Positive and monotone fragments of FO and LTL

Denis Kuperberg, Quentin Moreau
CNRS, LIP, ENS Lyon, Plume Team

ATLAS, 23 April 2024

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

Semantics of φ : Structure $\left(X, R_{1}, \ldots, R_{n}\right)$ is accepted or rejected.

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

Semantics of φ : Structure (X, R_{1}, \ldots, R_{n}) is accepted or rejected.
Example: For directed graphs, signature $=$ one binary predicate E.

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.
What about the converse ?

Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.
What about the converse ?
Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize \rightarrow replace by positive φ, syntactic condition.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg.

Only true if we accept infinite structures.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg.

\triangleOnly true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years...

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg.
Only true if we accept infinite structures.
What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon's theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard
- [Stolboushkin 1995]

EF games on grid-like structures, involved

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg.
Only true if we accept infinite structures.
What happens if we consider only finite structures ?
This was open for 28 years...
Theorem: Lyndon's theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard
- [Stolboushkin 1995]

EF games on grid-like structures, involved

- [K. 2021,2023]

EF games on words, elementary

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

- $x \leq y$ means position x is before position y.
- $a(x)$ means position x is labelled by the letter a

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

- $x \leq y$ means position x is before position y.
- $a(x)$ means position x is labelled by the letter a

Examples of formulas:

- $\exists x . a(x)$: words containing a. Language $A^{*} a A^{*}$.
- $\exists x, y \cdot(x \leq y \wedge a(x) \wedge b(y))$. Language $A^{*} a A^{*} b A^{*}$.
$-\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

- $x \leq y$ means position x is before position y.
- $a(x)$ means position x is labelled by the letter a

Examples of formulas:

- $\exists x . a(x)$: words containing a. Language $A^{*} a A^{*}$.
- $\exists x, y \cdot(x \leq y \wedge a(x) \wedge b(y))$. Language $A^{*} a A^{*} b A^{*}$.
$-\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.

Theorem

First-order languages form a strict subclass of regular languages.
Example: $(a a)^{*}$ is not FO-definable.

Background: FO-definable languages

FO-definable languages are well-understood.

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$

Background: FO-definable languages

FO-definable languages are well-understood.

```
Theorem (Schützenberger, McNaughton, Papert)
```

> A language $L \subseteq A^{*}$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$

Intuition: FO languages are "Aperiodic": cannot count modulo

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$
Intuition: FO languages are "Aperiodic": cannot count modulo \underline{L} aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^{*}$:

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

\Leftrightarrow Counter-free automaton: No cycle of the form:

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$
Intuition: FO languages are "Aperiodic": cannot count modulo L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^{*}$:

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

\Leftrightarrow Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same ($\operatorname{Preds}=\Sigma$ or A).

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same ($\operatorname{Preds}=\Sigma$ or A).
- We no longer have $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same ($\operatorname{Preds}=\Sigma$ or A).
- We no longer have $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$. \rightarrow Negation necessary for full FO.

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x . \varphi| \forall x . \varphi
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x . \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " \neg a").

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a$ ").
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x \cdot \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a "$).
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

Motivation: abstraction of many logics not closed under \neg.

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x \cdot \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a$ ").
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

Motivation: abstraction of many logics not closed under \neg.
Question [Colcombet]: FO \& monotone $\stackrel{?}{\Rightarrow} \mathrm{FO}^{+}$

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}$.

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \bigcup A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}$. Monotone

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{c}a \\ b \\ c\end{array}\right) A^{*}$. Monotone
Lemma: L is FO-definable.

A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+ ${ }^{+}$definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{c}a \\ b \\ c\end{array}\right) A^{*}$. Monotone
Lemma: L is FO-definable.

Proof:

is counter-free. (no cycle labelled $v^{\geq 2}$)

To prove L is not FO^{+}-definable: Ehrenfeucht-Fraïssé games.

Can we decide membership?

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?

Can we decide membership?

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?
Theorem [K. 2021, 2023]
FO^{+}-definability is undecidable for regular languages.

Can we decide membership?

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?
Theorem [K. 2021, 2023]
FO^{+}-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality:
A deterministic TM M is mortal if there a uniform bound n on the runs of M from any configuration.

Undecidable [Hooper 1966].

Corollaries: lifting the counter-example

Monotone-FO $\neq \mathrm{FO}^{+}$, and FO^{+}membership undecidable in the following settings:

- Finite graphs, edge predicate [K. 2023]
- Finite structures, arbitrary predicates [K. 2021,2023]
- Words indexed by linear order, finiteness predicate
- Cost functions on finite words, boundedness predicate

Corollaries: lifting the counter-example

Monotone-FO $\neq \mathrm{FO}^{+}$, and FO^{+}membership undecidable in the following settings:

- Finite graphs, edge predicate [K. 2023] New
- Finite structures, arbitrary predicates [K. 2021,2023] simpler than [Ajtai Gurevich 1987, Stolboushkin 1995]
- Words indexed by linear order, finiteness predicate New
- Cost functions on finite words, boundedness predicate contradicts [K. 2011, 2014]

