Positive and monotone fragments of FO and LTL

Denis Kuperberg, Quentin Moreau

CNRS, LIP, ENS Lyon, Plume Team

ATLAS, 23 April 2024
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:

\[
\varphi, \psi ::= P_i(x_1, \ldots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi
\]
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:
\[
\varphi, \psi := P_i(x_1, \ldots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi
\]

Semantics of \(\varphi\):
Structure \((X, R_1, \ldots, R_n)\) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate \(E\).

Graph class: Cliques

Formula: \(\varphi = \forall x. \forall y. E(x, y)\)

Formula: \(\psi = \neg \exists x. \forall y. E(x, y)\)

Example graph

Model of \(\varphi\)

Model of \(\psi\)
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:

\[
\varphi, \psi := P_i(x_1, \ldots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi
\]

Semantics of \(\varphi\):
Structure \((X, R_1, \ldots, R_n)\) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate \(E\).

<table>
<thead>
<tr>
<th>Graph class</th>
<th>Cliques</th>
<th>No node points to everyone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(\varphi = \forall x. \forall y. E(x, y))</td>
<td>(\psi = \neg \exists x. \forall y. E(x, y))</td>
</tr>
</tbody>
</table>

Example graph

Model of \(\varphi\)
Model of \(\psi\)
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no \(\neg \)

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: \(\phi \) positive \(\Rightarrow \) \(\phi \) monotone.

What about the converse?

Motivation: Logics with fixed points. Fixed points can only be applied to monotone \(\phi \).

Hard to recognize \(\rightarrow \) replace by positive \(\phi \), syntactic condition.
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no \neg

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone $=$ closed under adding edges.

Example: graphs containing a triangle.
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no \neg

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive \Rightarrow φ monotone.
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no \(\neg \)

Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: \(\varphi \) positive \(\Rightarrow \) \(\varphi \) monotone.

What about the converse?
Positive versus Monotone

Goal: Understand the role of negation in FO, any signature.

Positive formula: no \(\neg\)

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: \(\varphi\) positive \(\Rightarrow\) \(\varphi\) monotone.

What about the converse?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone \(\varphi\).
Hard to recognize \(\Rightarrow\) replace by positive \(\varphi\), syntactic condition.
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg.
Lyndon’s theorem

Theorem (Lyndon 1959)

If \(\varphi \) is monotone then \(\varphi \) is equivalent to a positive formula.

On graph classes: \(\text{FO-definable} + \text{monotone} \Rightarrow \text{FO-definable without} \ \neg. \)

⚠️ Only true if we accept \textbf{infinite} structures.
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg.

⚠️ Only true if we accept infinite structures.

What happens if we consider only finite structures?

This was open for 28 years...
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable $+$ monotone \Rightarrow FO-definable without \neg.

⚠️ Only true if we accept infinite structures.

What happens if we consider only finite structures?

This was open for 28 years...

Theorem: Lyndon’s theorem fails on finite structures:

- [Ajtaı, Gurevich 1987]
 lattices, probas, number theory, complexity, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved
Lyndon’s theorem

Theorem (Lyndon 1959)

If \(\varphi \) is monotone then \(\varphi \) is equivalent to a positive formula.

On graph classes: FO-definable + monotone \(\Rightarrow \) FO-definable without \(\neg \).

⚠ Only true if we accept infinite structures.

What happens if we consider only finite structures?
This was open for 28 years…

Theorem: Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probas, number theory, complexity, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved

- [K. 2021, 2023]
 EF games on words, elementary
FO on words, the usual way

Words on alphabet $A = \{a, b, \ldots\}$: signature (\leq, a, b, \ldots)

$x \leq y$ means position x is before position y.

