Positive first-order logic on words and graphs

Denis Kuperberg

CNRS, LIP, ENS Lyon, Plume Team

Birmingham Theory Seminar
24 November 2023
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:

\[
\phi, \psi := P_i(x_1, \ldots, x_{k_i}) \mid \phi \lor \psi \mid \phi \land \psi \mid \neg \phi \mid \exists x. \phi \mid \forall x. \phi
\]

Semantics of \(\phi\):

Structure \((X, R_1, \ldots, R_n)\) is accepted or rejected.

Example: Directed graphs: one binary predicate \(E\).

Graph class: Cliques

No node points to everyone

Formula \(\phi = \forall x. \forall y. E(x, y)\)

Formula \(\psi = \neg \exists x. \forall y. E(x, y)\)

Example graph

Model of \(\phi\)

Model of \(\psi\)
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:

\[\varphi, \psi ::= P_i(x_1, \ldots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi \]

Semantics of \(\varphi\):
Structure \((X, R_1, \ldots, R_n)\) is accepted or rejected.
First-Order Logic (FO)

Signature: Predicate symbols \((P_1, \ldots, P_n)\) with arities \(k_1, \ldots, k_n\).

Syntax of FO:

\[
\varphi, \psi := P_i(x_1, \ldots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi
\]

Semantics of \(\varphi\):
Structure \((X, R_1, \ldots, R_n)\) is accepted or rejected.

Example: Directed graphs: one binary predicate \(E\).

<table>
<thead>
<tr>
<th>Graph class</th>
<th>Cliques</th>
<th>No node points to everyone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(\varphi = \forall x. \forall y. E(x, y))</td>
<td>(\psi = \neg \exists x. \forall y. E(x, y))</td>
</tr>
</tbody>
</table>

Example graph

Model of \(\varphi\)
Model of \(\psi\)
Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no \neg

Monotone class of structures: closed under adding tuples to relations. For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula defines a monotone class of structures.

Fact: ϕ positive \Rightarrow ϕ monotone.

What about the converse?

Motivation: Logics with fixed points. Fixed points need monotone ϕ \Rightarrow positive ϕ, syntactic condition.
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no \(\neg \)

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no \(\neg\)

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: \(\varphi \) positive \(\Rightarrow\) \(\varphi \) monotone.
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no \neg

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone $=$ closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive \Rightarrow φ monotone.

What about the converse?
Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive formula: no \(\neg \)

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: \(\varphi \) positive \(\Rightarrow \) \(\varphi \) monotone.

What about the converse?

Motivation: Logics with fixed points.
Fixed points need monotone \(\varphi \).
\(\rightarrow \) positive \(\varphi \), syntactic condition.
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg.
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: $\text{FO-definable} + \text{monotone} \Rightarrow \text{FO-definable without } \neg$.

⚠️ valid with infinite structures.
Lyndon’s theorem

Theorem (Lyndon 1959)

If \(\varphi \) is monotone then \(\varphi \) is equivalent to a positive formula.

On graph classes: FO-definable+monotone \(\Rightarrow \) FO-definable without \(\neg \).

\[\text{valid with } \text{infinite } \text{structures}.\]

What about finite structures?

This was open for 28 years...
Lyndon’s theorem

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg.

⚠️ valid with infinite structures.

What about finite structures?

This was open for 28 years...

Theorem: Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probas, number theory, complexity, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved
Lyndon’s theorem

Theorem (Lyndon 1959)

If \(\varphi \) is monotone then \(\varphi \) is equivalent to a positive formula.

On graph classes: \(\text{FO-definable+monotone} \implies \text{FO-definable without } \neg. \)

⚠️ valid with infinite structures.

What about finite structures?

This was open for 28 years...

Theorem: Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probas, number theory, complexity, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved

- [This work]
 EF games on words, elementary
Our results

Finite Model Theory:

Lyndon’s theorem fails on

- Finite words
- Finite graphs
- Finite structures (elementary proof), several versions:
 - one monotone predicate
 - some monotone predicates
 - all monotone predicates $=$ closure under surjective morphisms.

