Positive first-order logic on words and graphs

Denis Kuperberg
CNRS, LIP, ENS Lyon, Plume Team
Birmingham Theory Seminar
24 November 2023

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

Semantics of φ : Structure $\left(X, R_{1}, \ldots, R_{n}\right)$ is accepted or rejected.

First-Order Logic (FO)

Signature: Predicate symbols $\left(P_{1}, \ldots, P_{n}\right)$ with arities k_{1}, \ldots, k_{n}. Syntax of FO:

$$
\varphi, \psi:=P_{i}\left(x_{1}, \ldots, x_{k_{i}}\right)|\varphi \vee \psi| \varphi \wedge \psi|\neg \varphi| \exists x . \varphi \mid \forall x . \varphi
$$

Semantics of φ : Structure (X, R_{1}, \ldots, R_{n}) is accepted or rejected.
Example: Directed graphs: one binary predicate E.

Positive versus Monotone

Goal: Understand the role of negation in FO.

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.
What about the converse ?

Positive versus Monotone

Goal: Understand the role of negation in FO.
Positive formula: no \neg
Monotone class of structures: closed under adding tuples to relations.
For graph classes: monotone $=$ closed under adding edges.
Example: graphs containing a triangle.
Monotone formula: defines a monotone class of structures.
Fact: φ positive $\Rightarrow \varphi$ monotone.
What about the converse ?
Motivation: Logics with fixed points.
Fixed points need monotone φ.
\rightarrow positive φ, syntactic condition.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable + monotone \Rightarrow FO-definable without \neg. valid with infinite structures.

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg. valid with infinite structures.

What about finite structures ?
This was open for 28 years...

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg. valid with infinite structures.

What about finite structures ?
This was open for 28 years...
Theorem: Lyndon's theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard
- [Stolboushkin 1995]

EF games on grid-like structures, involved

Lyndon's theorem

Theorem (Lyndon 1959)
If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg. valid with infinite structures.

What about finite structures ?
This was open for 28 years...
Theorem: Lyndon's theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard
- [Stolboushkin 1995]

EF games on grid-like structures, involved

- [This work]

EF games on words, elementary

Our results

Finite Model Theory:

Lyndon's theorem fails on

- Finite words
- Finite graphs
- Finite structures (elementary proof), several versions:
- one monotone predicate
- some monotone predicates
- all monotone predicates $=$ closure under surjective morphisms.

Our results

Finite Model Theory:

Lyndon's theorem fails on

- Finite words
- Finite graphs
- Finite structures (elementary proof), several versions:
- one monotone predicate
- some monotone predicates
- all monotone predicates $=$ closure under surjective morphisms.

Regular Language Theory:

Monotone FO languages	\neq	Positive FO languages
Algebraic characterization		Logical characterization
Decidable membership		Undecidable membership

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature $(\leq, a, b[, \ldots])$

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a

Examples of formulas:

- $\exists x . a(x)$: Language $A^{*} a A^{*}$.
- $\exists x, y \cdot(x \leq y \wedge a(x) \wedge b(y))$. Language $A^{*} a A^{*} b A^{*}$.

FO on words, the usual way

Words on alphabet $A=\{a, b[, \ldots]\}$: signature ($\leq, a, b[, \ldots]$)

- $x \leq y$: position x before position y.
- $a(x)$: position x labelled by letter a

Examples of formulas:

- $\exists x . a(x)$: Language $A^{*} a A^{*}$.
- $\exists x, y \cdot(x \leq y \wedge a(x) \wedge b(y))$. Language $A^{*} a A^{*} b A^{*}$.

Theorem

First-order languages form a strict subclass of regular languages.

Example: $(a a)^{*}$ is not FO-definable. (Proof later)

Background: FO-definable languages

FO-definable languages are well-understood.

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$

Background: FO-definable languages

FO-definable languages are well-understood.

```
Theorem (Schützenberger, McNaughton, Papert)
```

> A language $L \subseteq A^{*}$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$

Intuition: FO languages are "Aperiodic": cannot count modulo

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$
Intuition: FO languages are "Aperiodic": cannot count modulo \underline{L} aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^{*}$:

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

\Leftrightarrow Counter-free automaton: No cycle of the form:

Background: FO-definable languages

FO-definable languages are well-understood.
Theorem (Schützenberger, McNaughton, Papert)
A language $L \subseteq A^{*}$ is FO-definable iff it is definable by:
Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton $\Leftrightarrow \ldots$
Intuition: FO languages are "Aperiodic": cannot count modulo L aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^{*}$:

$$
u v^{n} w \in L \Leftrightarrow u v^{n+1} w \in L .
$$

\Leftrightarrow Counter-free automaton: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.
a, b, \ldots now independent.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.
a, b, \ldots now independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL, ...): independent signals can be true or false simultaneously.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.
a, b, \ldots now independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same (Preds $=\Sigma$ or A).

