Positive first-order logic
on words and graphs

Denis Kuperberg
CNRS, LIP, ENS Lyon, Plume Team

Birmingham Theory Seminar
24 November 2023

1/18

First-Order Logic (FO)
Signature: Predicate symbols (P4, ..., P,) with arities kq, ..., ky.
Syntax of FO:

@, = Pilxa, o xi) [o VY o A | —p | Ixp | Ixp

2/18

First-Order Logic (FO)
Signature: Predicate symbols (P4, ..., P,) with arities kq, ..., ky.

Syntax of FO:
@, = Pilxa, o xi) [o VY o A | —p | Ixp | Ixp

Semantics of ¢:
Structure (X, Ry, ..., R,) is accepted or rejected.

2/18

First-Order Logic (FO)

Signature: Predicate symbols (P4, ...

Syntax of FO:

0, = Pi(xq,. ..

Semantics of ¢:

Structure (X, Ry, ...

, Pn) with arities kq, ..., ky.

X)) | eV oAy | —p | 3xp | Vxp

, Rn) is accepted or rejected.

Example: Directed graphs: one binary predicate E.

Graph class

Cliques

No node points to everyone

Formula

» =Vx.Vy.E(x,y)

P =—-3IxVy.E(x,y)

Example graph

/

@
Model of ¢

O

N

Model of i

2/18

Positive versus Monotone

Goal: Understand the role of negation in FO.

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no —

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.
Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.
Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ¢ positive = ¢ monotone.

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.
Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ¢ positive = ¢ monotone.

What about the converse ?

3/18

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.
Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ¢ positive = ¢ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone (.
— positive ¢, syntactic condition.

3/18

Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

4/18

Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

A valid with infinite structures.

4/18

Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

A valid with infinite structures.

What about finite structures ?

This was open for 28 years. . .

4/18

Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

A valid with infinite structures.

What about finite structures 7
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:

» [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard

» [Stolboushkin 1995]
EF games on grid-like structures,

4/18

Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

A valid with infinite structures.

What about finite structures 7
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:

» [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
» [Stolboushkin 1995]

EF games on grid-like structures,
» [This work]

EF games on words, elementary

4/18

Our results

Finite Model Theory:

Lyndon's theorem fails on
> Finite words
» Finite graphs
» Finite structures (elementary proof), several versions:

» one monotone predicate
» some monotone predicates
» all monotone predicates = closure under surjective morphisms.

5/18

Our results

Finite Model Theory:

Lyndon's theorem fails on
» Finite words
» Finite graphs
» Finite structures (elementary proof), several versions:

» one monotone predicate
» some monotone predicates
P all monotone predicates = closure under surjective morphisms.

Regular Language Theory:

Monotone FO languages | # | Positive FO languages

Algebraic characterization Logical characterization

Decidable membership Undecidable membership

5/18

FO on words, the usual way
Words on alphabet A= {a, b }: signature (<, a,b)

a b a a b

> x <y : position x before position y.

» a(x) : position x labelled by letter a

6/18

FO on words, the usual way
Words on alphabet A= {a, b }: signature (<, a,b

a b a a b

> x <y : position x before position y.

» a(x) : position x labelled by letter a

Examples of formulas:

> dx.a(x): Language A*aA*.

» Ix,y.(x <y Aa(x)Ab(y)). Language A*aA*bA*.

6/18

FO on words, the usual way
Words on alphabet A= {a, b }: signature (<, a,b)

a b a a b

> x <y : position x before position y.

» a(x) : position x labelled by letter a

Examples of formulas:

> dx.a(x): Language A*aA*.
» Ix,y.(x <y Aa(x)Ab(y)). Language A*aA*bA*.

First-order languages form a strict subclass of regular languages.

Example: (aa)* is not FO-definable.

6/18

Background: FO-definable languages

FO-definable languages are well-understood.

7/18

Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schiitzenberger, McNaughton, Papert)

A language L C A* is FO-definable iff it is definable by:
Star-free expression < LTL <> counter-free automaton < . ..

7/18

Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schiitzenberger, McNaughton, Papert)

A language L C A* is FO-definable iff it is definable by:
Star-free expression < LTL <> counter-free automaton < . ..

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n € N such that Yu, v, w € A*:

1

w'we lLe uw™twe L.

7/18

Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schiitzenberger, McNaughton, Papert)

A language L C A* is FO-definable iff it is definable by:
Star-free expression < LTL <> counter-free automaton < . ..

