Emile Hazard, Denis Kuperberg

CSL 2023, Warsaw, February 16th 2023

History-Deterministic Automata

History-Deterministic Automata

Motivations

- ► Solve Church Synthesis more efficiently
- ▶ Intermediate model between Det. and Nondet.
- Exponential Succinctness wrt Det. [K., Skrzycpzak '15]

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters:

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b c

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b c

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b c c

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a a b c c

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: $a \ a \ b \ c \ c \dots = w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(A) \Rightarrow \text{Run accepting}$.

 \mathcal{A} ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: $a \ a \ b \ c \ c \dots = w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(A) \Rightarrow \text{Run accepting}$.

 $\mathcal{A} \ \mathrm{HD} \Leftrightarrow \mathrm{Eve} \ \mathrm{wins} \ \mathrm{the} \ \mathrm{Letter} \ \mathrm{game} \ \mathrm{on} \ \mathcal{A} \ \Leftrightarrow \mathrm{there} \ \mathrm{is} \ \mathrm{a} \ \mathrm{strategy} \ \sigma_{\mathrm{HD}} : \mathcal{A}^* \to \mathcal{Q} \ \mathrm{accepting} \ \mathrm{all} \ \mathrm{words} \ \mathrm{of} \ \mathcal{L}(\mathcal{A}).$

Complexity of the HDness problem:

Input: A nondeterministic automaton ${\mathcal A}$

Output: Is A HD?

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

► On finite words: PTIME [Löding]

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

► On finite words: PTIME [Löding]

On infinite words: Open problem!

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

► On finite words: PTIME [Löding]

On infinite words: Open problem!

► Upper bound: EXPTIME [Henzinger, Piterman '06]

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem!
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - ▶ PTIME algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem!
 - ► Upper bound: EXPTIME [Henzinger, Piterman '06]
 - ▶ PTIME algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

What about building HD automata?

Complexity of the HDness problem:

Input: A nondeterministic automaton \mathcal{A}

Output: Is A HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem!
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - ▶ PTIME algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

What about building HD automata?

To tackle these questions, we generalize the notion of HD ...

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

A is explorable if it is k-explorable for some k.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

A is explorable if it is k-explorable for some k.

A ?-explorable safety NFA

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(A) \Rightarrow$ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.

A is explorable if it is k-explorable for some k.

A non-explorable safety NFA

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is $\operatorname{ExpTime}$ -complete.

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability? If yes, how efficiently?

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The HDness problem is in PTIME for explorable automata.

Can we decide explorability? If yes, how efficiently?

If better than $\operatorname{ExpTime}$: improve on general HDness !

Theorem [K., Majumdar '18]:

Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The HDness problem is in PTIME for explorable automata.

Can we decide explorability? If yes, how efficiently?

If better than ExpTime: improve on general HDness!

How many tokens might be needed in explorable automata?

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- ▶ Game harder to solve: the input word has to be in L(A)
- Must deal with acceptance conditions on infinite words.

Results

Theorems [Hazard, K.]

Explorability Problem is $\rm ExpTime$ -complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

Results

Theorems [Hazard, K.]

Explorability Problem is $\mathrm{ExpTime}\text{-}\text{complete}$ for NFA, Büchi. Doubly exponentially many tokens might be needed.

NFA needing exponentially many tokens.

ω -explorability

What happens if we allow a countable infinity of tokens?

ω -explorability

What happens if we allow a countable infinity of tokens?

not explorable but ω -explorable

not ω -explorable

ω -explorability

What happens if we allow a countable infinity of tokens?

Intuition:

Non-explorable: Adam can kill a run chosen by Eve Non- ω -explorable: Adam can kill a run of its choice

Results on ω -explorability

Facts:

- \triangleright any NFA is ω -explorable,
- ▶ any automaton A with L(A) countable is ω -explorable.
- ightharpoonup any Reachability automaton is ω -explorable,

Results on ω -explorability

Facts:

- \triangleright any NFA is ω -explorable,
- ▶ any automaton A with L(A) countable is ω -explorable.
- ▶ any Reachability automaton is ω -explorable,

Theorem [Hazard, K.]

 $\omega\text{-explorability}$ is ExpTime-complete for safety, coBüchi.

Results on ω -explorability

Facts:

- \triangleright any NFA is ω -explorable,
- ▶ any automaton A with L(A) countable is ω -explorable.
- ▶ any Reachability automaton is ω -explorable,

Theorem [Hazard, K.]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

Decidability open for Büchi.

Current and future work

Internship with Olivier Idir:

- **Expressivity** of $(\omega$ -)expl. parity automata
- ► EXPTIME expl. algorithms for coBüchi, Parity [0,2]
- ▶ Decidability open for Parity [1,3] (general case !)

Current and future work

Internship with Olivier Idir:

- **Expressivity** of $(\omega$ -)expl. parity automata
- ► EXPTIME expl. algorithms for coBüchi, Parity [0,2]
- ▶ Decidability open for Parity [1,3] (general case !)

In the future...

- ▶ Open decidability: [1,3]-expl., Büchi ω -expl.
- ightharpoonup Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.
- **•** ...

Current and future work

Internship with Olivier Idir:

- **Expressivity** of $(\omega$ -)expl. parity automata
- ► EXPTIME expl. algorithms for coBüchi, Parity [0,2]
- ▶ Decidability open for Parity [1,3] (general case !)

In the future...

- ▶ Open decidability: [1,3]-expl., Büchi ω -expl.
- ightharpoonup Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.
- **.**..

Thanks for your attention!