Regular Language Theory:

- Monotone FO languages \neq Positive FO languages
- Algebraic characterization
- Logical characterization
- Decidable membership
- Undecidable membership
Our results

Finite Model Theory:

Lyndon’s theorem fails on

- **Finite words**
- **Finite graphs**
- **Finite structures** (elementary proof), several versions:
 - one monotone predicate
 - some monotone predicates
 - all monotone predicates $=$ closure under surjective morphisms.

Regular Language Theory:

<table>
<thead>
<tr>
<th>Monotone FO languages</th>
<th>\neq</th>
<th>Positive FO languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic characterization</td>
<td></td>
<td>Logical characterization</td>
</tr>
<tr>
<td>Decidable membership</td>
<td></td>
<td>Undecidable membership</td>
</tr>
</tbody>
</table>
FO on words, the usual way

Words on alphabet $A = \{ a, b[,\ldots] \}$: signature $(\leq, a, b[,\ldots])$

\[
\begin{array}{cccccc}
 a & b & a & a & b \\
 \bullet & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \bullet
\end{array}
\]

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a
FO on words, the usual way

Words on alphabet $A = \{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

\[
\begin{array}{ccccc}
 a & b & a & a & b \\
 \bullet & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \bullet
\end{array}
\]

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a

Examples of formulas:
- $\exists x. a(x)$: Language $A^* a A^*$.
- $\exists x, y.(x \leq y \land a(x) \land b(y))$. Language $A^* a A^* b A^*$.
FO on words, the usual way

Words on alphabet $A = \{a, b, \ldots \}$: signature (\leq, a, b, \ldots)

$$\begin{array}{cccccc}
a & b & a & a & b \\
\bullet & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \bullet
\end{array}$$

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a

Examples of formulas:
- $\exists x. a(x)$: Language A^*aA^*.
- $\exists x, y. (x \leq y \wedge a(x) \wedge b(y))$. Language $A^*aA^*bA^*$.

Theorem

First-order languages form a strict subclass of regular languages.

Example: $(aa)^*$ is not FO-definable. (Proof later)
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language \(L \subseteq A^* \) is FO-definable iff it is definable by:

- Star-free expression
- LTL
- Counter-free automaton

Intuition: FO languages are “Aperiodic”: cannot count modulo

\(L \) aperiodic: There is \(n \in \mathbb{N} \) such that \(\forall u, v, w \in A^*: uv^n w \in L \iff uv^{n+1} w \in L \).

Counter-free automaton:

Corollary: FO-definability is decidable for regular languages.
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by:
- Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

Intuition: FO languages are “Aperiodic”: cannot count modulo L aperiodic:
There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:
$uv^n w \in L \Leftrightarrow uv^{n+1} w \in L$.

Corollary: FO-definability is decidable for regular languages.
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language \(L \subseteq A^* \) is FO-definable iff it is definable by:
- Star-free expression \(\iff \) LTL \(\iff \) counter-free automaton \(\iff \ldots \)

Intuition: FO languages are “Aperiodic”: cannot count modulo

\(L \) _aperiodic:_ There is \(n \in \mathbb{N} \) such that \(\forall u, v, w \in A^*: \)

\[
uv^n w \in L \iff uv^{n+1} w \in L.
\]
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by:
- Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

Intuition: FO languages are “Aperiodic”: cannot count modulo L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^n w \in L \Leftrightarrow uv^{n+1} w \in L.$$

\Leftrightarrow Counter-free automaton: No cycle of the form:
Background: FO-definable languages

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language \(L \subseteq A^* \) is FO-definable iff it is definable by:

Star-free expression \(\iff \) LTL \(\iff \) counter-free automaton \(\iff \) ...