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n € N such that Yu, v, w € A*:

1

w'we lLe uw™twe L.

v
< Counter-free automaton: No cycle of the form: { 7
A: a

7/18

Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schiitzenberger, McNaughton, Papert)

A language L C A* is FO-definable iff it is definable by:
Star-free expression < LTL <> counter-free automaton < . ..

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n € N such that Yu, v, w € A*:

1

w'we lLe uw™twe L.

v
< Counter-free automaton: No cycle of the form: { 7
A: a

Corollary: FO-definability is decidable for regular languages.

7/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where
» < is a total order

» a b,... form a partition of X.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where

» < is a total order

P> a-b——formapartition-of

a,b,... now independent.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where
» < is a total order

> a—b——feormapartitenef -

a,b,... now independent.
— Words on alphabet P({a, b, ... }):

0 {6} {a,b} 0 {b}

We will note ¥ = {a, b,...}, and A = P(X) the alphabet.

> Useful e.g. in verification (LTL,...):
independent signals can be true or false simultaneously.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where
» < is a total order

> a—b——feormapartitenef -

a,b,... now independent.
— Words on alphabet P({a, b, ... }):

0 {6} {a,b} 0 {b}

We will note ¥ = {a, b,...}, and A = P(X) the alphabet.

> Useful e.g. in verification (LTL,...):
independent signals can be true or false simultaneously.

» FO languages on alphabet A are the same (Preds=X or A).

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where
» < is a total order

> a—b——feormapartitenef -

a,b,... now independent.
— Words on alphabet P({a, b, ... }):

0 {6} {a,b} 0 {b}

We will note ¥ = {a, b,...}, and A = P(X) the alphabet.

> Useful e.g. in verification (LTL,...):
independent signals can be true or false simultaneously.

» FO languages on alphabet A are the same (Preds=X or A).
> We no longer have —a(x) =V 4, B(x).

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X, <, a, b,...) where
» < is a total order

> a—b——feormapartitenef -

a,b,... now independent.
— Words on alphabet P({a, b, ... }):

0 {6} {a,b} 0 {b}

We will note ¥ = {a, b,...}, and A = P(X) the alphabet.

> Useful e.g. in verification (LTL,...):
independent signals can be true or false simultaneously.

» FO languages on alphabet A are the same (Preds=X or A).
> We no longer have —a(x) =V 4, B(x).

— Negation necessary for full FO.

8/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

9/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

Example: On X = {a, b}:

x,y.(x Sy)nalx) Ably) ~ (A{a}A™{b}A") U (A™{a, b}AT)

9/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

Example: On X = {a, b}:

x,y.(x Sy)nalx) Ably) ~ (A{a}A™{b}A") U (A™{a, b}AT)

Remark: ()* undefinable in FO™* (cannot say "—a").

9/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

Example: On X = {a, b}:

x,y.(x Sy)nalx) Ably) ~ (A{a}A™{b}A") U (A™{a, b}AT)

Remark: ()* undefinable in FO™* (cannot say "—a").

More generally: FO can only define monotone languages:
g y y guag

vave lLlanda CB=ufvel

9/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

Example: On X = {a, b}:

x,y.(x Sy)nalx) Ably) ~ (A{a}A™{b}A") U (A™{a, b}AT)

Remark: ()* undefinable in FO™* (cannot say "—a").
More generally: FO™ can only define monotone languages:
vave lLlanda CB=ufvel

Motivation: abstraction of many logics not closed under —.

9/18

The FO™ logic: positive formulas

FO™ Logic: a ranges over ¥, no —

g =a(x) [x<y|x<yleViy oAy |Ixp|Vxp

Example: On X = {a, b}:

x,y.(x Sy)nalx) Ably) ~ (A{a}A™{b}A") U (A™{a, b}AT)

Remark: ()* undefinable in FO™* (cannot say "—a").

More generally: FO™ can only define monotone languages:
vave lLlanda CB=ufvel

Motivation: abstraction of many logics not closed under —.
Question [Colcombet]: FO & monotone = FO*

9/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

10/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

Alphabet A = {0, 3,b,c, (7). (%), (), ()} Let a' = {a, (7). ().

10/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

Alphabet A = {0, 3,b,c, (7). (%), (), ()} Let a' = {a, (7). ().

Language L= (a'bTch)* (U A*(é)A*.

10/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

Alphabet A = {0, 3,b,c, (7). (%), (), ()} Let a' = {a, (7). ().