$a(x)$ means position x is labelled by the letter a
FO on words, the usual way

Words on alphabet $A = \{a, b[, \ldots]\}$: signature $(\leq, a, b[, \ldots])$

\[
\begin{array}{cccccc}
a & b & a & a & b \\
\bullet & \Rightarrow & \bullet & \Rightarrow & \bullet & \Rightarrow & \bullet \\
\end{array}
\]

- $x \leq y$ means position x is before position y.
- $a(x)$ means position x is labelled by the letter a

Examples of formulas:

- $\exists x. a(x)$: words containing a. Language $A^* aA^*$.
- $\exists x, y.(x \leq y \land a(x) \land b(y))$. Language $A^* aA^* bA^*$.
- $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.
FO on words, the usual way

Words on alphabet $A = \{a, b, \ldots\}$: signature (\leq, a, b, \ldots)

\[
\begin{array}{cccccc}
 a & b & a & a & b \\
 \bullet & \bullet & \bullet & \bullet & \bullet
\end{array}
\]

- $x \leq y$ means position x is before position y.
- $a(x)$ means position x is labelled by the letter a

Examples of formulas:

- $\exists x . a(x)$: words containing a. Language $A^* a A^*$.
- $\exists x, y . (x \leq y \land a(x) \land b(y))$. Language $A^* a A^* b A^*$.
- $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.

Theorem

First-order languages form a strict subclass of regular languages.

Example: $(aa)^*$ is not FO-definable.
Background: FO-definable languages

FO-definable languages are well-understood.
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language \(L \subseteq A^* \) is FO-definable iff it is definable by:

- Star-free expression \(\iff \) LTL \(\iff \) counter-free automaton \(\iff \) ...
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by:

Star-free expression \iff LTL \iff counter-free automaton \iff ...

Intuition: FO languages are “Aperiodic”: cannot count modulo L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^nw \in L \iff uv^{n+1}w \in L.$$
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by:
Star-free expression \iff LTL \iff counter-free automaton $\iff \ldots$

Intuition: FO languages are “Aperiodic”: cannot count modulo

L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^n w \in L \iff uv^{n+1} w \in L.$$

\iff Counter-free automaton: No cycle of the form:
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by:
- Star-free expression \iff LTL \iff counter-free automaton \iff ...

Intuition: FO languages are “Aperiodic”: cannot count modulo

L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^n w \in L \iff uv^{n+1} w \in L.$$

\iff Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

Let us drop the second constraint: \(a, b, \ldots\) independent.
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

Let us drop the second constraint: \(a, b, \ldots\) independent.

→ Words on alphabet \(\mathcal{P}(\{a, b, \ldots\})\):

\[
\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification (LTL, \ldots): independent signals can be true or false simultaneously.
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

Let us drop the second constraint: \(a, b, \ldots\) independent.

→ Words on alphabet \(\mathcal{P}(\{a, b, \ldots\})\):

\[
\begin{align*}
\emptyset & \quad \{b\} & \quad \{a, b\} & \quad \emptyset & \quad \{b\} \\
\bullet & \quad \rightarrow & \quad \bullet
\end{align*}
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification \((\text{LTL}, \ldots)\):
 independent signals can be true or false simultaneously.

- FO languages on alphabet \(A\) are the same \((\text{Preds}=\Sigma\) or \(A\)).
For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

\[
\begin{align*}
\leq & \text{ is a total order} \\
(a, b, \ldots) & \text{ form a partition of } X.
\end{align*}
\]

Let us drop the second constraint: \(a, b, \ldots\) independent.

\[
\text{Words on alphabet } \mathcal{P}(\{a, b, \ldots\}): \quad \emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}
\]

\[
\bullet \quad \rightarrow \quad \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \quad \bullet \quad \rightarrow \quad \bullet
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

\[
\begin{align*}
\text{Useful e.g. in verification (LTL, \ldots):} \\
&\text{independent signals can be true or false simultaneously.}
\end{align*}
\]

\[
\text{FO languages on alphabet } A \text{ are the same (Preds=}\Sigma\text{ or } A). \\
\text{We no longer have } -a(x) \equiv \bigvee_{\beta \neq a} \beta(x).
\]
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

Let us drop the second constraint: \(a, b, \ldots\) independent.

\(\rightarrow\) Words on alphabet \(\mathcal{P}(\{a, b, \ldots\})\):

\[
\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\} \\
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification (LTL, \ldots): independent signals can be true or false simultaneously.

