δ ∈ ∆}
Note that by definition T ⊆ Sat∗(S) and ↑T ⊆ ↑ S. We set

C = T and γ : C+ → T as the semigroup morphism defined by
simply evaluating in T the product of the letters of a word in C.
Finally, set k = |T| · 2|TTU|2 .

Lemma 18. The index of T is strictly smaller than the index of S.

Proof. This is where we use our hypothesis on b and t. We prove
that R has strictly smaller index than S. Since T is a subsemigroup
of R, the desired result will follow. By definition of R, we have
TRU ⊆ TSU. Therefore, it suffices to prove that this inclusion is
strict. We prove that t 6∈ TRU, which concludes the proof. We
proceed by contradiction: assume that t ∈ TRU. This means that
there exists T ∈ R such t ∈ T . By definition of R, we obtain sets
S1, . . . , Sn ∈ ↑ S such that T = β(b)S1 ∪ · · · ∪β(b)Sn. Since t ∈
T , at least one of these sets, say β(b)Sj , contains t. Since Sj ∈ ↑ S,
we get R1, . . . , Rm ∈ S such that t ∈ β(b)R1 ∪ · · · ∪ β(b)Rm. In
particular, t ∈ β(b)Ri for some i, which contradicts the choice of t
and b.

Lemma 18 means that we can apply induction on≡k -classes for
the morphism γ. This was exactly point 2 in our sketch. Moreover,
since T ⊆ Sat∗(S) we get point 3.

Lemma 19. Sat∗(T) ⊆ Sat∗(S).

It remains to define the ≡k -class τ over C. Let w ∈ B+ be an
arbitrary word in τ . There exist n > 0 and m1, . . . ,mn > 1 such
that w can be uniquely decomposed as:

w = w′ · bm1 · w1 · bm2 · w2 · · · bmn · wn · w̃
where w1, . . . , wn are non-empty words containing no b, i.e., words
of B′+, w′ is a possibly empty prefix containing no b, i.e., a word
of B′∗ and w̃ a possible empty suffix in b∗. This divides w in three
parts: the prefix w′, the infix bm1 · w1 · bm2 · w2 · · · bmn · wn
and the suffix w̃. We assume in this proof that we are in the most
complicated case, i.e., none of these parts are empty (the other cases
are handled similarly).

We set w as the word c1 · · · cn ∈ C+ defined as follows. For all
i > 1, set λi as the ≡k̃ -class of bmi and δi as the ≡k′ -class of wi.
For all i, let us set ci = Tβ(λi)U ·Rδi ∈ C. By construction, and
definition of the sets Tβ(λ)U, Rδ , we have the following result:
Fact 20. β(bm1 · w1 · bm2 · w2 · · · bmn · wn) ⊆ γ(w).

Finally, let τ be the ≡k -class of w. In the sketch, we assumed
that the prefixw′ and the suffix w̃ were empty. Here, we have to take
them into account. Therefore, we also set δ′ ∈ ∆ as the ≡k′ -class
of w′ and λ̃ ∈ Λ as the ≡k̃ -class of w̃.

Using Ehrenfeucht-Fraı̈ssé games, we prove that τ , λ̃ and δ′ are
well-defined, i.e., that the definition depends only on the ≡k-class τ
and not on the choice of w. This is where the choices for the values
of k, k̃ and k′ matter.

Lemma 21. Let u, v be words in τ , and define u′, u, ũ, v′, v, ṽ as
above. Then u ≡k v, u′ ≡k′ v′ and ũ ≡k̃ ṽ.

Proof. This is an Ehrenfeucht-Fraı̈ssé argument. By Lemma 18,
|TTU| < |TSU|. Using twice this inequality, we observe that
k′+ k = (|B| − 1) · 2|TSU|2 + |T| · 2|TTU|2 6 (|B| − 1) · 2|TSU|2 +

2|TSU|−1 · 2(|TSU|−1)2 < |B| · 2|TSU|2 , whence k′ + k + 1 6 k.
Moreover, by hypothesis u ≡k v. Hence, by Lemma 1, Duplicator
has a winning strategy in the k-round game played on u and v.

It is straightforward to see that if Spoiler places his first pebble
on the first b of u, Duplicator has to answer by placing her pebble on
the first b of v. Then, every move of Spoiler that is made to the left
of these pebbles (i.e., in u′, v′) must be answered by Duplicator to
the left of these pebbles (i.e., in u′, v′). It follows that u′ ≡k−1 v

′

and hence that u′ ≡k′ v′. Similarly, we get that ũ ≡k−1 ṽ and
hence that ũ ≡k̃ ṽ

For u, v, this is slightly more complicated. We describe a winning
strategy for Duplicator in the k-round game played on u and v. To
obtain this strategy, Duplicator plays at the same time a shadow
game on u and v. In this game all pebbles are placed on positions
labeled with a b and such that the next position is labeled by a letter
that is not a b. We explain how to play one round.

Assume that Spoiler puts his pebble in u (the dual case is
answered in the same way) on some position labeled with c ∈ C.
By definition, this position corresponds to an infix biu′ in u with
u′ ∈ B′+, and such that Tβ(λbi)U · Rδu′ = c (with λbi , δu′ the
≡k̃ − and ≡k′ -classes of bi, u′, respectively). Duplicator simulates
a move of Spoiler in her shadow game, putting a pebble in u on
the last b of this infix biu′. One can verify that this gives her an
answer in v on the last b of an infix bjv′ with v′ ∈ B′+. Moreover,
recall that k′ + k+ 1 6 k. Hence, since the game on u, v lasts only
k rounds and u ≡k v, at least k′ + 1 rounds can still be played in
the shadow game. It is then straightforward to see that this means
that u′ ≡k′ v′ and bi ≡k′ bj . In particular, since k′ > k̃ we get that
bi ≡k̃ b

j . Therefore, the ≡k′ -class of v′ is δu′ , the ≡k̃ -class of bj

is λbi , hence the position corresponding to bjv′ in ṽ is labeled with
a c. This is Duplicator’s answer.