Intuition: FO languages are “Aperiodic”: cannot count modulo

\(L \) aperiodic: There is \(n \in \mathbb{N} \) such that \(\forall u, v, w \in A^* \):

\[
uv^n w \in L \iff uv^{n+1} w \in L.
\]

\(\iff \) Counter-free automaton: No cycle of the form:

\[
\begin{array}{c}
\text{Corollary: } \text{FO-definability is decidable for regular languages.}
\end{array}
\]
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).
For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

\(a, b, \ldots\) now independent.
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

\(a, b, \ldots\) now independent.

\(\rightarrow\) Words on alphabet \(\mathcal{P}\{a, b, \ldots\}\):

\[
\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}
\]

\[
\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification (LTL,\ldots):
 independent signals can be true or false simultaneously.
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

\(a, b, \ldots\) now independent.

\(\rightarrow\) Words on alphabet \(\mathcal{P}(\{a, b, \ldots\})\):

\[
\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification (LTL,\ldots):
 independent signals can be true or false simultaneously.

- FO languages on alphabet \(A\) are the same (\(\text{Preds} = \Sigma\) or \(A\)).
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots)\) where

- \(\leq\) is a total order
- \(a, b, \ldots\) form a partition of \(X\).

\(a, b, \ldots\) now independent.

\(\rightarrow\) Words on alphabet \(\mathcal{P}(\{a, b, \ldots\})\):

\[
\begin{array}{cccccc}
\emptyset & \{b\} & \{a, b\} & \emptyset & \{b\} \\
\bullet & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \bullet
\end{array}
\]

We will note \(\Sigma = \{a, b, \ldots\}\), and \(A = \mathcal{P}(\Sigma)\) the alphabet.

- Useful e.g. in verification (LTL,\ldots):
 independent signals can be true or false simultaneously.

- FO languages on alphabet \(A\) are the same (Preds=\(\Sigma\) or \(A\)).

- We no longer have \(\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)\).
FO on words, the “unconstrained” way

For now, a word is a structure \((X, \leq, a, b, \ldots) \) where

- \(\leq \) is a total order
- \(a, b, \ldots \) form a partition of \(X \).

\(a, b, \ldots \) now independent.

→ Words on alphabet \(\mathcal{P}(\{a, b, \ldots\}) \):

\[
\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}
\]

\[
\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet
\]

We will note \(\Sigma = \{a, b, \ldots\} \), and \(A = \mathcal{P}(\Sigma) \) the alphabet.

- Useful e.g. in verification (LTL,\ldots):
 independent signals can be true or false simultaneously.

- FO languages on alphabet \(A \) are the same (Preds=\(\Sigma \) or \(A \)).

- We no longer have \(\neg a(x) \equiv \bigvee_{\beta \neq a}^{} \beta(x) \).
 → Negation necessary for full FO.
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi ::= a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$
The \mathbf{FO}^+ logic: positive formulas

\mathbf{FO}^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Example: On $\Sigma = \{a, b\}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \rightsquigarrow (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$$
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

\[\varphi, \psi := a(x) | x \leq y | x < y | \varphi \lor \psi | \varphi \land \psi | \exists x. \varphi | \forall x. \varphi \]

Example: On $\Sigma = \{a, b\}$:

\[\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*) \]

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a"$).
The **FO**\(^+\) logic: positive formulas

FO\(^+\) Logic: \(a \) ranges over \(\Sigma \), no \(\neg \)

\[\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi \]

Example: On \(\Sigma = \{a, b\} \):

\[\exists x, y. (x \leq y) \land a(x) \land b(y) \rightsquigarrow (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*) \]

Remark: \(\emptyset^* \) undefinable in **FO**\(^+\) (cannot say "\(\neg a \)").

More generally: **FO**\(^+\) can only define monotone languages:

\[u\alpha v \in L \text{ and } \alpha \subseteq \beta \Rightarrow u\beta v \in L \]
The **FO**\(^{+}\) **logic: positive formulas**

FO\(^{+}\) **Logic:** \(a\) ranges over \(\Sigma\), no \(\neg\)

\[
\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi
\]

Example: On \(\Sigma = \{a, b\}\):

\[
\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)
\]

Remark: \(\emptyset^*\) undefinable in \(\text{FO}^{+}\) (cannot say "\(\neg a\)").