- FO languages on alphabet \(A\) are the same (Preds=\(\Sigma\) or \(A\)).

- We no longer have \(-a(x) \equiv \bigvee_{\beta \neq a} \beta(x)\).
 \(\rightarrow\) Negation necessary for full FO.
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$

Remark: \emptyset^* undefinable in FO^+ (cannot say "\$\neg a\$").

More generally: FO^+ can only define monotone languages:

$u \alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u \beta v \in L$

Motivation: abstraction of many logics not closed under \neg. Question [Colcombet]: $\text{FO} \& \text{monotone} \Rightarrow \text{FO}^+$
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$

Example: On $\Sigma = \{a, b\}$:

$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto (A^* \{a\} A^* \{b\} A^*) \cup (A^* \{a, b\} A^*)$
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Example: On $\Sigma = \{a, b\}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$$

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a$").
The **FO\(^+\)** logic: positive formulas

FO\(^+\) Logic: \(a\) ranges over \(\Sigma\), no \(\neg\)

\[\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi\]

Example: On \(\Sigma = \{a, b\}\):

\[\exists x, y. (x \leq y) \land a(x) \land b(y) \rightsquigarrow (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)\]

Remark: \(\emptyset^*\) undefinable in FO\(^+\) (cannot say "\(\neg a\)").

More generally: FO\(^+\) can only define **monotone languages**:

\[u\alpha v \in L \text{ and } \alpha \subseteq \beta \Rightarrow u\beta v \in L\]
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Example: On $\Sigma = \{a, b\}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \implies (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$$

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a$").

More generally: FO^+ can only define monotone languages:

$$u\alpha v \in L \text{ and } \alpha \subseteq \beta \implies u\beta v \in L$$

Motivation: abstraction of many logics not closed under \neg.
The \(\text{FO}^+ \) logic: positive formulas

\(\text{FO}^+ \) Logic: \(a \) ranges over \(\Sigma \), no \(\neg \)

\[\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi \]

Example: On \(\Sigma = \{a, b\} \):

\[\exists x, y. (x \leq y) \land a(x) \land b(y) \rightsquigarrow (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*) \]

Remark: \(\emptyset^* \) undefinable in \(\text{FO}^+ \) (cannot say "\(\neg a \)").

More generally: \(\text{FO}^+ \) can only define monotone languages:

\[u\alpha v \in L \text{ and } \alpha \subseteq \beta \Rightarrow u\beta v \in L \]

Motivation: abstraction of many logics not closed under \(\neg \).

Question [Colcombet]: FO & monotone \(\Rightarrow \text{FO}^+ \)
A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO^+-definable.
A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a_b), (b_c), (c_a), (a \, b \, c)\}$. Let $a^\uparrow = \{a, (a_b), (c_a)\}$.
A counter-example language

Theorem [K. 2021, 2023]

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, (\frac{a}{b}), (\frac{b}{c}), (\frac{c}{a}), (\frac{a}{b}c), (\frac{b}{c}a), (\frac{c}{a}b)\}$. Let $a^\uparrow = \{a, (\frac{a}{b}), (\frac{c}{a})\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^*(\frac{a}{b}c)A^*$.
A counter-example language

Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, (\frac{a}{b}), (\frac{b}{c}), (\frac{c}{a}), (\frac{a}{b}c), (\frac{b}{c}a), (\frac{c}{a}b)\}$. Let $a^\uparrow = \{a, (\frac{a}{b}), (\frac{b}{c})\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* (\frac{a}{b}c) A^*$. Monotone
A counter-example language

Theorem [K. 2021, 2023]

There is \(L \) monotone, FO-definable but not \(\text{FO}^+ \)-definable.

Alphabet \(A = \{ \emptyset, a, b, c, \,(a)_b, \,(b)_c, \,(c)_a, \,(a_b)_c \} \). Let \(a^\uparrow = \{ a, (a)_b, (c)_a \} \).

Language \(L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* (a_b)_c A^* \). Monotone

Lemma: \(L \) is FO-definable.

Proof: is counter-free. (no cycle labelled \(v^{\geq 2} \))
A counter-example language

Theorem [K. 2021,2023]

There is \(L \) monotone, FO-definable but not FO\(^+\)-definable.

