
Positive first-order logic
on words and graphs

Denis Kuperberg

CNRS, LIP, ENS Lyon, Plume Team

Birmingham Theory Seminar
24 November 2023

1/18

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

ϕ,ψ := Pi (x1, . . . , xki) | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ∃x .ϕ | ∀x .ϕ

Semantics of ϕ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.
Example: Directed graphs: one binary predicate E .

Graph class Cliques No node points to everyone

Formula ϕ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of ϕ Model of ψ

2/18

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

ϕ,ψ := Pi (x1, . . . , xki) | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ∃x .ϕ | ∀x .ϕ

Semantics of ϕ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.

Example: Directed graphs: one binary predicate E .

Graph class Cliques No node points to everyone

Formula ϕ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of ϕ Model of ψ

2/18

First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

ϕ,ψ := Pi (x1, . . . , xki) | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ∃x .ϕ | ∀x .ϕ

Semantics of ϕ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.
Example: Directed graphs: one binary predicate E .

Graph class Cliques No node points to everyone

Formula ϕ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of ϕ Model of ψ

2/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Positive versus Monotone
Goal: Understand the role of negation in FO.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points need monotone ϕ.
→ positive ϕ, syntactic condition.

3/18

Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

valid with infinite structures.

What about finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved
I [This work]

EF games on words, elementary

4/18

Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

valid with infinite structures.

What about finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved
I [This work]

EF games on words, elementary

4/18

Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

valid with infinite structures.

What about finite structures ?
This was open for 28 years. . .

Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved
I [This work]

EF games on words, elementary

4/18

Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

valid with infinite structures.

What about finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved

I [This work]
EF games on words, elementary

4/18

Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

valid with infinite structures.

What about finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved
I [This work]

EF games on words, elementary
4/18

Our results

Finite Model Theory:

Lyndon’s theorem fails on
I Finite words
I Finite graphs
I Finite structures (elementary proof), several versions:

I one monotone predicate
I some monotone predicates
I all monotone predicates = closure under surjective morphisms.

Regular Language Theory:

Monotone FO languages 6= Positive FO languages

Algebraic characterization Logical characterization

Decidable membership Undecidable membership

5/18

Our results

Finite Model Theory:

Lyndon’s theorem fails on
I Finite words
I Finite graphs
I Finite structures (elementary proof), several versions:

I one monotone predicate
I some monotone predicates
I all monotone predicates = closure under surjective morphisms.

Regular Language Theory:

Monotone FO languages 6= Positive FO languages

Algebraic characterization Logical characterization

Decidable membership Undecidable membership

5/18

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

I x ≤ y : position x before position y .
I a(x) : position x labelled by letter a

Examples of formulas:
I ∃x .a(x): Language A∗aA∗.
I ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable. (Proof later)

6/18

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

I x ≤ y : position x before position y .
I a(x) : position x labelled by letter a

Examples of formulas:
I ∃x .a(x): Language A∗aA∗.
I ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable. (Proof later)

6/18

FO on words, the usual way
Words on alphabet A = {a, b[, . . .]}: signature (≤, a, b[, . . .])

• • • • •
a b a a b

I x ≤ y : position x before position y .
I a(x) : position x labelled by letter a

Examples of formulas:
I ∃x .a(x): Language A∗aA∗.
I ∃x , y .(x ≤ y ∧ a(x) ∧ b(y)). Language A∗aA∗bA∗.

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)∗ is not FO-definable. (Proof later)

6/18

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

7/18

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

7/18

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

7/18

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

7/18

Background: FO-definable languages
FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language L ⊆ A∗ is FO-definable iff it is definable by:
Star-free expression ⇔ LTL ⇔ counter-free automaton ⇔ . . .

Intuition: FO languages are “Aperiodic”: cannot count modulo
L aperiodic: There is n ∈ N such that ∀u, v ,w ∈ A∗:

uvnw ∈ L⇔ uvn+1w ∈ L.

