
Positive and monotone fragments of FO
and LTL

Denis Kuperberg, Quentin Moreau

CNRS, LIP, ENS Lyon, Plume Team

ATLAS, 23 April 2024

1/15

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

φ,ψ := Pi(x1, . . . , xki) | φ ∨ ψ | φ ∧ ψ | ¬φ | ∃x .φ | ∀x .φ

Semantics of φ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.
Example: For directed graphs, signature = one binary predicate E .

Graph class Cliques No node points to everyone

Formula φ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of φ Model of ψ

2/15

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

φ,ψ := Pi(x1, . . . , xki) | φ ∨ ψ | φ ∧ ψ | ¬φ | ∃x .φ | ∀x .φ

Semantics of φ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate E .

Graph class Cliques No node points to everyone

Formula φ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of φ Model of ψ

2/15

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

φ,ψ := Pi(x1, . . . , xki) | φ ∨ ψ | φ ∧ ψ | ¬φ | ∃x .φ | ∀x .φ

Semantics of φ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.
Example: For directed graphs, signature = one binary predicate E .

Graph class Cliques No node points to everyone

Formula φ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of φ Model of ψ

2/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Positive versus Monotone
Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive ⇒ φ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone φ.
Hard to recognize → replace by positive φ, syntactic condition.

3/15

Lyndon’s theorem
Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
▶ [Stolboushkin 1995]

EF games on grid-like structures, involved
▶ [K. 2021,2023]

EF games on words, elementary

4/15

Lyndon’s theorem
Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
▶ [Stolboushkin 1995]

EF games on grid-like structures, involved
▶ [K. 2021,2023]

EF games on words, elementary

4/15

Lyndon’s theorem
Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .

Theorem: Lyndon’s theorem fails on finite structures:
▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
▶ [Stolboushkin 1995]

EF games on grid-like structures, involved
▶ [K. 2021,2023]

EF games on words, elementary

4/15

Lyndon’s theorem
Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
▶ [Stolboushkin 1995]

EF games on grid-like structures, involved

▶ [K. 2021,2023]
EF games on words, elementary

4/15

Lyndon’s theorem
Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
▶ [Stolboushkin 1995]

EF games on grid-like structures, involved
▶ [K. 2021,2023]

EF games on words, elementary
4/15

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

▶ x ≤ y means position x is before position y .
▶ a(x) means position x is labelled by the letter a

Examples of formulas:
▶ ∃x .a(x): words containing a. Language A∗aA∗.
▶ ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.
▶ ¬a(x) ≡

∨
β ̸=a β(x).

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable.

5/15

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

▶ x ≤ y means position x is before position y .
▶ a(x) means position x is labelled by the letter a

Examples of formulas:
▶ ∃x .a(x): words containing a. Language A∗aA∗.
▶ ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.
▶ ¬a(x) ≡

∨
β ̸=a β(x).

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable.

5/15

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

▶ x ≤ y means position x is before position y .
▶ a(x) means position x is labelled by the letter a

Examples of formulas:
▶ ∃x .a(x): words containing a. Language A∗aA∗.
▶ ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.
▶ ¬a(x) ≡

∨
β ̸=a β(x).

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable.
5/15

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L ⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

6/15

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L ⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

6/15

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L ⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

6/15

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L ⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

6/15

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L ⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

6/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.

▶ Useful e.g. in verification (LTL,. . .):
independent signals can be true or false simultaneously.

▶ FO languages on alphabet A are the same (Preds=Σ or A).
▶ We no longer have ¬a(x) ≡

∨
β ̸=a β(x).

→ Negation necessary for full FO.

7/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.

→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.

▶ Useful e.g. in verification (LTL,. . .):
independent signals can be true or false simultaneously.

▶ FO languages on alphabet A are the same (Preds=Σ or A).
▶ We no longer have ¬a(x) ≡

∨
β ̸=a β(x).

→ Negation necessary for full FO.

7/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
▶ Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.

▶ FO languages on alphabet A are the same (Preds=Σ or A).
▶ We no longer have ¬a(x) ≡

∨
β ̸=a β(x).

→ Negation necessary for full FO.

7/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
▶ Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
▶ FO languages on alphabet A are the same (Preds=Σ or A).

▶ We no longer have ¬a(x) ≡
∨

β ̸=a β(x).

→ Negation necessary for full FO.

7/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
▶ Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
▶ FO languages on alphabet A are the same (Preds=Σ or A).
▶ We no longer have ¬a(x) ≡

∨
β ̸=a β(x).

→ Negation necessary for full FO.

7/15

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
▶ ≤ is a total order
▶ a, b, . . . form a partition of X .

Let us drop the second constraint: a, b, . . . independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
▶ Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
▶ FO languages on alphabet A are the same (Preds=Σ or A).
▶ We no longer have ¬a(x) ≡

∨
β ̸=a β(x).

→ Negation necessary for full FO.

7/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

φ,ψ := a(x) | x ≤ y | x < y | φ ∨ ψ | φ ∧ ψ | ∃x .φ | ∀x .φ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) ⇝ (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

8/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗.

Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

A counter-example language
Theorem [K. 2021,2023]

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗ ⋃
A∗

(a
b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

9/15

Can we decide membership?

Theorem
Given L regular on an ordered alphabet, it is decidable whether
▶ L is monotone (e.g. automata inclusion)
▶ L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?