It remains to prove point 1 in our sketch. In order to take δ′, λ̃ into
account, we prove here a slightly generalized version.

Lemma 22. We have Tβ(τ)U ⊆ Tβ(δ′)U · Tγ(τ)U · Tβ(λ̃)U.

Proof. Let s ∈ Tβ(τ)U. By definition there exists u ∈ τ such that
s ∈ β(u). Recalling the construction of u, there exists n ∈ N such
that u can be uniquely decomposed as:

u = u′ · bm1 · u1 · bm2 · u2 · · · bmn · un · ũ.
Set S′ = β(u′), T = β(bm1 · u1 · bm2 · u2 · · · bmn · un) and

S̃ = β(ũ). By definition, s ∈ S′ · T · S̃. We prove S′ ⊆ Tβ(δ′)U,
T ⊆ Tγ(τ)U and S̃ ⊆ Tβ(λ̃)U, which will finish the proof.

By Lemma 21, it is immediate that u′ ∈ δ′ and ũ ∈ λ̃. Therefore,
S′ ⊆ Tβ(δ′)U and S̃ ⊆ Tβ(λ̃)U. For T , by Fact 20, T ⊆ γ(u) and
by Lemma 21, u ∈ τ . Therefore T ⊆ Tγ(τ)U.

We can now finish the proof by combining the results. Observe
that words in δ′ are by definition words of B′+ and words in λ̃ are
in b+. Therefore, by Fact 16, there exists Rδ′ ∈ Sat∗(S) such that
Tβ(δ′)U ⊆ Rδ′ and by Fact 17, Tβ(λ̃)U ∈ Sat∗(S). Moreover, by
Lemma 18 the index of T is strictly smaller than the index of S.
Therefore, by choice of k, we can apply the induction hypothesis
on τ . This yields a set P ∈ Sat∗(T) such that Tγ(τ)U ⊆ P . By
Lemma 19, P ∈ Sat∗(S). Finally, set Rτ = Rδ′ · P · Tβ(λ̃)U.
By definition, Sat∗(S) is a semigroup, therefore, Rτ ∈ Sat∗(S).
Furthermore, Tβ(δ′)U ·Tγ(τ)U ·Tβ(λ̃)U ⊆ Rδ′ ·P ·Tβ(λ̃)U = Rτ .
It then follows from Lemma 22 that Tβ(τ)U ⊆ Rτ .

7. Alternate Algorithms
In the well-known decidable characterization of first-order logic by
Schützenberger [12, 18], it is stated that a language is first-order
definable if and only if its syntactic semigroup is aperiodic. In the
literature, there are many equivalent definitions of aperiodicity. In
this paper, we consider three of them: one is equational, the second
considers subgroups and the third considers the H -classes. The
relation ’H ’ is one of Green’s relations which are well known in
semigroup theory. Two elements s, s′ of a semigroup S are H -
equivalent if s = s′ or there exist t`, t

′
`, tr, t

′
r ∈ S such that

str = s′, s′t′r = s, t`s = s′ and t′`s
′ = s. We state the three

equivalent definitions.

Lemma 23 (Folklore, see [15]). A finite semigroup S is aperiodic
if and only if it satisfies one of the following equivalent statements:

1. for all s ∈ S, sω = sω+1.
2. all subgroups in S are trivial.
3. all H -classes in S are trivial.

Our saturation procedure Sat can be viewed as a generalization
of the first definition of aperiodicity. Indeed, Operation (1) reflects
the equation sω = sω+1. In this section, we present two alternate
and equivalent saturation procedures that reflect the two other
definitions. Let α : A+ → S be a morphism into a finite semigroup.

Let S be a subsemigroup of 2S . We set SatG(S) as the subsemi-
group of 2S generated by

S ∪ {TGU | G ⊆ S and G is a group in S}. (2)

Similarly, SatH(S) is the subsemigroup of 2S generated by

S ∪ {THU | H ⊆ S andH is an H -class in S}. (3)

The operator SatG reflects the second definition of aperiodicity
and SatH the third. In the following proposition (whose proof is
omitted), we state that the three saturation procedures are equivalent
and can therefore all be used to compute I[α] by Proposition 9.

Proposition 24. Let S be a subsemigroup of 2S . Then

↓ Sat∗(S) = ↓ Sat∗G(S) = ↓Sat∗H(S).

Note that the saturation procedure SatH can be viewed as a
simplification of Henckell’s original algorithm [6].

8. Separation for Infinite Words
In this section we generalize FO-indistinguishable sets to ω-words
and explain how our fixpoint algorithm can be generalized in order to
compute them. In this case as well, we are able to apply the notion
to separation and obtain both a bound on the size of a potential
separator and an EXPTIME upper bound on the complexity of the
problem. It turns out that once the right tools are defined, our proof
generalizes smoothly to the case of ω-words. In particular several
arguments in this proof are replaced by using the finite word case as
a subresult.

The section is organized as follows. We first generalize our
terminology to the setting of ω-words. In the second part, we
generalize FO-indistinguishable sets, and we state the link with
separation. Finally, we explain how to generalize our fixpoint
algorithm to compute these new FO-indistinguishable sets.

8.1 Preliminary Definitions

ω-words and ω-languages. Recall that A is a finite alphabet. We
denote by A∞ the set of ω-words over A. Note that we still use the
term “word” to mean an element of A+. If u is a word and v an
ω-word, we denote by u · v the ω-word obtained by concatenating
u to the left of v, and by u∞ the ω-word obtained by infinite
concatenation of u with itself2. An ω-language is a subset of A∞.
Regular ω-languages are those that are accepted by nondeterministic
Büchi automata (NBA). Again, we will only work with the algebraic
representation of ω-languages that we recall below.