Language L= (a'b'ch)* U A*(é)A*. Monotone

10/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

Alphabet A = {0, 3,b,c, (7). (%), (), ()} Let a' = {a, (7). ().

a

Language L= (a'b'ch)* U A*(é)A*. Monotone

Lemma: L is FO-definable.

.

bt
Proof:
O
cT

is counter-free. (no cycle labelled v=2)

10/18

A counter-example language

There is L monotone, FO-definable but not FOT-definable.

Alphabet A = {0, 3,b,c, (7). (%), (), ()} Let a' = {a, (7). ().

a

Language L= (a'b'ch)* U A*(é)A*. Monotone

Lemma: L is FO-definable.

.

bt
Proof:
O
cT

is counter-free. (no cycle labelled v=2)

To prove L is not FOT-definable: Ehrenfeucht-Fraissé games.

10/18

Ehrenfeucht-Fraissé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

» Spoiler places token i in u or v.
» Duplicator must answer token i in the other word such that

> same letter for token i,
» same order between tokens.

11/18

Ehrenfeucht-Fraissé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

» Spoiler places token i in u or v.
» Duplicator must answer token i in the other word such that

> same letter for token i,
» same order between tokens.

We note u =, v if Duplicator can survive n rounds on u, v.

11/18

Ehrenfeucht-Fraissé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

» Spoiler places token i in u or v.
» Duplicator must answer token i in the other word such that

> same letter for token i,
» same order between tokens.

We note u =, v if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraissé, 1950-1961)
L not FO-definable < For all n, thereareu € L, v ¢ L s.t. u=, v.

11/18

Ehrenfeucht-Fraissé games for FO

Definition (EF games)
Played on two words u, v. At each round i:
» Spoiler places token i in u or v.
» Duplicator must answer token i in the other word such that
> same letter for token i,
» same order between tokens.
We note u =, v if Duplicator can survive n rounds on u, v.
Theorem (Ehrenfeucht,Fraissé, 1950-1961)
L not FO-definable < For all n, thereareu € L, v ¢ L s.t. u=, v.

Example
Proving (aa)* is not FO-definable:

u=a (

€(aa)*: aaaaaaaaaa
v=2a%"1 ¢ (aa)*

)*: aaaaaaaaa

11/18

Proving FO"-undefinability

Definition (EF" games)
Previous rule: ain u & ain v.

We write u <, v if Duplicator can survive n rounds.

12/18

Proving FO"-undefinability

Definition (EF" games)
New rule: ain u = ain v.

We write u <, v if Duplicator can survive n rounds.

12/18

Proving FO"-undefinability

Definition (EF" games)

New rule: ain u = ain v.

We write u <, v if Duplicator can survive n rounds.

Theorem (Correctness of EF™ games)

L not FOT -definable < Vn, thereareu € L, v¢ L s.t. u <, v.
[Stolboushkin 1995+this work]

12/18

Proving FO™-undefinability

Definition (EF" games)

New rule: ainu= ain v.
We write u <, v if Duplicator can survive n rounds.

Theorem (Correctness of EF" games)

L not FO™ -definable < Vn, there are ue L, v ¢ Lst u=,v.
[Stolboushkin 1995+this work]

Application: Proving L is not FO"-definable

vel: a b
vel: Z)(

12/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)

A is monotone but not <.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)
A is monotone but not <.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that < is total in a monotone way.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)
A is monotone but not <.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that < is total in a monotone way.
Solution: Introduce a predicate £.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)
A is monotone but not <.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that < is total in a monotone way.
Solution: Introduce a predicate £.

» Require Vx,y.(x < y)V(x L y)
> If 3x,y.(x < y)A(x £ y) — accept

> Axiomatize that < is total assuming £ is its complement.

13/18

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (<, a, b, ¢) assuming < is a total order.

Several monotone predicates

Axiomatize in FO that < is a total order.
a, b, ¢ are monotone but not <.

One monotone predicate

Alphabet encoded by one binary predicate A.
a(x) = A(0,x) b(x)=A(l,x) c(x)=A(2,x)
A is monotone but not <.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that < is total in a monotone way.
Solution: Introduce a predicate £.

» Require Vx,y.(x < y)V(x L y)
> If 3x,y.(x < y)A(x £ y) — accept
> Axiomatize that < is total assuming £ is its complement.

a, b, c, <, £ are monotone. 13/18

From finite words to finite graphs

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p G

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p O—E 9
» [—{]...

»)" is a disjunction of excess edges:

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p O—E 9
» [—{]...