Alphabet \(A = \{\emptyset, a, b, c, (\frac{a}{b}), (\frac{b}{c}), (\frac{c}{a}), (\frac{a}{b}c), (\frac{b}{c}a), (\frac{c}{a}b)\} \). Let \(a^{\uparrow} = \{a, (\frac{a}{b}), (\frac{c}{a})\} \).

Language \(L = \left(a^{\uparrow}b^{\uparrow}c^{\uparrow}\right)^* \cup A^* \left(\frac{a}{b}\right) A^* \). Monotone

Lemma: \(L \) is FO-definable.

Proof: \(a^{\uparrow} \) and \(b^{\uparrow} \) is counter-free. (no cycle labelled \(v \geq 2 \))

To prove \(L \) is not FO\(^+\)-definable: Ehrenfeucht-Fraïssé games.
Can we decide membership?

Theorem

Given L regular on an ordered alphabet, it is **decidable** whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable \([Schützenberger, McNaughton, Papert]\)

Can we decide whether L is FO$^+$-definable?
Can we decide membership?

Theorem

Given L *regular on an ordered alphabet, it is* **decidable** *whether*

- L *is monotone* (e.g. automata inclusion)
- L *is* FO-definable [*Schützenberger, McNaughton, Papert*]

Can we decide whether L is FO^+-definable?

Theorem [K. 2021, 2023]

FO^+-definability is **undecidable** for regular languages.
Can we decide membership?

Theorem
Given L regular on an ordered alphabet, it is **decidable** whether
- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO$^+$-definable?

Theorem [K. 2021, 2023]

FO$^+$-definability is **undecidable** for regular languages.

Reduction from *Turing Machine Mortality*:
A deterministic TM M is *mortal* if there a uniform bound n on the runs of M from any configuration.

Undecidable [Hooper 1966].
Corollaries: lifting the counter-example

\[\text{Monotone-FO} \neq \text{FO}^+, \text{ and FO}^+ \text{ membership undecidable} \]
in the following settings:

- Finite graphs, edge predicate [K. 2023]
- Finite structures, arbitrary predicates [K. 2021, 2023]
- Words indexed by linear order, finiteness predicate
- Cost functions on finite words, boundedness predicate
Corollaries: lifting the counter-example

\[\text{Monotone-FO} \neq \text{FO}^+, \text{and FO}^+ \text{ membership undecidable} \]
in the following settings:

- Finite graphs, edge predicate [K. 2023] New
- Finite structures, arbitrary predicates [K. 2021, 2023]
 simpler than [Ajtai Gurevich 1987, Stolboushkin 1995]
- Words indexed by linear order, finiteness predicate New
- Cost functions on finite words, boundedness predicate
 contradicts [K. 2011, 2014]
From finite words to finite graphs

Encode words into (directed) graphs, here \(ab(a)_b c \):

\[
x_a \xrightarrow{} x_b \xrightarrow{} x_c
\]

\[
\begin{array}{c}
x_a \xrightarrow{} x_b \xrightarrow{} x_c \\
\xrightarrow{} \xrightarrow{} \xrightarrow{}
\end{array}
\]

Final Formula:

\[
\exists x_a \land (\psi^- \lor (\psi^L \lor \psi^+))
\]

Left as exercise: Same with undirected graphs.
From finite words to finite graphs

Encode words into (directed) graphs, here $ab^{(a)}c$:

$$\psi_L$$ for graphs encoding words of $L = (a^* b^* c^*) \cup (A^* \begin{pmatrix} a \\ b \\ c \end{pmatrix} A^*)$.
From finite words to finite graphs

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:

$$\rightarrow$$ formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^* \binom{a}{b} A^*)$.