More generally: \(\text{FO}^{+}\) can only define **monotone languages**:

\[
u\alpha v \in L \text{ and } \alpha \subseteq \beta \Rightarrow u\beta v \in L
\]

Motivation: abstraction of many logics not closed under \(\neg\).
The FO^+ logic: positive formulas

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$

Example: On $\Sigma = \{a, b\}$:

$\exists x, y. (x \leq y) \land a(x) \land b(y) \rightsquigarrow (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a$").

More generally: FO^+ can only define monotone languages:

$u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$

Motivation: abstraction of many logics not closed under \neg.

Question [Colcombet]: FO & monotone \Rightarrow FO^+
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a)_b, (b)_c, (c)_a, (a/b)_c\}$. Let $a^\uparrow = \{a, (a)_b, (c)_a\}$.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a), (b), (c), (a^b)^c\}$. Let $a^\uparrow = \{a, (a)^b, (c)^a\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* (a^b)^c A^*$.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a), (b), (c), (a, b, c), (b, c, a), (a, b, c, a)\}$. Let $a^\uparrow = \{a, (b), (c)\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \bigcup A^* (a \frac{b}{c}) A^*$. Monotone
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a)_b, (b)_c, (c)_a, (a\ b\ c), (b\ c), (c\ a), (a\ b\ c)\}$. Let $a^\uparrow = \{a, (a)_b, (c)_a\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* \left(\left(\begin{array}{c} a \\ b \\ c \end{array}\right)\right) A^*$. Monotone

Lemma: L is FO-definable.

Proof: is counter-free. (no cycle labelled $\nu \geq 2$)
A counter-example language

Our first result

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, (a)_b, (b)_c, (c)_a, (a\,\,b\,\,c)_c\}$. Let $a^\uparrow = \{a, (a)_b, (c)_a\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* (a\,\,b\,\,c)_c A^*$. Monotone

Lemma: L is FO-definable.

Proof: is counter-free. (no cycle labelled $\nu \geq 2$)

To prove L is not FO$^+$-definable: Ehrenfeucht-Fraïssé games.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - same letter for token i,
 - same order between tokens.

We note $u \equiv_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L$, $v \not\in L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

- $u = a_2k \in (aa)^*$: $a \ a \ a \ a \ a \ a \ a \ a \ a \ a$
- $v = a_2k-1 \not\in (aa)^*$: $a \ a \ a \ a \ a \ a \ a \ a \ a \ a \ 1$
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - same letter for token i,
 - same order between tokens.

We note $u \equiv_n v$ if **Duplicator** can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L$, $v \not\in L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

$u = a^k \in (aa)^*$: $a a a a a a a a a a$

$v = a^{k-1} \not\in (aa)^*$: $a a a a a a a a a$
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:
- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - same letter for token i,
 - same order between tokens.

We note $u ≡_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable $⇔$ For all n, there are $u ∈ L$, $v ∉ L$ s.t. $u ≡_n v$.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - same letter for token i,
 - same order between tokens.

We note $u \equiv_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable \iff For all n, there are $u \in L$, $v \notin L$ s.t. $u \equiv_n v$.

Example
Proving $(aa)^*$ is not FO-definable:

$$u = a^{2k} \quad \in (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a$$

$$v = a^{2k-1} \quad \notin (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a$$
Proving \mathbf{FO}^+-undefinability

Definition (\mathbf{EF}^+ games)
Previous rule: $a \text{ in } u \iff a \text{ in } v$.

We write $u \leq_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of \mathbf{EF}^+ games)

L not \mathbf{FO}^+-definable $\iff \forall n, \exists u \in L, v \not\in L$ s.t. $u \leq_n v$.