⇔ Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

7/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.

I Useful e.g. in verification (LTL,. . .):
independent signals can be true or false simultaneously.

I FO languages on alphabet A are the same (Preds=Σ or A).
I We no longer have ¬a(x) ≡

∨
β 6=a β(x).

→ Negation necessary for full FO.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.

→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.

I Useful e.g. in verification (LTL,. . .):
independent signals can be true or false simultaneously.

I FO languages on alphabet A are the same (Preds=Σ or A).
I We no longer have ¬a(x) ≡

∨
β 6=a β(x).

→ Negation necessary for full FO.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
I Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.

I FO languages on alphabet A are the same (Preds=Σ or A).
I We no longer have ¬a(x) ≡

∨
β 6=a β(x).

→ Negation necessary for full FO.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
I Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
I FO languages on alphabet A are the same (Preds=Σ or A).

I We no longer have ¬a(x) ≡
∨

β 6=a β(x).

→ Negation necessary for full FO.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
I Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
I FO languages on alphabet A are the same (Preds=Σ or A).
I We no longer have ¬a(x) ≡

∨
β 6=a β(x).

→ Negation necessary for full FO.

8/18

FO on words, the “unconstrained” way
For now, a word is a structure (X ,≤, a, b, . . .) where
I ≤ is a total order
I a, b, . . . form a partition of X .

a, b, . . . now independent.
→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

We will note Σ = {a, b, . . . }, and A = P(Σ) the alphabet.
I Useful e.g. in verification (LTL,. . .):

independent signals can be true or false simultaneously.
I FO languages on alphabet A are the same (Preds=Σ or A).
I We no longer have ¬a(x) ≡

∨
β 6=a β(x).

→ Negation necessary for full FO.

8/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

The FO+ logic: positive formulas
FO+ Logic: a ranges over Σ, no ¬

ϕ,ψ := a(x) | x ≤ y | x < y | ϕ ∨ ψ | ϕ ∧ ψ | ∃x .ϕ | ∀x .ϕ

Example: On Σ = {a, b}:

∃x , y .(x ≤ y) ∧ a(x) ∧ b(y) (A∗{a}A∗{b}A∗) ∪ (A∗{a, b}A∗)

Remark: ∅∗ undefinable in FO+ (cannot say "¬a").

More generally: FO+ can only define monotone languages:

uαv ∈ L and α ⊆ β ⇒ uβv ∈ L

Motivation: abstraction of many logics not closed under ¬.

Question [Colcombet]: FO & monotone ?⇒ FO+

9/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗.

Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

A counter-example language
Our first result

There is L monotone, FO-definable but not FO+-definable.

Alphabet A = {∅, a, b, c,
(a

b
)
,
(b

c
)
,
(c

a
)
,
(a

b
c

)
}. Let a↑ = {a,

(a
b
)
,
(c

a
)
}.

Language L = (a↑b↑c↑)∗
⋃

A∗
(a

b
c

)
A∗. Monotone

Lemma: L is FO-definable.

Proof:
a↑ b↑

c↑

is counter-free. (no cycle labelled v≥2)

To prove L is not FO+-definable: Ehrenfeucht-Fraïssé games.

10/18

Ehrenfeucht-Fraïssé games for FO
Definition (EF games)
Played on two words u, v . At each round i :
I Spoiler places token i in u or v .
I Duplicator must answer token i in the other word such that

I same letter for token i ,
I same order between tokens.

We note u ≡n v if Duplicator can survive n rounds on u, v .

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable ⇔ For all n, there are u ∈ L, v /∈ L s.t. u ≡n v.

Example
Proving (aa)∗ is not FO-definable:

u = a2k ∈ (aa)∗ : a a a a a a a a a a
v = a2k−1 /∈ (aa)∗ : a a a a a a a a a

11/18

Ehrenfeucht-Fraïssé games for FO
Definition (EF games)
Played on two words u, v . At each round i :
I Spoiler places token i in u or v .
I Duplicator must answer token i in the other word such that

I same letter for token i ,
I same order between tokens.