ω-semigroups. We briefly recall the definition of ω-semigroups,
which play the role of semigroups in the setting of ω-words. For
more details, we refer the reader to [14].

An ω-semigroup is a pair S = (S+, S∞) where S+ is a
semigroup and S∞ is a set. Moreover, S is equipped with two
additional products: a mixed product S+ × S∞ → S∞ that maps
s, t ∈ S+, S∞ to an element denoted st, and an infinite product
(S+)∞ → S∞ that maps an infinite sequence s1, s2, · · · ∈ (S+)∞

to an element of S∞ denoted by s1s2 · · · . We require these products
as well as the semigroup product of S+ to satisfy all possible forms
of associativity, cf. [14] for details. Finally, we denote by s∞ the
element sss · · · . Observe that A = (A+, A∞) is an ω-semigroup.

The notions of subsemigroups and morphisms can be adapted to
ω-semigroups. In particular, if T+ is a subsemigroup of S+ and T∞
is the set obtained by applying the infinite product to all sequences
of T+, then T = (T+, T∞) is a sub-ω-semigroup of S called the
sub-ω-semigroup generated by T+.

An ω-semigroup is said to be finite if both S+ and S∞ are finite.
Note that even if an ω-semigroup is finite, it is not obvious that a
finite representation of the infinite product exists. However, it was
proven by Wilke [22] that the infinite product is fully determined
by the mapping s 7→ s∞, yielding a finite representation for finite
ω-semigroups. An ω-language L is said to be recognized by an
ω-semigroup S = (S+, S∞) if there exists F ⊆ S∞ as well as a
morphism α : A → S such that L = α−1(F). It is well known
that an ω-language is regular if and only if it is recognized by a
finite ω-semigroup. Moreover [22], from any NBA recognizing L,

2 In the literature, the ω-word u∞ is usually denoted by uω . Here, we use
this non standard notation in order to avoid confusion with the idempotent
power ω in semigroups.

one can compute a canonical smallest ω-semigroup recognizing L,
called the syntactic ω-semigroup.

As for finite words, when working on separation, it is convenient
to consider a single recognizing object for both input languages
rather than two separate objects. Again, this is not restrictive, given
two ω-languages and two associated recognizing ω-semigroups,
one can define (and compute) a single ω-semigroup that recognizes
both languages by taking the cartesian product of the two original
ω-semigroups.

Semigroup of Subsets. For an ω-semigroup S, note that 2S =
(2S+ , 2S∞) is an ω-semigroup with the products defined in the
natural way. Moreover, S can be viewed as a sub-ω-semigroup
of 2S. Indeed, S is isomorphic to the ω-semigroup ({{s} | s ∈
S+}, {{s} | s ∈ S∞}), which is a sub-ω-semigroup of 2S.

First-order logic for ω-words. First-order logic is defined in the
same way on ω-words as on words. Therefore, for the sake of
simplifying the notations, we keep the same terminology. One
remark is of importance, however: in the proof, we will manipulate
at the same time ≡k-classes of words and ≡k-classes of ω-words.
To avoid confusion, we call the latter ≡k-ω-classes, and devote the
terminology ‘≡k-classes’ to words.

8.2 FO-indistinguishable sets for ω-languages.

FO-indistinguishable sets. Let α : A → S be an ω-semigroup
morphism and set (S+, S∞) = S. Observe that α can be restricted
as a classical semigroup morphism α+ : A+ → S+. Therefore,
FO-indistinguishable subsets of S+ are already defined, and it
suffices to generalize the notion to S∞. We give the full definition
(recalling the definition for S+) below. We define the two following
pairs of sets:

• Ik[α] = (I+
k [α], I∞k [α]) with I+

k [α] ⊆ 2S+ and I∞k [α] ⊆
2S∞ , the pair of sets of FO[k]-indistinguishable sets for α.

• I[α] = (I+[α], I∞[α]) with I+[α] ⊆ 2S+ and I∞[α] ⊆
2S∞ , the pair of sets of FO-indistinguishable sets for α.

Let T = {s1, . . . , sm} ⊆ S+ (resp. ∈ S∞). We have

• T ∈ I+
k [α] (resp. ∈ I∞k [α]) if there exist w1, . . . , wn ∈ A+

(resp. ∈ A∞) with

w1 ≡k w2 ≡k · · · ≡k wn, and

α(w1) = s1, . . . , α(wn) = sn.

• T ∈ I+[α] (resp. ∈ I∞[α]) if for all k ∈ N, we have
T ∈ Ik[α] (resp. ∈ I∞k [α]).

As for finite words the two following facts are by definition.
Fact 25. (a) I+

k [α] ⊇ I+
k+1[α] ⊇ I+[α] and I∞k [α] ⊇ I∞k+1[α] ⊇

I∞[α] for all k > 0.
(b) I+[α] =

⋂
k I

+
k [α] and I∞[α] =

⋂
k I
∞
k [α].

Fact 26. Ik[α] and I[α] are sub-ω-semigroups of 2S.
We finish the definition by generalizing Proposition 7, i.e., our

bound on the stabilization index, to the setting of ω-words.

Proposition 27. For all k > |A|2|S|
2

, we have I[α] = Ik[α].

As for finite words, Proposition 27 yields a brute-force algorithm
for computing I[α]. Again, this algorithm is non-elementary in k.
We generalize below our fixpoint algorithm for the setting of ω-
languages, and get an EXPTIME procedure. As before, the bound is
proven as a corollary of the completeness proof of the algorithm.

From FO-separation to FO-indistinguishable sets. By definition,
the generalization of Theorem 8 to ω-words is immediate. This
yields the following theorem.

Theorem 28. Let L0, L1 be two regular ω-languages recognized
by a morphism α : A → S into a finite ω-semigroup. Then, L0

and L1 are FO-separable if and only if for all T ∈ I∞[α], either
α(L0) ∩ T = ∅ or α(L1) ∩ T = ∅.