[Stolboushkin 1995+this work]

Application: Proving L is not \mathbf{FO}^+-definable

$u \in L$:

```
a b c a b c a b c
```

$v \not\in L$:

```
(a b)(b c)(c a)(a b)(b c)(c a)(a b)(b c)
```
Proving FO^+-undefinability

Definition (EF^+ games)

New rule: $a \text{ in } u \Rightarrow a \text{ in } v$.

We write $u \preceq_n v$ if Duplicator can survive n rounds.
Proving FO^+-undefinability

Definition (EF^+ games)

New rule: $a \text{ in } u \Rightarrow a \text{ in } v$.

We write $u \preceq_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF^+ games)

L not FO^+-definable $\iff \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \preceq_n v$.

[Stolboushkin 1995 + this work]
Proving $\text{FO}^+\text{-undefinability}$

Definition (EF$^+$ games)

New rule: $a \in u \Rightarrow a \in v$.

We write $u \leq_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF$^+$ games)

L not FO^+-definable $\iff \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \leq_n v$.

[Stolboushkin 1995 + this work]

Application: Proving L is not FO^+-definable

$u \in L : \quad a \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad c$

$v \notin L : \quad (a) \quad (b) \quad (c) \quad (a) \quad (b) \quad (c) \quad (a) \quad (b) \quad (c)$
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates
Axiomatize in FO that \leq is a total order.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate
Alphabet encoded by one binary predicate A.

\[
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
\]
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate

Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.

Solution: Introduce a predicate $\not\leq$.

▶ Require $\forall x, y. (x \leq y) \lor (x \not\leq y)$

▶ If $\exists x, y. (x \leq y) \land (x \not\leq y) \rightarrow \text{accept}$

▶ Axiomatize that \leq is total assuming $\not\leq$ is its complement.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate

Alphabet encoded by one binary predicate A.
\[
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
\]

A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate
Alphabet encoded by one binary predicate A.
\[
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
\]
A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate $\not\leq$.

\[\forall x, y. (x \leq y) \lor (x \not\leq y)\]
\[\forall x, y. (x \leq y) \land (x \not\leq y) \rightarrow \text{accept}\]
\[\text{Axiomatize that } \leq \text{ is total assuming } \not\leq \text{ is its complement.}\]
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate
Alphabet encoded by one binary predicate A.
\[
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
\]
A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms
Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate $\not\leq$.

- Require $\forall x, y. (x \leq y) \lor (x \not\leq y)$
- If $\exists x, y. (x \leq y) \land (x \not\leq y)$ → accept
- Axiomatize that \leq is total assuming $\not\leq$ is its complement.
From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

One monotone predicate
Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)$$

A is monotone but not \leq.

All monotone predicates $=$ closure under surjective morphisms
Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate \nleq.

- Require $\forall x, y. (x \leq y) \lor (x \nleq y)$
- If $\exists x, y. (x \leq y) \land (x \nleq y) \rightarrow$ accept
- Axiomatize that \leq is total assuming \nleq is its complement.

a, b, c, \leq, \nleq are monotone.
From finite words to finite graphs
From finite words to finite graphs

Encode words into (directed) graphs, here $ab^a_b c$:
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(a) c$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^* b^* c^*) \cup (A^* (\begin{array}{c} a \\ b \\ c \end{array}) A^*)$.

\rightarrow formula ψ_L for graphs encoding words of $L = (a^* b^* c^*) \cup (A^* (\begin{array}{c} a \\ b \\ c \end{array}) A^*)$.