We note u ≡n v if Duplicator can survive n rounds on u, v .

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable ⇔ For all n, there are u ∈ L, v /∈ L s.t. u ≡n v.

Example
Proving (aa)∗ is not FO-definable:

u = a2k ∈ (aa)∗ : a a a a a a a a a a
v = a2k−1 /∈ (aa)∗ : a a a a a a a a a

11/18

Ehrenfeucht-Fraïssé games for FO
Definition (EF games)
Played on two words u, v . At each round i :
I Spoiler places token i in u or v .
I Duplicator must answer token i in the other word such that

I same letter for token i ,
I same order between tokens.

We note u ≡n v if Duplicator can survive n rounds on u, v .

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable ⇔ For all n, there are u ∈ L, v /∈ L s.t. u ≡n v.

Example
Proving (aa)∗ is not FO-definable:

u = a2k ∈ (aa)∗ : a a a a a a a a a a
v = a2k−1 /∈ (aa)∗ : a a a a a a a a a

11/18

Ehrenfeucht-Fraïssé games for FO
Definition (EF games)
Played on two words u, v . At each round i :
I Spoiler places token i in u or v .
I Duplicator must answer token i in the other word such that

I same letter for token i ,
I same order between tokens.

We note u ≡n v if Duplicator can survive n rounds on u, v .

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable ⇔ For all n, there are u ∈ L, v /∈ L s.t. u ≡n v.

Example
Proving (aa)∗ is not FO-definable:

u = a2k ∈ (aa)∗ : a a a a a a a a a a
v = a2k−1 /∈ (aa)∗ : a a a a a a a a a

11/18

Proving FO+-undefinability

Definition (EF+ games)
Previous rule: a in u ⇔ a in v .

We write u �n v if Duplicator can survive n rounds.

Theorem (Correctness of EF+ games)
L not FO+-definable ⇔ ∀n, there are u ∈ L, v /∈ L s.t. u �n v.
[Stolboushkin 1995+this work]

Application: Proving L is not FO+-definable

u ∈ L : a b c a b c a b c
v /∈ L :

(a
b
) (b

c
) (c

a
) (a

b
) (b

c
) (c

a
) (a

b
) (b

c
)

12/18

Proving FO+-undefinability

Definition (EF+ games)
New rule: a in u ⇒ a in v .

We write u �n v if Duplicator can survive n rounds.

Theorem (Correctness of EF+ games)
L not FO+-definable ⇔ ∀n, there are u ∈ L, v /∈ L s.t. u �n v.
[Stolboushkin 1995+this work]

Application: Proving L is not FO+-definable

u ∈ L : a b c a b c a b c
v /∈ L :

(a
b
) (b

c
) (c

a
) (a

b
) (b

c
) (c

a
) (a

b
) (b

c
)

12/18

Proving FO+-undefinability

Definition (EF+ games)
New rule: a in u ⇒ a in v .

We write u �n v if Duplicator can survive n rounds.

Theorem (Correctness of EF+ games)
L not FO+-definable ⇔ ∀n, there are u ∈ L, v /∈ L s.t. u �n v.
[Stolboushkin 1995+this work]

Application: Proving L is not FO+-definable

u ∈ L : a b c a b c a b c
v /∈ L :

(a
b
) (b

c
) (c

a
) (a

b
) (b

c
) (c

a
) (a

b
) (b

c
)

12/18

Proving FO+-undefinability

Definition (EF+ games)
New rule: a in u ⇒ a in v .

We write u �n v if Duplicator can survive n rounds.

Theorem (Correctness of EF+ games)
L not FO+-definable ⇔ ∀n, there are u ∈ L, v /∈ L s.t. u �n v.
[Stolboushkin 1995+this work]

Application: Proving L is not FO+-definable

u ∈ L : a b c a b c a b c
v /∈ L :

(a
b
) (b

c
) (c

a
) (a

b
) (b

c
) (c

a
) (a

b
) (b

c
)

12/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.

Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.

a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.

One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)

A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.

All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.

Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.

I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone.

13/18

From finite words to finite structures.
Goal: Lift L to finite structures.
For now: signature (≤, a, b, c) assuming ≤ is a total order.
Several monotone predicates
Axiomatize in FO that ≤ is a total order.
a, b, c are monotone but not ≤.
One monotone predicate
Alphabet encoded by one binary predicate A.

a(x) ≡ A(0, x) b(x) ≡ A(1, x) c(x) ≡ A(2, x)
A is monotone but not ≤.
All monotone predicates = closure under surjective morphisms
Problem: We cannot say that ≤ is total in a monotone way.
Solution: Introduce a predicate 6≤.
I Require ∀x , y .(x ≤ y) ∨ (x 6≤ y)
I If ∃x , y .(x ≤ y) ∧ (x 6≤ y) → accept
I Axiomatize that ≤ is total assuming 6≤ is its complement.

a, b, c,≤, 6≤ are monotone. 13/18

From finite words to finite graphs

Encode words into (directed) graphs, here ab
(a

b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:

I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:

I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:

I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,

I ,. . .
I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:

I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:
I xa xb ,

I ,. . .
Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:
I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:
I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))

Left as exercise: Same with undirected graphs.

14/18

From finite words to finite graphs
Encode words into (directed) graphs, here ab

(a
b
)
c:

xa xb xc

→ formula ψL for graphs encoding words of L = (a↑b↑c↑)∗∪(A∗
(a

b
c

)
A∗).

Rule out other graphs, in a monotone way:
I ψ− is a conjunction of edge requirements:

I xa xb xc ,
I ,. . .

I ψ+ is a disjunction of excess edges:
I xa xb ,
I ,. . .

Final Formula: ∃xa, xb, xc .(ψ− ∧ (ψL ∨ ψ+))
Left as exercise: Same with undirected graphs.

14/18

Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is decidable whether
I L is monotone (e.g. automata inclusion)
I L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?

Theorem

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

15/18

Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is decidable whether
I L is monotone (e.g. automata inclusion)
I L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?
Theorem

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

15/18

Back to regular languages

Theorem
Given L regular on an ordered alphabet, it is decidable whether
I L is monotone (e.g. automata inclusion)
I L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO+-definable ?
Theorem

FO+-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality :
A deterministic TM M is mortal if there a uniform bound n on the runs
of M from any configuration.

Undecidable [Hooper 1966].

15/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal ⇔ L is FO+-definable.

Building L:
Inspired from (a↑b↑c↑)∗, but:
I a, b, c Words from languages C1,C2,C3 encoding configs of M.

I All transitions of M follow the cycle:
C1

C2

C3

I
(a

b
)
,
(b

c
)
,
(c

a
)

(u1

u2

)
, exists iff u1

M→ u2.

We choose
L := (C↑1 · C

↑
2 · C

↑
3)∗

u ∈ L 6⇒ u encodes a run of M.

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal ⇔ L is FO+-definable.

Building L:
Inspired from (a↑b↑c↑)∗, but:
I a, b, c Words from languages C1,C2,C3 encoding configs of M.

I All transitions of M follow the cycle:
C1

C2

C3

I
(a

b
)
,
(b

c
)
,
(c

a
)

(u1

u2

)
, exists iff u1

M→ u2.

We choose
L := (C↑1 · C

↑
2 · C

↑
3)∗

u ∈ L 6⇒ u encodes a run of M.

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal ⇔ L is FO+-definable.

Building L:
Inspired from (a↑b↑c↑)∗, but:
I a, b, c Words from languages C1,C2,C3 encoding configs of M.

I All transitions of M follow the cycle:
C1

C2

C3

I
(a

b
)
,
(b

c
)
,
(c

a
)

(u1

u2

)
, exists iff u1

M→ u2.