Moreover, if L0, L1 are FO-separable, then the actual separator
can be chosen with quantifier rank |A|2|S|

2

+ 1.

It follows from Theorem 28 and Proposition 27 that one can
decide whether two ω-languages are separable by a first-order
formula. Moreover, we also get an upper bound on the quantifier
rank of the potential separator.

8.3 An algorithm to compute I[α]

Let α : A → S be a morphism into a finite ω-semigroup
S = (S+, S∞). We give an algorithm for computing I[α].

Observe that α can be restricted as a semigroup morphism
α+ : A+ → S+ and that by definition the sets I+

k [α], I+[α]
are exactly the sets Ik[α+], I[α+]. Therefore, one can compute the
set I+[α] in EXPTIME by reusing our fixpoint algorithm for the
setting of finite words (see Section 4). Thus, it suffices to explain
how to compute I∞[α]. The following proposition (whose proof is
omitted), shows that one can compute it directly from I+[α].

Proposition 29. Let ` = |A|2|S|
2

+ 1 and R = (R+,R∞) the
sub-ω-semigroup of 2S generated by I+[α]. Then

I∞[α] = I∞` [α] = ↓R∞.

Since we already know how to compute I+[α] in EXPTIME, it
follows from Proposition 29 that one can compute I[α] in EXPTIME
as well. This generalizes our upper bound on the complexity of the
separation problem to ω-languages.

Corollary 30. Let L0, L1 be two regular ω-languages recognized
by a morphism α : A → S into a finite ω-semigroup. Then one
can decide in EXPTIME with respect to |S| whether L0, L1 are
FO-separable.

Proof. Let L0, L1 be two regular ω-languages recognized by a
morphism α : A → S into a finite ω-semigroup. We prove that
one can decide in EXPTIME with respect to |S| whether L0, L1

are FO-separable. By Theorem 28, it suffices to prove that I[α]
can be computed in EXPTIME in the size of S. We already know
that I+[α] can be computed in EXPTIME (see above). Therefore,
it suffices to prove that the sub-ω-semigroup of 2S generated by
I+(α) can be computed in EXPTIME. This is also easily done
since one can prove that this sub-ω-semigroup is (I+[α],R∞) with
R∞ = {ST∞ | S, T ∈ I+[α]} (see [14]).

9. Conclusion
We gave combinatorial and self-contained proofs that one can decide
in EXPTIME whether two regular languages of finite or infinite
words are separable by first-order logic. Further, we obtained an
upper bound on the quantifier rank of an expected separator. There
are several open questions left in this line of research. First, we do
not know if the bounds are tight. We conjecture that the problem is
EXPTIME-complete starting from semigroups. A related question is
the complexity, starting from NFAs. Our results imply a 2-EXPTIME
upper bound (for DFAs, checking first-order definability is PSPACE-
complete [3]).

A more interesting problem is the efficient computation of an
actual separator. The computation itself is possible by enumerating
all the FO[`]-languages for our upper bound ` = |A|2|S|

2

on the
expected quantifier rank of a separator. However, as the number
of such formulas is non-elementary in `, this is not a satisfying
solution. It turns out that our completeness proof (Proposition 12)

can be rephrased as an algorithm that computes separators. Let
α : A+ → S be a morphism into a finite semigroup and T ∈ I[α].
One can actually use the induction in Proposition 12 to construct an
FO[`]-formula ϕT , such that

• ϕT accepts any word whose ≡`-class has image T : for any
≡`-class τ s.t. Tα(τ)U = T , we have τ ⊆ {w | w |= ϕT }.

• Any word accepted by ϕT has an image that is indistinguishable
from T : if w |= ϕT , then α(w) ∪ T ∈ I[α].

By definition of I[α], any two languages L0, L1 which are at
the same time both recognized by α and FO-separable can be
separated by the union of formulas ϕT such that T ∈ I[α] and
T ∩ α(L0) = ∅. A rough analysis of the procedure yields a
2-EXPTIME complexity in the size of |S|. We leave the detailed
presentation of this procedure for further work.

References
[1] J. Almeida. Some algorithmic problems for pseudovarieties. Publ.

Math. Debrecen, 54:531–552, 1999. Proc. of Automata and Formal
Languages, VIII.

[2] D. Beauquier and J. E. Pin. Languages and scanners. Theoret. Comput.
Sci., 84(1):3–21, 1991.

[3] S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-
complete. Theoret. Comp. Sci., 88(1):99–116, 1991.

[4] W. Czerwiński, W. Martens, and T. s. Masopust. Efficient separability
of regular languages by subsequences and suffixes. In ICALP’13, 2013.

[5] V. Diekert and P. Gastin. First-order definable languages. In Logic
and Automata: History and Perspectives, volume 2, pages 261–306.
Amsterdam Univ. Press, 2008.

[6] K. Henckell. Pointlike sets: the finest aperiodic cover of a finite
semigroup. J. Pure Appl. Algebra, 55(1-2):85–126, 1988.

[7] K. Henckell, J. Rhodes, and B. Steinberg. Aperiodic pointlikes and
beyond. Internat. J. Algebra Comput., 20(2):287–305, 2010.

[8] N. Immerman. Descriptive Complexity. Springer, 1999.
[9] H. W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis,

CS Department, University of California at Los Angeles, USA, 1968.
[10] R. E. Ladner. Application of model theoretic games to discrete linear

orders and finite automata. Inform. Control, 33(4):281–303, 1977.
[11] L. Libkin. Elements Of Finite Model Theory. Springer, 2004.
[12] R. McNaughton and S. Papert. Counter-Free Automata. MIT Press,

1971.
[13] D. Perrin. Recent results on automata and infinite words. In MFCS’84,

1984.
[14] D. Perrin and J. E. Pin. Infinite Words. Elsevier, 2004.
[15] J. E. Pin. Mathematical foundations of automata theory. http:

//www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf, 2014.
[16] T. Place, L. van Rooijen, and M. Zeitoun. Separating regular languages

by piecewise testable and unambiguous languages. In MFCS’ 13, 2013.
[17] T. Place, L. van Rooijen, and M. Zeitoun. Separating regular lan-

guages by locally testable and locally threshold testable languages. In
FSTTCS’13, LIPIcs, 2013.