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$
- $\forall \square_{x, y} .(x \rightarrow y) \vee(y \rightarrow x)$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b} \rightarrow x_{c}$
$-\forall \square_{x, y} .(x \rightarrow y) \vee(y \rightarrow x)$
- ψ^{+}is a disjunction of excess edges:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$
$-\forall \square_{x, y} .(x \rightarrow y) \vee(y \rightarrow x)$
- ψ^{+}is a disjunction of excess edges:
- x_{0} — x_{0},

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$
$-\forall \square_{x, y} .(x \rightarrow y) \vee(y \rightarrow x)$
- ψ^{+}is a disjunction of excess edges:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$. Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$
- $\forall^{\square}{ }_{x, y} \cdot(x \rightarrow y) \vee(y \rightarrow x)$
- ψ^{+}is a disjunction of excess edges:

Final Formula: $\exists x_{a}, x_{b}, x_{c} \cdot\left(\psi^{-} \wedge\left(\psi_{L} \vee \psi^{+}\right)\right)$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow \exists x_{a} \longrightarrow x_{b}$
$-\forall \square_{x, y} .(x \rightarrow y) \vee(y \rightarrow x)$
- ψ^{+}is a disjunction of excess edges:

Final Formula: $\exists x_{a}, x_{b}, x_{c} \cdot\left(\psi^{-} \wedge\left(\psi_{L} \vee \psi^{+}\right)\right)$
Left as exercise: Same with undirected graphs.

Back to words: Link with LTL

LTL syntax:

$$
\varphi, \psi::=\perp|\top| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \varphi \mathrm{U} \psi|\varphi \mathrm{R} \psi| \neg \varphi .
$$

UTL syntax:

$$
\varphi, \psi::=\perp|\mathrm{T}| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \mathrm{Y} \phi|\mathrm{P} \varphi| \mathrm{F} \varphi|\mathrm{H} \varphi| \mathrm{G} \varphi \mid \neg \varphi .
$$

Back to words: Link with LTL

LTL syntax:

$$
\varphi, \psi::=\perp|\top| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \varphi \mathrm{U} \psi|\varphi \mathrm{R} \psi| \neg \varphi .
$$

UTL syntax:

$$
\varphi, \psi::=\perp|\top| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \mathrm{Y} \phi|\mathrm{P} \varphi| \mathrm{F} \varphi|\mathrm{H} \varphi| \mathrm{G} \varphi \mid \neg \varphi .
$$

Theorem

- $\mathrm{FO}=\mathrm{LTL}=\mathrm{FO}_{3}$ [Kamp 1968]
- $\mathrm{FO}_{2}[S,<]=$ UTL [Etessami, Vardi, Wilke 1997]
- $\mathrm{FO}_{2}[<]=\mathrm{UTL}[P, F, G, H]$ [Etessami, Vardi, Wilke 1997]

Back to words: Link with LTL

LTL syntax:

$$
\varphi, \psi::=\perp|\top| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \varphi \mathrm{U} \psi|\varphi \mathrm{R} \psi| \neg \varphi .
$$

UTL syntax:

$$
\varphi, \psi::=\perp|\top| a|\varphi \wedge \psi| \varphi \vee \psi|\mathrm{X} \varphi| \mathrm{Y} \phi|\mathrm{P} \varphi| \mathrm{F} \varphi|\mathrm{H} \varphi| \mathrm{G} \varphi \mid \neg \varphi .
$$

Theorem

- $\mathrm{FO}^{+}=\mathrm{LTL}^{+}=\mathrm{FO}_{3}^{+}$[K.,Moreau]
- $\mathrm{FO}_{2}^{+}[S,<]=\mathrm{UTL}^{+}$[K.,Moreau]
- $\mathrm{FO}_{2}^{+}[<]=\mathrm{UTL}^{+}[P, F, G, H][K ., M o r e a u]$

Refining the counter-example language

What is needed to obtain $\mathrm{FO}^{+} \neq \mathrm{FO} \cap$ Monotone?

Refining the counter-example language

What is needed to obtain $\mathrm{FO}^{+} \neq \mathrm{FO} \cap$ Monotone?

Theorem (K.,Moreau)
There is a counter-example language definable in

- FO with one unary predicate (instead of 3)
- FO[between] : bet (a, x, y) means $\exists z$ between x and y s.t. $a(z)$.

Refining the counter-example language

What is needed to obtain $\mathrm{FO}^{+} \neq \mathrm{FO} \cap$ Monotone?

Theorem (K.,Moreau)
There is a counter-example language definable in

- FO with one unary predicate (instead of 3)
- FO[between] : bet (a, x, y) means $\exists z$ between x and y s.t. $a(z)$.

Theorem (K.,Moreau)
There is no counter-example language definable in $\mathrm{FO}_{2}[<]$.
l.e. $\mathrm{FO}_{2}[<] \cap$ Monotone $\subset \mathrm{FO}^{+}$.

Further work

Open problems::

- $\mathrm{FO}_{2} \cap$ Monotone $\stackrel{?}{=} \mathrm{FO}_{2}^{+}$
- For which fragments $F \subset$ FO: $\quad F \cap$ Monotone $=F^{+}$
- Other kind of counterexamples ?

Further work

Open problems::

- $\mathrm{FO}_{2} \cap$ Monotone $\stackrel{?}{=} \mathrm{FO}_{2}^{+}$
- For which fragments $F \subset$ FO: $\quad F \cap$ Monotone $=F^{+}$
- Other kind of counterexamples ?

Thanks for your attention!