»)" is a disjunction of excess edges:

> ()—),

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A (é) A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p O—E 9
» [—{]...

»)" is a disjunction of excess edges:

> ()—),
» T

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'bTcT)* (A <§> A*).

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p G)
> [—11,...

»)" is a disjunction of excess edges:

> ()—),
» T

Final Formula: 3x,, xp, Xc.(~ A (¢ V)

14/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab(})c:

g linss il

— formula ¢, for graphs encoding words of L = (a'b'cT)*

Rule out other graphs, in a monotone way:

» 1)~ is a conjunction of edge requirements:

p G)
> [—11,...

> T is a disjunction of excess edges:

> ()—),
» T

Final Formula: 3x,, xp, Xc.(~ A (¢ V)

Left as exercise: Same with undirected graphs.
14/18

Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is decidable whether

» L is monotone (e.g. automata inclusion)

» [is FO-definable [Schiitzenberger, McNaughton, Papert]

Can we decide whether L is FO-definable ?

15/18

Back to regular languages
Theorem
Given L regular on an ordered alphabet, it is decidable whether

» L is monotone (e.g. automata inclusion)

» [is FO-definable [Schiitzenberger, McNaughton, Papert]

Can we decide whether L is FO-definable ?

FO™-definability is undecidable for regular languages.

15/18

Back to regular languages
Theorem
Given L regular on an ordered alphabet, it is decidable whether
» L is monotone (e.g. automata inclusion)

» [is FO-definable [Schiitzenberger, McNaughton, Papert]

Can we decide whether L is FO-definable ?

FO™-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality:
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

15/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal < L is FO"-definable.

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal < L is FO"-definable.

Building L:
Inspired from (a'h'c")*, but:
» a, b,c ~» Words from languages C;, C;, (3 encoding configs of M.

G
» All transitions of M follow the cycle: 7\

C1<;C3

> (). (), (6) ~ (4), exists iff uy ™ us.

Cc a

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal < L is FO"-definable.

Building L:
Inspired from (a'h'c")*, but:

» a, b,c ~» Words from languages C;, C;, (3 encoding configs of M.

G
» All transitions of M follow the cycle: 7\

C1<;C3

> (). (), (6) ~ (4), exists iff uy ™ us.

Cc a

We choose
L:=(c - -q)

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal < L is FO"-definable.

Building L:
Inspired from (a'h'c")*, but:
» a, b,c ~» Words from languages C;, C;, (3 encoding configs of M.

G
» All transitions of M follow the cycle: 7\

C1<;C3

> (2. (%), () ~ (4), exists iff u; 4 u,.

b c a

We choose
L:=(c - -q)

A u € L % uencodes a run of M.

16/18

The reduction

If M not mortal:

Let vy, up, ..., u, along run of M, and play Duplicator in :

vel: v w w3 ... U,_1 U,
vél: () (o) () - ()

— L is not FO"-definable.

17/18

The reduction

If M not mortal:

Let vy, up, ..., u, along run of M, and play Duplicator in :

vel: v w w3 ... U,_1 U,
vél: () (o) () - ()
— L is not FO™-definable.

If M mortal with bound n:

Abstract u; by the length of the run of M starting in it (at most n).

17/18

The reduction

If M not mortal:
Let vy, up, ..., u, along run of M, and play Duplicator in :

vel: v w w3 ... U,_1 U,
vél: () (o) () - ()
— L is not FO™-definable.

If M mortal with bound n:
Abstract u; by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

u: 2 3 2 4 3 5 4 3 4 4

060060606060 60 0

17/18

The reduction

If M not mortal:
Let vy, up, ..., u, along run of M, and play Duplicator in :

vel: v w w3 ... U,_1 U,
vél: () (o) () - ()
— L is not FO™-definable.

If M mortal with bound n:
Abstract u; by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

OO0 000

Spoiler always wins in 2n rounds — L is FO"-definable.

17/18

Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:

> regular cost functions,
» logics on linear orders,

> ...

With Quentin Moreau:
» Links with LTL
> FO2 fragment
> ...

Slogan:
FO variants without negation will often display this behaviour.

18/18

Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:

> regular cost functions,
» logics on linear orders,

> ...

With Quentin Moreau:
» Links with LTL
> FO2 fragment
> ...

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention !

18/18

	First-order logic
	Lyndon's theorem
	FO-definable languages
	A special language
	Lyndon and finite graphs
	Undecidability result