[18] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Inform. Control, 8:190–194, 1965.

[19] H. Straubing. Finite Automata, Formal Logic and Circuit Complexity.
Birkhauser, 1994.

[20] W. Thomas. Star-free regular sets of omega-sequences. Inform. and
Control, 42(2):148–156, 1979.

[21] W. Thomas. Languages, automata, and logic. In Handbook of formal
languages. Springer, 1997.

[22] T. Wilke. An Eilenberg theorem for infinity-languages. In ICALP’91,
1991.

[23] T. Wilke. Classifying discrete temporal properties. In STACS’ 99, 1999.

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

A. Running the Example in Section 4
In this section, we give details on the computation of FO-indistinguishable
sets for the example presented in Section 4. Recall that we consider
the languages K0 = (aa)∗, K1 = (aa)∗a and

L0 = (bK0bK1)+

L1 = (bK0bK1)∗bK0

A simple Ehrenfeucht-Fraı̈ssé argument shows that L0 and L1

are not FO-separable. We consider a morphism α : A+ → S
recognizing both languages, and we show that there exists an
FO-indistinguishable set for α, say T ∈ I[α], that intersects both
α(L0) and α(L1).

Both languages are recognized by the following automaton,

1 2 3

4 5

b
a

b

a

a

b

a

with 4 as final state for L0, and 2 as final state for L1. The transition
semigroup of this automaton, which recognizes both languages, is
generated by the following partial functions on states:

1 2 3 4 5
a – 3 2 5 4

b 2 5 – 2 –

A presentation of this semigroup is given by the relations a3 = a,
ba2 = b, b3 = babab = 0, a2bab = bab, b2ab2 = b2, (bab)2 =
bab.

The structure in J -classes is shown in Figure 2.

∗
a2 a

b ba

a2b a2ba

ab aba

∗
ab2 ab2ab ab2a ab2aba

bab2
∗
bab bab2a baba

a2b2 a2b2ab
∗
a2b2a a2b2aba

b2 b2ab
∗
b2a b2aba

abab2 abab abab2a
∗
ababa

∗
b3

Figure 2. J -classes of the transition semigroup

The recognizing morphism α : A+ → S thus maps a word to
the partial function from states to states that it defines. To simplify
notation, we still write a and b for the images of the letters a and b,
respectively.

It is easy to see that ba2 = b. Since the image of a word of L0 is
always equal to ba2ba = b2a, and since α recognizes L0, we obtain
L0 = α−1(b2a). Similarly L1 = α−1(b2ab).

To show that L0 and L1 are not FO-separable, we use Propo-
sition 8: we have to find an FO-indistinguishable set T ∈ I[α]
containing both b2a = α(L0) and b2ab = α(L1).

Let us explain how such a subset T of S is produced by
the algorithm. The algorithm starts with Sat0(S) consisting of
singletons. Then, notice that {a}ω = {a2} and {a}ω+1 = {a}.
Therefore, during the first saturation phase of the algorithm (1), we
add the set {a, a2} to the list of FO-indistinguishable sets.

Since Sat(S) is a subsemigroup, the algorithm also computes
X = {a, aa} · {b} = {ab, aab} as an element of Sat(S).
One can3 then compute X2 = {(ab)2, ab2, bab, a2b2}, X3 =
{b3, (ab)2b, ab2ab, bab2, a2b2ab}, and X4 = {b3} ∪ X2, so that
X8 = X4. Set Y = Xω ∪ Xω+1 = X4 ∪ X5 = X2 ∪ X3.
By (1), Y ∈ Sat2(S). Observe that {bab, bab2} ⊂ Y . Now,
{b2a, b2ab} ⊂ {b} · {bab, bab2} · {a, a2} ⊂ {b} · Y · {a, a2}
which belongs to Sat2(S) since it is a subsemigroup of 2S .

B. Proof of Proposition 24
In this appendix, we prove Proposition 24 in Section 7. We recall
the proposition below.

Proposition 24. Let S be a subsemigroup of 2S , then ↓ Sat∗(S) =
↓Sat∗G(S) = ↓Sat∗H(S).

We prove that ↓ Sat∗(S) ⊆ ↓ Sat∗H(S) ⊆ ↓ Sat∗G(S) ⊆
↓Sat∗(S). Let us first prove that ↓Sat∗(S) ⊆ ↓ Sat∗H(S).

↓Sat∗(S) ⊆ ↓Sat∗H(S). We prove that for any T ∈ Sat∗(S)
there exists T ′ ∈ Sat∗H(S) such that T ⊆ T ′. It is then immediate
by definition of ↓ that ↓Sat∗(S) ⊆ ↓ Sat∗H(S).

Set T ∈ Sat∗(S). Then T ∈ Sati(S) for some i ∈ N. We
proceed by induction on i. If i = 0, then T ∈ Sat0(S) = S =
Sat0

H(S). Assume now that i > 0. By definition, T belongs to the
semigroup generated by

Sati−1(S) ∪ {Rω ∪Rω+1 | R ∈ Sati−1(S)}.
The only nontrivial case is when T = Rω ∪ Rω+1 for some
R ∈ Sati−1(S). By induction hypothesis, there exists R′ ∈
Sat∗H(S) such that R ⊆ R′. Observe that (R′)ω+1 and (R′)ω

are H -equivalent elements in the semigroup Sat∗H(S), and are
therefore both contained in some H -class H ⊆ Sat∗H(S). By
definition of Sat∗H(S), we then have THU ∈ Sat∗H(S). Hence,
T = Rω ∪Rω+1 ⊆ (R′)ω ∪ (R′)ω+1 ⊆ THU ∈ Sat∗H(S), which
ends the proof for this inclusion.