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.
a, b, \ldots now independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same ($\operatorname{Preds}=\Sigma$ or A).
- We no longer have $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$.

FO on words, the "unconstrained" way

For now, a word is a structure (X, \leq, a, b, \ldots) where

- \leq is a total order
- a, b, \ldots form a partition of X.
a, b, \ldots now independent.
\rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:

We will note $\Sigma=\{a, b, \ldots\}$, and $A=\mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same ($\operatorname{Preds}=\Sigma$ or A).
- We no longer have $\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$. \rightarrow Negation necessary for full FO.

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x . \varphi| \forall x . \varphi
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x . \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " \neg a").

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x . \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a$ ").
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x \cdot \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a "$).
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

Motivation: abstraction of many logics not closed under \neg.

The FO^{+}logic: positive formulas

FO^{+}Logic: a ranges over Σ, no \neg

$$
\varphi, \psi:=a(x)|x \leq y| x<y|\varphi \vee \psi| \varphi \wedge \psi|\exists x \cdot \varphi| \forall x \cdot \varphi
$$

Example: On $\Sigma=\{a, b\}$:

$$
\exists x, y \cdot(x \leq y) \wedge a(x) \wedge b(y) \rightsquigarrow\left(A^{*}\{a\} A^{*}\{b\} A^{*}\right) \cup\left(A^{*}\{a, b\} A^{*}\right)
$$

Remark: \emptyset^{*} undefinable in FO^{+}(cannot say " $\neg a$ ").
More generally: FO^{+}can only define monotone languages:

$$
u \alpha v \in L \text { and } \alpha \subseteq \beta \Rightarrow u \beta v \in L
$$

Motivation: abstraction of many logics not closed under \neg.
Question [Colcombet]: FO \& monotone $\stackrel{?}{\Rightarrow} \mathrm{FO}^{+}$

A counter-example language

Our first result

There is L monotone, FO-definable but not FO^{+}-definable.

A counter-example language

Our first result

There is L monotone, FO-definable but not FO^{+}-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.

A counter-example language

Our first result

There is L monotone, FO-definable but not FO^{+}-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}$.

A counter-example language

Our first result

There is L monotone, FO-definable but not FO^{+}-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}$. Monotone

A counter-example language

Our first result

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{c}a \\ b \\ c\end{array}\right) A^{*}$. Monotone
Lemma: L is FO-definable.

Proof:

A counter-example language

Our first result

There is L monotone, FO-definable but not FO+ ${ }^{+}$-definable.
Alphabet $A=\left\{\emptyset, a, b, c,\binom{a}{b},\binom{b}{c},\binom{c}{a},\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right\}$. Let $a^{\uparrow}=\left\{a,\binom{a}{b},\binom{c}{a}\right\}$.
Language $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}$. Monotone
Lemma: L is FO-definable.

Proof:

is counter-free. (no cycle labelled $v \geq 2$)

To prove L is not FO^{+}-definable: Ehrenfeucht-Fraïssé games.

Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i :

- Spoiler places token i in u or v.
- Duplicator must answer token i in the other word such that
- same letter for token i,
- same order between tokens.

Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i :

- Spoiler places token i in u or v.
- Duplicator must answer token i in the other word such that
- same letter for token i,
- same order between tokens.

We note $u \equiv_{n} v$ if Duplicator can survive n rounds on u, v.

Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i :

- Spoiler places token i in u or v.
- Duplicator must answer token i in the other word such that
- same letter for token i,
- same order between tokens.

We note $u \equiv_{n} v$ if Duplicator can survive n rounds on u, v.
Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable \Leftrightarrow For all n, there are $u \in L, v \notin L$ s.t. $u \equiv_{n} v$.

Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i :

- Spoiler places token i in u or v.
- Duplicator must answer token i in the other word such that
- same letter for token i,
- same order between tokens.

We note $u \equiv_{n} v$ if Duplicator can survive n rounds on u, v.
Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable \Leftrightarrow For all n, there are $u \in L, v \notin L$ s.t. $u \equiv_{n} v$.

Example

Proving (aa)* is not FO-definable:

$$
\begin{array}{ll}
u=a^{2 k} & \in(a a)^{*}: \quad \text { a a a a a a a a a a } \\
v=a^{2 k-1} & \notin(a a)^{*}: \quad \text { a a a a a a a a a }
\end{array}
$$

Proving FO^{+}-undefinability

Definition (EF^{+}games)
Previous rule: a in $u \Leftrightarrow a$ in v.

We write $u \preceq_{n} v$ if Duplicator can survive n rounds.

Proving FO^{+}-undefinability

Definition (EF^{+}games)
New rule: a in $u \Rightarrow a$ in v.