We choose
L := (C↑1 · C

↑
2 · C

↑
3)∗

u ∈ L 6⇒ u encodes a run of M.

16/18

Undecidability proof sketch
Given a TM M, we build a regular language L such that

M mortal ⇔ L is FO+-definable.

Building L:
Inspired from (a↑b↑c↑)∗, but:
I a, b, c Words from languages C1,C2,C3 encoding configs of M.

I All transitions of M follow the cycle:
C1

C2

C3

I
(a

b
)
,
(b

c
)
,
(c

a
)

(u1

u2

)
, exists iff u1

M→ u2.

We choose
L := (C↑1 · C

↑
2 · C

↑
3)∗

u ∈ L 6⇒ u encodes a run of M.

16/18

The reduction
If M not mortal:
Let u1, u2, . . . , un a long run of M, and play Duplicator in :

u ∈ L : u1 u2 u3 . . . un−1 un
v /∈ L :

(u1
u2

) (u2
u3

) (u3
u4

)
. . .

(un−1
un

)
→ L is not FO+-definable.

If M mortal with bound n:
Abstract ui by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

u :

v :

2 3 2 4 3 5 4 3 4 4(
2
1

) (
3
2

) (
2
1

) (
4
3

) (
3
2

) (
5
4

) (
4
3

) (
5
4

) (
5
4

)
Spoiler always wins in 2n rounds → L is FO+-definable.

17/18

The reduction
If M not mortal:
Let u1, u2, . . . , un a long run of M, and play Duplicator in :

u ∈ L : u1 u2 u3 . . . un−1 un
v /∈ L :

(u1
u2

) (u2
u3

) (u3
u4

)
. . .

(un−1
un

)
→ L is not FO+-definable.

If M mortal with bound n:
Abstract ui by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

u :

v :

2 3 2 4 3 5 4 3 4 4(
2
1

) (
3
2

) (
2
1

) (
4
3

) (
3
2

) (
5
4

) (
4
3

) (
5
4

) (
5
4

)
Spoiler always wins in 2n rounds → L is FO+-definable.

17/18

The reduction
If M not mortal:
Let u1, u2, . . . , un a long run of M, and play Duplicator in :

u ∈ L : u1 u2 u3 . . . un−1 un
v /∈ L :

(u1
u2

) (u2
u3

) (u3
u4

)
. . .

(un−1
un

)
→ L is not FO+-definable.

If M mortal with bound n:
Abstract ui by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

u :

v :

2 3 2 4 3 5 4 3 4 4(
2
1

) (
3
2

) (
2
1

) (
4
3

) (
3
2

) (
5
4

) (
4
3

) (
5
4

) (
5
4

)

Spoiler always wins in 2n rounds → L is FO+-definable.

17/18

The reduction
If M not mortal:
Let u1, u2, . . . , un a long run of M, and play Duplicator in :

u ∈ L : u1 u2 u3 . . . un−1 un
v /∈ L :

(u1
u2

) (u2
u3

) (u3
u4

)
. . .

(un−1
un

)
→ L is not FO+-definable.

If M mortal with bound n:
Abstract ui by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here n = 5):

u :

v :

2 3 2 4 3 5 4 3 4 4(
2
1

) (
3
2

) (
2
1

) (
4
3

) (
3
2

) (
5
4

) (
4
3

) (
5
4

) (
5
4

)
Spoiler always wins in 2n rounds → L is FO+-definable.

17/18

Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
I regular cost functions,
I logics on linear orders,
I . . .

With Quentin Moreau:
I Links with LTL
I FO2 fragment
I . . .

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention !

18/18

Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
I regular cost functions,
I logics on linear orders,
I . . .

With Quentin Moreau:
I Links with LTL
I FO2 fragment
I . . .

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention !

18/18

	First-order logic
	Lyndon's theorem
	FO-definable languages
	A special language
	Lyndon and finite graphs
	Undecidability result