↓Sat∗H(S) ⊆ ↓Sat∗G(S). We prove that Sat∗H(S) ⊆ Sat∗G(S).
Let T ∈ Sat∗H(S). Then T ∈ SatiH(S) for some i ∈ N. To prove
that T ∈ Sat∗G(S), we proceed by induction on i. If i = 0, then the
result is clear since Sat0

H(S) = S = Sat0
G(S). Assume now that

i > 0. By definition, T belongs to the semigroup generated by

Sati−1
H (S) ∪ {THU | H is an H -class in Sati−1

H (S)}.
The only nontrivial case is when T = THU for some H -class
H of Sati−1

H (S). We claim that either H is a singleton, or there
exists a group G in Sati−1

H (S) and R ∈ Sati−1
H (S) such that

H = R · G. Let us first show how to use this claim to deduce

3 These computations were checked using the semigroup program available
at http://www.liafa.jussieu.fr/~jep/semigroupes.html

http://www.liafa.jussieu.fr/~jep/semigroupes.html

that T = THU belongs to Sat∗G(S). If H is a singleton {H}
with H ∈ Sati−1

H (S), by induction H ∈ Sati−1
G (S), and so

T = THU = H ∈ Sat∗G(S). Otherwise, again by induction, R
belongs to Sat∗G(S) and G is a group in Sat∗G(S). By definition
of Sat∗G(S), we have TGU ∈ Sat∗G(S). Hence, since Sat∗G(S) is a
semigroup, we have T = THU = R · TGU ∈ Sat∗G(S).

It remains to prove the claim (which actually is not specific to
subsemigroups of a semigroup of subset): every H -class H of a
semigroup T is either a singleton, or of the form R · G, for R ∈ T
and G a group in T. Let Stab = {T ∈ T | H · T = H}. If H is
not a singleton, then Green’s Lemma implies that Stab is nonempty,
and therefore it is a subsemigroup of T. Let G be an H -class of
its minimal ideal. By standard results in semigroup theory, G is a
group. Let us check that H = H · G, for any H ∈ H. Indeed,
let H ∈ H and let E be the identity of G. Since E ∈ Stab, we
have H = H ′E for some H ′ ∈ H, and so HE = H . Let now
H1 ∈ H. By definition, we have H1 = H · X for some X ∈ T.
Note that since G is in the minimal ideal, we haveEXE ∈ G. Hence
H1 = H1E = HXE = H(EXE) ∈ HG.

↓Sat∗G(S) ⊆ ↓Sat∗(S). Assume now that T ∈ Sat∗G(S),
we construct T ′ ∈ Sat∗(S) such that T ⊆ T ′. By definition,
T ∈ SatiG(S) for some i. We proceed by induction on i. When
i = 0 the result is immediate as for the previous inclusions. Assume
now that i > 0. Then T is in the subsemigroup generated by

Sati−1
G (S) ∪ {TGU | G ⊆ Sati−1

G (S) and G is a group}

Again, the only non-trivial case is when T = TGU for G a
group in Sati−1

G (S). Set G = {T1, . . . , Tn} with Ti ∈ Sati−1
G (S)

and let 1G be the identity element of G. Since G is a group, for
all i, Tωi = 1G. In particular this means that for all i, Ti =
Tω1 · · ·Tωi−1T

ω+1
i Tωi+1 · · ·Tωn . By combining these equalities, we

get

TGU = T1 ∪ · · · ∪ Tn ⊆ (Tω1 ∪ Tω+1
1) · · · (Tωn ∪ Tω+1

n)

By induction hypothesis, we know that for all i, there exists
T ′i ∈ Sat∗(S) such that Ti ⊆ T ′i . By definition of Sat this means
that for all i, Ri = T ′ωi ∪ T ′ω+1

i ∈ Sat∗(S). Moreover, since
Sat∗(S) is a semigroup, it also contains T ′ = R1 · · ·Rn. By
definition, we have TGU ⊆ T ′ ∈ Sat∗(S).

C. Proof of Proposition 29
In this appendix, we prove Proposition 29. Recall that we work with
a morphism α : A→ S into a finite ω-semigroup S = (S+, S∞).

Proposition 29. Let ` = |A|2|S|
2

+1 and R = (R+,R∞) the sub-
ω-semigroup of 2S generated by I+[α]. Then I∞[α] = I∞` [α] =
↓R∞.

As for the finite setting, we prove that: I∞[α] ⊆ I∞` [α] ⊆
↓R∞ ⊆ I∞[α]. By Fact 25, we already know that I∞[α] ⊆
I∞` [α]. Moreover, we know from Fact 6 that I[α] is a sub-
ω-semigroup. Therefore, by definition, R∞ ⊆ I∞[α] whence
↓R∞ ⊆ I∞[α]. It remains to prove the more difficult I∞` [α] ⊆
↓R∞ inclusion. We devote the remainder of this appendix to this
proof.

The proof is done by generalizing Proposition 12 and its proof
to the ω-language setting. We state this generalization now:

Proposition 31. Let (S+, S∞) be a sub-ω-semigroup of 2S and let
β : B→ (S+, S∞) be a surjective morphism. Set (U+,U∞) as the
sub-ω-semigroup of 2S generated by Sat∗(S+).

Set k > |B|2|TS+U|2 + 1, then for any≡k-ω-class τ , Tβ(τ)U ∈
↓U∞.

Before proving Proposition 31, we first explain how to use it
to prove that I∞` [α] ⊆ ↓R∞. Set T ∈ I∞` [α], by definition there
exists an ≡`-ω-class τ such that T ⊆ Tα(τ)U.