We write $u \preceq_{n} v$ if Duplicator can survive n rounds.

Proving FO^{+}-undefinability

Definition (EF^{+}games)
New rule: a in $u \Rightarrow a$ in v.

We write $u \preceq_{n} v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF^{+}games)
L not FO^{+}-definable $\Leftrightarrow \forall n$, there are $u \in L, v \notin L$ s.t. $u \preceq_{n} v$. [Stolboushkin 1995+this work]

Proving FO^{+}-undefinability

Definition (EF^{+}games)
New rule: a in $u \Rightarrow a$ in v.

We write $u \preceq_{n} v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF^{+}games)
L not FO^{+}-definable $\Leftrightarrow \forall n$, there are $u \in L, v \notin L$ s.t. $u \preceq_{n} v$. [Stolboushkin 1995+this work]

Application: Proving L is not FO^{+}-definable

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.
Several monotone predicates
Axiomatize in FO that \leq is a total order.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.
Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.
Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.
Several monotone predicates
Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.
All monotone predicates $=$ closure under surjective morphisms
Problem: We cannot say that \leq is total in a monotone way.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.
All monotone predicates $=$ closure under surjective morphisms
Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate $\not \subset$.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate $\not \subset$.

- Require $\forall x, y \cdot(x \leq y) \vee(x \not \leq y)$
- If $\exists x, y \cdot(x \leq y) \wedge(x \not \leq y) \rightarrow$ accept
- Axiomatize that \leq is total assuming $\not \leq$ is its complement.

From finite words to finite structures.

Goal: Lift L to finite structures.
For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.
a, b, c are monotone but not \leq.
One monotone predicate
Alphabet encoded by one binary predicate A.

$$
a(x) \equiv A(0, x) \quad b(x) \equiv A(1, x) \quad c(x) \equiv A(2, x)
$$

A is monotone but not \leq.

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.
Solution: Introduce a predicate $\not \subset$.

- Require $\forall x, y \cdot(x \leq y) \vee(x \not \leq y)$
- If $\exists x, y \cdot(x \leq y) \wedge(x \not \leq y) \rightarrow$ accept
- Axiomatize that \leq is total assuming $\not \leq$ is its complement.
$a, b, c, \leq, \not \leq$ are monotone.

From finite words to finite graphs

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$\rightarrow x_{0}$ — $\left.x_{0}\right]^{x_{0}}$,

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$-x_{0}$ ——両 $\square^{x_{0}}$,
- $\square-\square, \ldots$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
- x_{0} —— $\left.x_{0}\right]^{x_{0}}$,
- $\square-\square, \ldots$
- ψ^{+}is a disjunction of excess edges:

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$-x_{0}$ ——両 $\square^{x_{0}}$,
- $\square-\square, \ldots$
- ψ^{+}is a disjunction of excess edges:
- x_{0} — x_{0},

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
$-x_{0}$ ——両 $\square^{x_{0}}$,
- $\square-\square, \ldots$
- ψ^{+}is a disjunction of excess edges:
- $\square_{0} \square_{1} \square_{1}, \ldots$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
- x_{0} —— $\left.x_{0}\right]^{x_{0}}$,
- $\square-\square, \ldots$
- ψ^{+}is a disjunction of excess edges:

Final Formula: $\exists x_{a}, x_{b}, x_{c} \cdot\left(\psi^{-} \wedge\left(\psi_{L} \vee \psi^{+}\right)\right)$

From finite words to finite graphs

Encode words into (directed) graphs, here $a b\binom{a}{b} c$:

\rightarrow formula ψ_{L} for graphs encoding words of $L=\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*} \cup\left(A^{*}\left(\begin{array}{l}a \\ b \\ c\end{array}\right) A^{*}\right)$.
Rule out other graphs, in a monotone way:

- ψ^{-}is a conjunction of edge requirements:
- x_{0} —— $\left.x_{0}\right]^{x_{0}}$,
- $\square-\square, \ldots$
- ψ^{+}is a disjunction of excess edges:

Final Formula: $\exists x_{a}, x_{b}, x_{c} \cdot\left(\psi^{-} \wedge\left(\psi_{L} \vee \psi^{+}\right)\right)$
Left as exercise: Same with undirected graphs.

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?
Theorem
FO^{+}-definability is undecidable for regular languages.

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^{+}-definable ?
Theorem
FO^{+}-definability is undecidable for regular languages.

Reduction from Turing Machine Mortality:
A deterministic TM M is mortal if there a uniform bound n on the runs of M from any configuration.

Undecidable [Hooper 1966].

Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$
M \text { mortal } \Leftrightarrow L \text { is } \mathrm{FO}^{+} \text {-definable. }
$$

Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$
M \text { mortal } \Leftrightarrow L \text { is } \mathrm{FO}^{+} \text {-definable. }
$$

Building L :

Inspired from $\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*}$, but:

- $a, b, c \rightsquigarrow$ Words from languages C_{1}, C_{2}, C_{3} encoding configs of M.
- All transitions of M follow the cycle:

- $\binom{a}{b},\binom{b}{c},\binom{c}{a} \rightsquigarrow\binom{u_{1}}{u_{2}}$, exists iff $u_{1} \xrightarrow{M} u_{2}$.

Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$
M \text { mortal } \Leftrightarrow L \text { is } \mathrm{FO}^{+} \text {-definable. }
$$

Building L :

Inspired from $\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*}$, but:
$-a, b, c \rightsquigarrow$ Words from languages C_{1}, C_{2}, C_{3} encoding configs of M.

- All transitions of M follow the cycle:

$\rightarrow\binom{a}{b},\binom{b}{c},\binom{c}{a} \rightsquigarrow\binom{u_{1}}{u_{2}}$, exists iff $u_{1} \xrightarrow{M} u_{2}$.

We choose

$$
L:=\left(C_{1}^{\uparrow} \cdot C_{2}^{\uparrow} \cdot C_{3}^{\uparrow}\right)^{*}
$$

Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$
M \text { mortal } \Leftrightarrow L \text { is } \mathrm{FO}^{+} \text {-definable. }
$$

Building L :

Inspired from $\left(a^{\uparrow} b^{\uparrow} c^{\uparrow}\right)^{*}$, but:

- a,b,c Words from languages C_{1}, C_{2}, C_{3} encoding configs of M.
- All transitions of M follow the cycle:

- $\binom{a}{b},\binom{b}{c},\binom{c}{a} \rightsquigarrow\binom{u_{1}}{u_{2}}$, exists iff $u_{1} \xrightarrow{M} u_{2}$.

We choose

$$
L:=\left(C_{1}^{\uparrow} \cdot C_{2}^{\uparrow} \cdot C_{3}^{\uparrow}\right)^{*}
$$

4$u \in L \nRightarrow u$ encodes a run of M.

The reduction

If M not mortal:
Let $u_{1}, u_{2}, \ldots, u_{n}$ a long run of M, and play Duplicator in :
$\rightarrow L$ is not FO^{+}-definable.

The reduction

If M not mortal:
Let $u_{1}, u_{2}, \ldots, u_{n}$ a long run of M, and play Duplicator in :
$\rightarrow L$ is not FO^{+}-definable.
If M mortal with bound n :
Abstract u_{i} by the length of the run of M starting in it (at most n).

The reduction

If M not mortal:
Let $u_{1}, u_{2}, \ldots, u_{n}$ a long run of M, and play Duplicator in :

$$
\begin{array}{cccccc}
u \in L: & u_{1} & u_{2} & u_{3} & \ldots & u_{n-1}
\end{array} u_{n} .
$$

$\rightarrow L$ is not FO^{+}-definable.
If M mortal with bound n :
Abstract u_{i} by the length of the run of M starting in it (at most n).
Play Spoiler in the abstracted game (here $n=5$):

$u:$	2	3	2	4	3	5	4	3	4	4
$v:$		$\binom{2}{1}$	$\binom{3}{2}$	$\binom{2}{1}$	$\binom{4}{3}$	$\binom{3}{2}$	$\binom{5}{4}$	$\binom{4}{3}$	$\binom{5}{4}$	$\binom{5}{4}$

The reduction

If M not mortal:

Let $u_{1}, u_{2}, \ldots, u_{n}$ a long run of M, and play Duplicator in :

$$
\begin{array}{cccccc}
u \in L: & u_{1} & u_{2} & u_{3} & \ldots & u_{n-1} \\
v \notin L: & \binom{u_{1}}{u_{2}} & \left.\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right)
\end{array} \begin{gathered}
\binom{u_{3}}{u_{4}}
\end{gathered} \quad \ldots \quad \begin{gathered}
\binom{u_{n-1}}{u_{n}}
\end{gathered}
$$

$\rightarrow L$ is not FO^{+}-definable.
If M mortal with bound n :
Abstract u_{i} by the length of the run of M starting in it (at most n).
Play Spoiler in the abstracted game (here $n=5$):

Spoiler always wins in $2 n$ rounds $\rightarrow L$ is FO^{+}-definable.

Ongoing work

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

- regular cost functions,
- logics on linear orders,
- ...

With Quentin Moreau:

- Links with LTL
- FO2 fragment
- ...

Slogan:
FO variants without negation will often display this behaviour.

Ongoing work

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

- regular cost functions,
- logics on linear orders,
- ...

With Quentin Moreau:

- Links with LTL
- FO2 fragment

Slogan:
FO variants without negation will often display this behaviour.
Thanks for your attention!