Left as exercise: Same with undirected graphs.
From finite words to finite graphs

Encode words into (directed) graphs, here $ab^{a,b,c}$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup (A^* \begin{pmatrix}a \\ b \\ c \end{pmatrix} A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(b^a)c$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup (A^* \left(\begin{array}{c} a \\ b \\ c \end{array}\right) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(b^a)c$:

$\xrightarrow{\quad}$ formula ψ_L for graphs encoding words of $L = (a^+ b^+ c^+)^* \cup (A^* \begin{pmatrix} a \\ b \\ c \end{pmatrix} A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $\xrightarrow{\quad}$
 - $\xrightarrow{\quad}$
 - $\xrightarrow{\quad}$

Left as exercise: Same with undirected graphs.
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(b^a)c$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^* \begin{pmatrix} a \\ b \\ c \end{pmatrix} A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $x_a \rightarrow x_b \rightarrow x_c$
 - $\square \rightarrow \square$
 - $\square \rightarrow \square$

- ψ^+ is a disjunction of excess edges:
From finite words to finite graphs

Encode words into (directed) graphs, here $ab^a_b c$:

\[
\begin{align*}
\psi_L & \text{ formula for graphs encoding words of } L = (a^* b^* c^*) \cup (A^* \begin{pmatrix} a \\ b \\ c \end{pmatrix} A^*). \\
\text{Rule out other graphs, in a monotone way:} & \\
\text{\quad } \psi^- & \text{ is a conjunction of edge requirements:} \\
\text{\quad \quad } & x_a \quad x_b \quad x_c \\
\text{\quad \quad } & \square \quad \square, \ldots \\
\text{\quad } \psi^+ & \text{ is a disjunction of excess edges:} \\
\text{\quad \quad } & x_a \quad x_b \\
\end{align*}
\]
From finite words to finite graphs

Encode words into (directed) graphs, here ab^a_c:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^+ b^+ c^+) \cup (A^+ \left(\begin{array}{c} a \\ b \\ c \end{array} \right) A^+)$. Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - \rightarrow $x_a \rightarrow x_b \rightarrow x_c$,
 - \rightarrow ,
 - \rightarrow ,

- ψ^+ is a disjunction of excess edges:
 - \rightarrow $x_a \rightarrow x_b$,
 - \rightarrow ,
 - \rightarrow ,
From finite words to finite graphs

Encode words into (directed) graphs, here ab^c:

$$x_a \rightarrow x_b \rightarrow x_c$$

→ formula ψ_L for graphs encoding words of $L = (a^* b^* c^*) \cup (A^* (\begin{array}{c} a \\ b \\ c \end{array}) A^*)$.

Rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - $x_a \rightarrow x_b \rightarrow x_c$,
 - $\square \rightarrow \square, \ldots$

- ψ^+ is a disjunction of excess edges:
 - $x_a \rightarrow x_b$,
 - $\square \rightarrow \square, \ldots$

Final Formula: $\exists x_a, x_b, x_c. (\psi^- \land (\psi_L \lor \psi^+))$
From finite words to finite graphs

Encode words into (directed) graphs, here $ab(b^a)c$:

\rightarrow formula ψ_L for graphs encoding words of $L = (a^{b^a}b^{b^c})* \cup (A^* (b^a_c) A^*)$. Rule out other graphs, in a monotone way:

\rightarrow ψ^- is a conjunction of edge requirements:

\rightarrow ψ^+ is a disjunction of excess edges:

Final Formula: $\exists x_a, x_b, x_c. (\psi^- \land (\psi_L \lor \psi^+))$

Left as exercise: Same with undirected graphs.
Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^+-definable?
Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is **decidable** whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO$^+$-definable?

Theorem

FO$^+$-definability is **undecidable** for regular languages.
Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO$^+$-definable?

Theorem

FO$^+$-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality:
A deterministic TM M is mortal if there a uniform bound n on the runs of M from any configuration.

Undecidable [Hooper 1966].
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:
Inspired from $(a^{\uparrow}b^{\uparrow}c^{\uparrow})^*$, but:

- $a, b, c \rightsquigarrow$ Words from languages C_1, C_2, C_3 encoding configs of M.
- All transitions of M follow the cycle:

$$(a) \rightsquigarrow (a_{u_1}), (b), (c) \rightsquigarrow (u_{u_2}), \text{ exists iff } u_1 \xrightarrow{M} u_2.$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:
Inspired from $(a^{↑}b^{↑}c^{↑})^*$, but:

- $a, b, c \leadsto$ Words from languages C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle:

$$\begin{array}{c}
C_1 \\
\leftarrow \\
\rightarrow \\
C_3
\end{array}$$

- $(a, b, c) \leadsto (u_1, u_2)$, exists iff $u_1 \xrightarrow{M} u_2$.