Recall that (α(A+), α(A∞)) can be viewed as sub-ω-semigroup
of 2S. Set β : A → (α(A+), α(A∞)) such that β(w) =
{α(w)}. Let (U+,U∞) be the sub-ω-semigroup of 2S generated by
Sat∗(α(A+)). By choice of ` we can apply Proposition 31 to β, τ
and we get Tβ(τ)U ∈ ↓U∞. Moreover, observe that by Proposi-
tion 9, we already know that Sat∗(α(A+)) ⊆ I+[α]. In particular,
this means that ↓U∞ ⊆ ↓R∞. Hence we have Tβ(τ)U ∈ ↓R∞
and therefore T ∈ ↓R∞ which terminates the proof.

It remains to prove Proposition 31, this is done by generalizing
the argument for Proposition 12.

Proof. As for Proposition 12, we work by induction on the index
of S+ and the size of B. However, in this case, several inductive
arguments are now replaced by an application of Proposition 12
as a subresult. Again, we divide the proof in three parts. We
first investigate the case |B| = 1 and then distinguish two cases
depending on the tameness of β.

Observe that when |B| = 1, B∞ is a singleton: the word b∞.
By surjectivity, this means that S∞ is also a singleton and the result
is immediate. Assume now that |B| > 2 and recall that we say
that β is tame if for all b ∈ B and all t ∈ TS+U, there exists
R`, Rr ∈ S+ such that t ∈ β(b) ·Rr and t ∈ R` ·β(b). Notice that
the tameness property remains unchanged from the finite case and
is therefore only a property of the mapping β : B+ → S+. As for
Proposition 12 we distinguish two cases depending on whether β is
tame or not.

C.1 Case 1: β is tame
In the same case, we saw in the proof of Proposition 12 that
TS+U ∈ Sat∗(S+). By surjectivity of β it is immediate that
(TS+U)∞ = TS∞U. Therefore, TS∞U ∈ U∞. We conclude that
for any ω-class τ of ω-words, Tβ(τ)U ⊆ TS∞U ∈ U∞ which
terminates this case.

C.2 Case 2: β is not tame
By hypothesis on β, there exists b ∈ B, and t ∈ TS+U, such that
there exists no Rr ∈ S+ verifying t ∈ β(b) · Rr or no R` ∈ S+

verifying t ∈ R` · β(b). By symmetry, we assume that we are in the
first case, i.e., there exists no Rr ∈ S+ verifying t ∈ β(b) ·Rr . We
fix t and b as these objects for the rest of this proof.

Set τ a ≡k-ω-class. We need to construct Rτ ∈ U∞ such that
Tβ(τ)U ⊆ Rτ . Set w some arbitrary word in τ . We distinguish
three subcases depending on the letter ’b’ occuring in w.

Subcase a: w contains finitely many b. We assume that w contains
at least one letter b (otherwise we can immediately conclude by
induction). We treat this case by splitting w into a finite prefix
that ends with the last occurrence of the finitely many b and an
infinite suffix that contains no b. The prefix can then be treated using
Proposition 12 and the suffix by induction on the size of B.

We set w = w1 · b · w2 where w2 is a ω-word that contains no
b. Set δ1 as the ≡k−1-class of w1b and δ2 as the ≡k−1-ω-class of
w2. Observe that by choice of k we can apply Proposition 12 to the
≡k−1-class δ1. This yields T1 ∈ Sat∗(S+) such that Tβ(δ1)U ⊆
T1. Moreover, since words in δ2 contain no b, we can apply the
induction hypothesis to the ≡k−1-ω-class δ2. We obtain T2 ∈ U∞
such that Tβ(δ2)U ⊆ T2. Set T = T1 · T2 ∈ U∞. A simple
Ehrenfeucht-Fraı̈ssé argument shows that any word u in τ can be
decomposed as u = u1bv2 with v1b ∈ δ1 and v2 ∈ δ2. Therefore,
Tβ(τ)U ⊆ Tβ(δ1)U · Tβ(δ2)U ⊆ T and we are done with this case.

Subcase b: w = w0b
∞. We assume that w0 is the shortest prefix

such that w = w0b
∞, i.e. w0 does not end with a b (if w0 can be

chosen empty the result is again immediate by induction).
Set δ1 as the ≡k−1-class of w0 and δ2 as the ≡k−1-ω-class of

b∞. Observe that by choice of k we can apply Proposition 12 to the
≡k−1-class δ1. This yields T1 ∈ Sat∗(S+) such that Tβ(δ1)U ⊆
T1. Moreover, since words in δ2 have an alphabet of size 1, we can
apply the induction hypothesis to the ≡k−1-ω-class δ2. We obtain
T2 ∈ U∞ such that Tβ(δ2)U ⊆ T2. Set T = T1 · T2 ∈ U∞. A
simple Ehrenfeucht-Fraı̈ssé argument shows that any word u in τ
can be decomposed as u = u0b

∞ with u0 ∈ δ1 and b∞ ∈ δ2.
Therefore, Tβ(τ)U ⊆ Tβ(δ1)U · Tβ(δ2)U ⊆ T and we are done
with this case.

Subcase c:w contains infinitely many b and does not end with a suffix
b∞. This case is a generalization of the argument we used in the
non-tame case of the proof of Proposition 12. The main difference
is that we replace induction on the size of B by an application of
Proposition 12. In particular, this means that we only use induction
on the index of S+.

Let us first observe that the assumption on w is common to all
words in τ . Indeed, having infinitely many b and ending by a suffix
b∞ can both be tested by FO(<) formulas of quantifier rank 2 and
k > 2 by definition.

Set B′ = B \ {b}, k̃ = |B′| · 2|TSU|2 + 1 and k̄ = |{b}| ·
2|TSU|2 = 2|TSU|2 . We define ∆ as the set of ≡k̃ -classes of words
over the alphabet B′ and Λ as the set of ≡k̄ -classes of words over
the alphabet {b}.