Rule out other graphs, in a **monotone** way:

- ψ^- is a conjunction of **edge requirements**:
From finite words to finite graphs

Encode words into (directed) graphs, here ab^a_c:

$$
\begin{array}{c}
x_a \\
\downarrow \\
x_b \\
\downarrow \\
x_c \\
\end{array}
$$

→ formula ψ_L for graphs encoding words of $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup (A^* \binom{a}{b} A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of **edge requirements**:

 $$
 \exists \begin{array}{c}
x_a \\
\downarrow \\
x_b \\
\downarrow \\
x_c \\
\end{array}
 $$

Left as exercise: Same with undirected graphs.
From finite words to finite graphs

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:

$\begin{array}{c}
\xrightarrow{\psi} \text{formula } \psi_L \text{ for graphs encoding words of } L = (a \uparrow b \uparrow c \uparrow)^* \cup (A^* \binom{a}{b} A^*). \\
\text{Rule out other graphs, in a monotone way:}
\end{array}$

$\begin{array}{c}
\quad \psi^- \text{ is a conjunction of edge requirements:}
\end{array}$

$\begin{array}{c}
\quad \exists \binom{x_a}{x_b} \xrightarrow{\psi^-} \binom{x_c}{x_a}
\end{array}$

$\begin{array}{c}
\quad \forall \square x, y. (x \rightarrow y) \lor (y \rightarrow x)
\end{array}$
Encode words into (directed) graphs, here $ab\left(\begin{smallmatrix}a \\ b \end{smallmatrix}\right)c$:

\[
\begin{array}{c}
x_a \\
\downarrow \\
\leftarrow \\
\end{array}
\rightarrow
\begin{array}{c}
x_b \\
\downarrow \\
\leftarrow \\
\end{array}
\rightarrow
\begin{array}{c}
x_c \\
\downarrow \\
\leftarrow \\
\end{array}
\]

→ formula ψ_L for graphs encoding words of $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup (A^* \left(\begin{smallmatrix}a \\ b \\ c \end{smallmatrix}\right) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $\exists x_a \rightarrow x_b \rightarrow x_c$
 - $\forall x, y. (x \rightarrow y) \lor (y \rightarrow x)$

- ψ^+ is a disjunction of excess edges:
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(a^b)c$:

→ formula ψ_L for graphs encoding words of $L = (a^b b^c)^* \cup (A^* \left(\begin{array}{c} a \\ b \\ c \end{array} \right) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $\exists x_a, x_b, x_c$
 - $\forall \Box x, y. (x \rightarrow y) \lor (y \rightarrow x)$

- ψ^+ is a disjunction of excess edges:
 - $x_a \rightarrow x_b$,
From finite words to finite graphs

Encode words into (directed) graphs, here $ab\begin{vmatrix}a \\ b \end{vmatrix}c$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup (A^* \begin{pmatrix}a \\ b \\ c \end{pmatrix} A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - \exists $\begin{array}{c}x_a \\ x_b \\ x_c \end{array}$
 - $\forall \square x, y. (x \rightarrow y) \lor (y \rightarrow x)$

- ψ^+ is a disjunction of excess edges:
 - $\begin{array}{c}x_a \\ x_b \end{array}$,
 - \square, \square, \ldots
From finite words to finite graphs

Encode words into (directed) graphs, here ab^a_c:

ψ_L for graphs encoding words of $L = (a^1b^1c^1)^* \cup (A^* \left(\frac{a}{b} \frac{b}{c} \right) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $\exists x_a, x_b, x_c$
 - $\forall \Box x, y.(x \to y) \lor (y \to x)$

- ψ^+ is a disjunction of excess edges:
 - $x_a \rightarrow x_b,$
 - \ldots

Final Formula: $\exists x_a, x_b, x_c.(\psi^- \land (\psi_L \lor \psi^+))$
From finite words to finite graphs

Encode words into (directed) graphs, here $ab \overset{a}{\underset{b}{\uparrow}} c$:

\[
\begin{array}{c}
\xymatrix{
 x_a \ar[r] & x_b \ar[r] & x_c \\
 \ar[r] & \ar[r] &
}\end{array}
\]

→ formula ψ_L for graphs encoding words of $L = (a \uparrow b \uparrow c \uparrow)^* \cup (A^* \left(\begin{array}{c} a \\ b \\ c \end{array} \right) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $\exists \ x_a \rightarrow x_b \rightarrow x_c$
 - $\forall \ x, y. (x \rightarrow y) \lor (y \rightarrow x)$

- ψ^+ is a disjunction of excess edges:
 - $\xymatrix{ \ar[r] & }$
 - $ \rightarrow \xymatrix{}, \ldots$

Final Formula: $\exists x_a, x_b, x_c. (\psi^- \land (\psi_L \lor \psi^+))$

Left as exercise: Same with undirected graphs.
Back to words: Link with LTL

LTL syntax:

\[\varphi, \psi ::= \bot \mid T \mid a \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U \psi \mid \varphi R \psi \mid \neg \varphi. \]

UTL syntax:

\[\varphi, \psi ::= \bot \mid T \mid a \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid Y\varphi \mid P\varphi \mid F\varphi \mid H\varphi \mid G\varphi \mid \neg \varphi. \]
Back to words: Link with LTL

LTL syntax:

\[\varphi, \psi ::= \bot | \top | a | \varphi \land \psi | \varphi \lor \psi | \text{X} \varphi | \varphi \text{U} \psi | \varphi \text{R} \psi | \neg \varphi. \]

UTL syntax:

\[\varphi, \psi ::= \bot | \top | a | \varphi \land \psi | \varphi \lor \psi | \text{X} \varphi | \text{Y} \varphi | \text{P} \varphi | \text{F} \varphi | \text{H} \varphi | \text{G} \varphi | \neg \varphi. \]

Theorem

1. FO = LTL = FO$_3$ [Kamp 1968]
2. FO$_2[S, <] = UTL$ [Etessami, Vardi, Wilke 1997]
3. FO$_2[<] = UTL[P, F, G, H]$ [Etessami, Vardi, Wilke 1997]
Back to words: Link with LTL

LTL syntax:

\[\varphi, \psi ::= \perp \mid T \mid a \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U \psi \mid \varphi R \psi \mid \neg \varphi. \]

UTL syntax:

\[\varphi, \psi ::= \perp \mid T \mid a \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid Y\varphi \mid P\varphi \mid F\varphi \mid H\varphi \mid G\varphi \mid \neg \varphi. \]

Theorem

- \(FO^+ = LTL^+ = FO_3^+ \) [K., Moreau]
- \(FO_2^+[S, <] = UTL^+ \) [K., Moreau]
- \(FO_2^+[<] = UTL^+[P, F, G, H] \) [K., Moreau]
Refining the counter-example language

What is needed to obtain $\text{FO}^+ \neq \text{FO} \cap \text{Monotone}$?
Refining the counter-example language

What is needed to obtain $\text{FO}^+ \neq \text{FO} \cap \text{Monotone}$?

Theorem (K., Moreau)

There is a counter-example language definable in

- FO with one unary predicate (instead of 3)
- $\text{FO}[\text{between}] : \text{bet}(a,x,y)$ means $\exists z$ between x and y s.t. $a(z)$.
Refining the counter-example language

What is needed to obtain \(\text{FO}^+ \neq \text{FO} \cap \text{Monotone} \)?

Theorem (K., Moreau)

There is a counter-example language definable in

- \(\text{FO} \) with one unary predicate (instead of 3)
- \(\text{FO}[^{\text{between}}] : \text{bet}(a,x,y) \text{ means } \exists z \text{ between } x \text{ and } y \text{ s.t. } a(z) \).

Theorem (K., Moreau)

There is no counter-example language definable in \(\text{FO}_2[<] \).
I.e. \(\text{FO}_2[<] \cap \text{Monotone} \subset \text{FO}^+ \).
Further work

Open problems:

- $\text{FO}_2 \cap \text{Monotone} \overset{?}{=} \text{FO}_2^+$
- For which fragments $F \subset \text{FO}$: $F \cap \text{Monotone} = F^+$
- Other kind of counterexamples?
Further work

Open problems:

- \(\text{FO}_2 \cap \text{Monotone} \stackrel{?}{=} \text{FO}_2^+ \)
- For which fragments \(F \subset \text{FO} \): \(F \cap \text{Monotone} = F^+ \)
- Other kind of counterexamples?

Thanks for your attention!