Theorem [K. 2021, 2023]

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

10/15

Can we decide membership?

Theorem
Given L regular on an ordered alphabet, it is decidable whether
▶ L is monotone (e.g. automata inclusion)
▶ L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?
Theorem [K. 2021, 2023]

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

10/15

Can we decide membership?

Theorem
Given L regular on an ordered alphabet, it is decidable whether
▶ L is monotone (e.g. automata inclusion)
▶ L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?
Theorem [K. 2021, 2023]

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

10/15

Corollaries: lifting the counter-example

Monotone-FO ̸= FO+, and FO+ membership undecidable
in the following settings:

▶ Finite graphs, edge predicate [K. 2023]

New

▶ Finite structures, arbitrary predicates [K. 2021,2023]

simpler than [Ajtai Gurevich 1987, Stolboushkin 1995]

▶ Words indexed by linear order, finiteness predicate

New

▶ Cost functions on finite words, boundedness predicate

contradicts [K. 2011, 2014]

11/15

Corollaries: lifting the counter-example

Monotone-FO ̸= FO+, and FO+ membership undecidable
in the following settings:

▶ Finite graphs, edge predicate [K. 2023] New
▶ Finite structures, arbitrary predicates [K. 2021,2023]

simpler than [Ajtai Gurevich 1987, Stolboushkin 1995]
▶ Words indexed by linear order, finiteness predicate New
▶ Cost functions on finite words, boundedness predicate

contradicts [K. 2011, 2014]

11/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:

▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)

▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:

▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)

▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)

▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,

▶ ,. . .
Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))

Left as exercise: Same with undirected graphs.

12/15

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
▶ ψ− is a conjunction of edge requirements:

▶ ∃
xa xb xc

▶ ∀□x , y .(x → y) ∨ (y → x)
▶ ψ+ is a disjunction of excess edges:

▶ xa xb ,
▶ ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

12/15

Back to words: Link with LTL
LTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | φUψ | φRψ | ¬φ.

UTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ| Xφ | Yϕ | Pφ | Fφ | Hφ | Gφ | ¬φ.

Theorem
▶ FO = LTL = FO3 [Kamp 1968]
▶ FO2[S, <] = UTL [Etessami, Vardi, Wilke 1997]
▶ FO2[<] = UTL[P,F ,G ,H] [Etessami, Vardi, Wilke 1997]

13/15

Back to words: Link with LTL
LTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | φUψ | φRψ | ¬φ.

UTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ| Xφ | Yϕ | Pφ | Fφ | Hφ | Gφ | ¬φ.

Theorem
▶ FO = LTL = FO3 [Kamp 1968]
▶ FO2[S, <] = UTL [Etessami, Vardi, Wilke 1997]
▶ FO2[<] = UTL[P,F ,G ,H] [Etessami, Vardi, Wilke 1997]

13/15

Back to words: Link with LTL
LTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ | Xφ | φUψ | φRψ | ¬φ.

UTL syntax:

φ,ψ ::= ⊥ | ⊤ | a | φ ∧ ψ | φ ∨ ψ| Xφ | Yϕ | Pφ | Fφ | Hφ | Gφ | ¬φ.

Theorem
▶ FO+ = LTL+ = FO+

3 [K.,Moreau]
▶ FO+

2 [S, <] = UTL+ [K.,Moreau]
▶ FO+

2 [<] = UTL+[P,F ,G ,H] [K.,Moreau]

13/15

Refining the counter-example language

What is needed to obtain FO+ ̸= FO ∩ Monotone ?

Theorem (K.,Moreau)
There is a counter-example language definable in
▶ FO with one unary predicate (instead of 3)
▶ FO[between] : bet(a,x,y) means ∃z between x and y s.t. a(z).

Theorem (K.,Moreau)
There is no counter-example language definable in FO2[<].
I.e. FO2[<] ∩ Monotone ⊂ FO+.

14/15

Refining the counter-example language

What is needed to obtain FO+ ̸= FO ∩ Monotone ?

Theorem (K.,Moreau)
There is a counter-example language definable in
▶ FO with one unary predicate (instead of 3)
▶ FO[between] : bet(a,x,y) means ∃z between x and y s.t. a(z).

Theorem (K.,Moreau)
There is no counter-example language definable in FO2[<].
I.e. FO2[<] ∩ Monotone ⊂ FO+.

14/15

Refining the counter-example language

What is needed to obtain FO+ ̸= FO ∩ Monotone ?

Theorem (K.,Moreau)
There is a counter-example language definable in
▶ FO with one unary predicate (instead of 3)
▶ FO[between] : bet(a,x,y) means ∃z between x and y s.t. a(z).

Theorem (K.,Moreau)
There is no counter-example language definable in FO2[<].
I.e. FO2[<] ∩ Monotone ⊂ FO+.

14/15

Further work

Open problems::

▶ FO2 ∩ Monotone ?= FO+
2

▶ For which fragments F ⊂ FO: F ∩ Monotone = F +

▶ Other kind of counterexamples ?

Thanks for your attention !

15/15

Further work

Open problems::

▶ FO2 ∩ Monotone ?= FO+
2

▶ For which fragments F ⊂ FO: F ∩ Monotone = F +

▶ Other kind of counterexamples ?

Thanks for your attention !

15/15

	First-order logic
	Lyndon's theorem
	FO-definable languages
	A special language
	Undecidability result
	Link with LTL