The morphism β can be restricted on the alphabet B′. It follows
by choice of k̃ that we can apply Proposition 12 to every δ ∈ ∆.
This yields the following result.
Fact 32. For all δ ∈ ∆, there exists Rδ ∈ Sat∗(S) such that
Tβ(δ)U ⊆ Rδ .

Similarly, β can be restricted on the alphabet {b}. Moreover,
since {b} is of size one, by choice of k̄ we can apply Lemma 13 to
every λ ∈ Λ and get the following stronger result.
Fact 33. For all λ ∈ Λ, Tβ(λ)U ∈ Sat∗(S).

We follow the same outline as for Proposition 12. Set R+ as
the semigroup β(b) · ↑ S+. By definition for all δ ∈ ∆ and λ ∈ Λ,
Tβ(λ)U·Rδ ∈ R+. We set T+ as the subsemigroup of R+ generated
by

{Tβ(λ)U ·Rδ | λ ∈ Λ and δ ∈ ∆}
Set (T+,T∞) as the sub-ω-semigroup generated by T+, C =

T+, C = (C+, C∞) and γ : C → (T+,T∞) as the evaluation
ω-semigroup morphism defined in the obvious way. Moreover, set
(V+,V∞) as the sub-ω-semigroup of 2S generated by Sat∗(T+).
Set k̂ = |T+| · 2|TT+U|2 + 1. Observe that Lemma 18 in the proof
of Proposition 12 can be reused in order to get the following result
(note that this is where the hypothesis on b and t is used).
Fact 34. T+ has strictly smaller index than S+.

By choice of k̂, this means that we can apply induction on ≡k̂ -
ω-classes for the morphism γ. Moreover, by Lemma 19, V+ =
Sat∗(T+) ⊆ Sat∗(S+) = U+. By definition, this generalizes to
U∞ and V∞.

Lemma 35. V∞ ⊆ U∞.

We now define a ≡k̂-ω-class τ̂ over C. By hypothesis, w, there
exists and infinite sequence of naturals n > 0 andm1, . . . ,mn, · · · >
1 such that w can be uniquely decomposed as:

w = w0 · bm1 · w1 · bm2 · w2 · bm3 · w3 · · ·

Such that w0 is a (possibly empty) word in B′∗ and w1, w2, . . .
are (non-empty) words inB′+. We set ŵ as the ω-word c1c2c3 · · · ∈
C∞ defined as follows. For all i > 1, set δi as the ≡k̃ -class of the
word wi and λi as the ≡k̄ -class of the words bmi . For all i, we set
ci = Tβ(λi)U ·Rδi ∈ C. By construction, we have the following
result
Fact 36. β(bm1 · w1 · bm2 · w2 · bm3 · w3 · · ·) ⊆ γ(ŵ).

We finish by setting τ̂ as the ≡k̂ -ω-class of the ω-word ŵ.
Observe that τ̂ does not take into account the prefix w0. Therefore,
we also fix δ ∈ ∆ as the ≡k̃ -class of the word w0.

As in the finite setting, we can prove that τ̂ and δ do not depend
on the choice of w.

Lemma 37. Let u, v be ω-words in τ , then û ≡k̂ v̂ and u0 ≡k̃ v0.

Proof. This is proved using an Ehrenfeucht-Fraı̈ssé argument that is
identical to the one used in Lemma 21.

It now remains to generalize Lemma 22.

Lemma 38. Tβ(τ)U ⊆ Tβ(δ)U · Tγ(τ̂)U.

Proof. Let s ∈ Tβ(τ)U. By definition there exists u ∈ τ such that
s ∈ β(u). Recall that by construction of û, the word u can be
uniquely decomposed as

u = u0 · bk1 · u1 · bk2 · u2b
k3 · u3 · · ·

Set S0 = β(u0) and T = β(bk1 · u1 · bk2 · u2 · · ·). As before,
we prove that S0 ⊆ Tβ(δ)U and T ⊆ Tγ(τ̂)U, which ends the proof
since s ∈ S0 · T .

For S0 ∈ Tβ(δ)U, this is immediate from Lemma 37. For T ,
it follows from Fact 36 that T ⊆ γ(û). Moreover, by Lemma 37,
û ∈ τ̂ , therefore, T ⊆ Tγ(τ̂)U.

We can now finish the proof. By Fact 32, there exists Rδ ∈
Sat∗(S+) such that Tβ(δ)U ⊆ Rδ . By Fact 34 the index of T+ is
strictly smaller than the index of S+, therefore, by choice of k̂, we
can apply the induction hypothesis on τ̂ . This yields a set P ∈ V∞
such that Tγ(τ̂)U ⊆ P .

By Lemma 35, we have P ∈ U∞. SetRτ = Rδ ·P . Observe that
by definition of Rτ ∈ V∞. Furthermore, Tβ(δ)U · Tγ(τ̂)U ⊆ Rδ ·
P = Rτ . It then follows from Lemma 38 that Tβ(τ)U ⊆ Rτ .

	Introduction
	Preliminaries
	First-Order Logic and Separation
	FO-indistinguishable Sets for a Morphism
	Definition and reduction from the separation problem
	An algorithm to compute FO-indistinguishable sets
	Example 1, contd.

	Correctness of the Algorithm
	Completeness of the Algorithm
	Special Case: |B| = 1.
	Case 1: beta is tame
	Case 2: beta is not tame.

	Alternate Algorithms
	Separation for Infinite Words
	Preliminary Definitions
	FO-indistinguishable sets for omega languages.
	An algorithm to compute FO-indistinguishable sets

	Conclusion
	Running the Example in Section 4
	Proof of Proposition 24
	Proof of Proposition 29
	Case 1: is tame
	Case 2: is not tame