We choose

$$L := (C_1^{↑} \cdot C_2^{↑} \cdot C_3^{↑})^*$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:

Inspired from $(a^\uparrow b^\uparrow c^\uparrow)^*$, but:

- $a, b, c \sim$ Words from languages C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle:

```
C_1 ←→ C_2 ←→ C_3
```

- $(a^\uparrow), (b^\uparrow), (c^\uparrow) \sim (u_1^\uparrow, u_2^\uparrow)$, exists iff $u_1 \xrightarrow{M} u_2$.

We choose

$$L := (C_1^\uparrow \cdot C_2^\uparrow \cdot C_3^\uparrow)^*$$

$u \in L \nRightarrow u$ encodes a run of M.
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

\[
\begin{align*}
u \in L :& \quad u_1 \ u_2 \ u_3 \ \ldots \ \ u_{n-1} \ u_n \\
v \not\in L :& \quad (u_1) \ (u_2) \ (u_3) \ \ldots \ (u_{n-1}) \\
\end{align*}
\]

$\rightarrow L$ is not $\text{FO}^+\text{-definable.}$
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play **Duplicator** in:

\[
\begin{align*}
&\text{ } u \in L : \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n \\
&\text{ } v \notin L : \quad (u_1) \quad (u_2) \quad (u_3) \quad \ldots \quad (u_{n-1})
\end{align*}
\]

$\rightarrow L$ is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$u \in L: \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n$$

$$v \notin L: \quad \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{array}\right)$$

\rightarrow L is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here $n = 5$):

\[
\begin{array}{ccccccccccc}
u : & 2 & 3 & 2 & 4 & 3 & 5 & 4 & 3 & 4 & 4 \\
u : & \left(\begin{array}{c} 2 \\ 1 \end{array}\right) & \left(\begin{array}{c} 3 \\ 2 \end{array}\right) & \left(\begin{array}{c} 2 \\ 1 \end{array}\right) & \left(\begin{array}{c} 4 \\ 3 \end{array}\right) & \left(\begin{array}{c} 3 \\ 2 \end{array}\right) & \left(\begin{array}{c} 5 \\ 4 \end{array}\right) & \left(\begin{array}{c} 4 \\ 3 \end{array}\right) & \left(\begin{array}{c} 5 \\ 4 \end{array}\right) & \left(\begin{array}{c} 5 \\ 4 \end{array}\right) & \left(\begin{array}{c} 5 \\ 4 \end{array}\right)
\end{array}
\]

\rightarrow L is FO^+-definable.
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$u \in L : \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n$$

$$v \notin L : \quad (u_1) \quad (u_2) \quad (u_3) \quad \ldots \quad (u_{n-1})$$

$\rightarrow L$ is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here $n = 5$):

$$u : \quad 2 \quad 3 \quad 2 \quad 4 \quad 3 \quad 5 \quad 4 \quad 3 \quad 4 \quad 4$$

$$v : \quad (2) \quad (3) \quad (2) \quad (4) \quad (3) \quad (5) \quad (4) \quad (5)$$

Spoiler always wins in $2n$ rounds $\rightarrow L$ is FO^+-definable.
Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
 ▶ regular cost functions,
 ▶ logics on linear orders,
 ▶ ...

With Quentin Moreau:
 ▶ Links with LTL
 ▶ FO2 fragment
 ▶ ...

Slogan:
FO variants without negation will often display this behaviour.
Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
- regular cost functions,
- logics on linear orders,
- ...

With Quentin Moreau:
- Links with LTL
- FO2 fragment
- ...

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention!