History-deterministic and Explorable Automata

Denis Kuperberg
Marc Bagnol, Udi Boker, Emile Hazard, Olivier Idir, Orna Kupferman, Karoliina Lehtinen, Michał Skrzypczak,...

GREYC, Caen, May 14th 2024

Automata

Deterministic
$L(\mathcal{A})=\{$ accepted words $\}$

Automata

Non-deterministic (ND)

$$
L(\mathcal{A})=\{\text { accepted words }\}
$$

Automata

Non-deterministic (ND)

$$
L(\mathcal{A})=\{\text { accepted words }\}
$$

Büchi: ∞ accepting states

Automata

Non-deterministic (ND)

$$
L(\mathcal{A})=\{\text { accepted words }\}
$$

Büchi: ∞ accepting states coBüchi: finitely many non-accepting states

Automata

Non-deterministic (ND)

$$
L(\mathcal{A})=\{\text { accepted words }\}
$$

Büchi: ∞ accepting states coBüchi: finitely many non-accepting states
for coBüchi: $L(\mathcal{A}) \subseteq(a+b+c)^{*} a^{\omega}$

The Parity hierarchy

Deterministic

Non-deterministic

History-Deterministic Automata

Deterministic

History-Deterministic
(a.k.a. Good-for-Games)

History-Deterministic Automata

Deterministic

History-Deterministic
(a.k.a. Good-for-Games)

Context

- Introduced in [Henzinger, Piterman 2006] as "Good-for-Games" and in [Colcombet 2009] as "History-determinism".
- Solve Church Synthesis more efficiently
- Intermediate model between Det. and Nondet.

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b c$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b c$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \operatorname{b} c c$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \operatorname{b} c c$
Eve: resolves non-deterministic choices for transitions

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \operatorname{b} \quad c \quad c \ldots=w$
Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

Definition of HD via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \begin{array}{lllll}a & b & c & c & \ldots\end{array}=w$
Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.
$\mathcal{A} \mathrm{HD} \Leftrightarrow$ Eve wins the Letter game on \mathcal{A}
\Leftrightarrow there is a strategy $\sigma_{\mathrm{HD}}: A^{*} \rightarrow Q$ accepting all words of $L(\mathcal{A})$.

First results

Definition (Determinizable By Pruning)

\mathcal{A} DBP if it embeds an equivalent deterministic automaton.

Fact

$\mathrm{DBP} \Rightarrow \mathrm{HD}$.
Case where σ_{HD} does not need memory.

First results

Definition (Determinizable By Pruning)
\mathcal{A} DBP if it embeds an equivalent deterministic automaton.
Fact
$\mathrm{DBP} \Rightarrow \mathrm{HD}$.
Case where σ_{HD} does not need memory.
Theorem (PTime inclusion check)
If $\mathcal{A} N D$ and $\mathcal{B} \mathrm{HD}$, checking $L(\mathcal{A}) \subseteq L(\mathcal{B})$ is in PTime.
(PSpACE-complete for $\mathcal{B} \mathrm{ND}$)

First results

Definition (Determinizable By Pruning)
\mathcal{A} DBP if it embeds an equivalent deterministic automaton.
Fact
$\mathrm{DBP} \Rightarrow \mathrm{HD}$.
Case where σ_{HD} does not need memory.
Theorem (PTime inclusion check)
If $\mathcal{A} N D$ and $\mathcal{B} \mathrm{HD}$, checking $L(\mathcal{A}) \subseteq L(\mathcal{B})$ is in PTime.
(PSpace-complete for $\mathcal{B} \mathrm{ND}$)
No need to know σ_{HD} !

First results

Definition (Determinizable By Pruning)
\mathcal{A} DBP if it embeds an equivalent deterministic automaton.
Fact
$\mathrm{DBP} \Rightarrow \mathrm{HD}$.
Case where σ_{HD} does not need memory.
Theorem (PTime inclusion check)
If $\mathcal{A} N D$ and $\mathcal{B} \mathrm{HD}$, checking $L(\mathcal{A}) \subseteq L(\mathcal{B})$ is in PTime.
(PSPACE-complete for $\mathcal{B} \mathrm{ND}$)
No need to know $\sigma_{\text {HD }}$!
Theorem (Deterministic expressivity)
Any HD automaton can be determinized with exponential blow-up, while preserving its acceptance condition.

Relationship to deterministic automata

Finite words:
$\mathrm{HD}=\mathrm{DBP}$ [Löding]

Relationship to deterministic automata

Finite words:
$\mathrm{HD}=\mathrm{DBP}$ [Löding]

Büchi (aka Parity [1,2]):

- HD \neq DBP [Boker, K., Kupferman, Skrzypczak 2013]
- Determinization in $O\left(n^{2}\right)$ states [K., Skrzypczak 2015], $O(n)$ conjectured.
- Determinization in PTime [Acharya, Jurdziński, Prakash 2024]

Relationship to deterministic automata

Finite words:
$\mathrm{HD}=\mathrm{DBP}$ [Löding]

Büchi (aka Parity [1,2]):

- HD \neq DBP [Boker, K., Kupferman, Skrzypczak 2013]
- Determinization in $O\left(n^{2}\right)$ states [K., Skrzypczak 2015], $O(n)$ conjectured.
- Determinization in PTime [Acharya, Jurdzíński, Prakash 2024]
coBüchi (aka Parity $[0,1]$):
- Exponential succinctness of HD vs Det. [K., Skrzypczak 2015]
- PTime minimization [Abu Radi, Kupferman 2020]

Recognizing HD automata

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

Recognizing HD automata

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

- On finite words: PTime [Löding]

Recognizing HD automata

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

- On finite words: PTime [Löding]
- On infinite words: Open problem !

Recognizing HD automata

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman 2006]

Recognizing HD automata

Complexity of the HDness problem:
Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman 2006]
- PTime algorithm for Büchi [Bagnol, K. 2018] works also for coBüchi [Boker, K., Lehtinen, Skrzypczak 2020] Conjectured correct for all conditions.

Recognizing HD automata

Complexity of the HDness problem:
Input: A nondeterministic automaton \mathcal{A}
Output: Is $\mathcal{A} \mathrm{HD}$?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman 2006]
- PTime algorithm for Büchi [Bagnol, K. 2018] works also for coBüchi [Boker, K., Lehtinen, Skrzypczak 2020] Conjectured correct for all conditions.

To attack this conjecture and better understand the power of nondeterminism, let us generalize the notion of HD ...

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

> 2 runs
> 2-Explorable
> [Hazard, K. 2023]

Explorable Automata

k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

Explorable Automata

k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.

Explorable Automata

k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

Explorable Automata

k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

A ?-explorable safety NFA

Explorable Automata

k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

A non-explorable safety NFA

First results

Theorem [K., Majumdar '18]:
Deciding $|Q| / 2$-explorability is ExpTime-complete.

First results

Theorem [K., Majumdar '18]:
Deciding $|Q| / 2$-explorability is ExpTime-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in PTime for explorable automata.

First results

Theorem [K., Majumdar '18]:
Deciding $|Q| / 2$-explorability is ExpTimE-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in PTime for explorable automata.

Can we decide explorability? If yes, how efficiently?

First results

Theorem [K., Majumdar '18]:
Deciding $|Q| / 2$-explorability is ExpTime-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently?
If better than ExpTime: improve on general HDness !

First results

Theorem [K., Majumdar '18]:
Deciding $|Q| / 2$-explorability is ExpTime-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently?
If better than ExpTime: improve on general HDness !
How many tokens might be needed in explorable automata?

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?
Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- The PCP is ExpTime-complete
- Doubly exponentially many tokens might be needed.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA,
Goal of Adam: bring all tokens to a sink state.
Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?
Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- The PCP is ExpTime-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- Game harder to solve: the input word has to be in $L(\mathcal{A})$
- Must deal with acceptance conditions on infinite words.

Results

Theorems [Hazard, K. 2023]
Explorability is ExpTime-complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

Results

Theorems [Hazard, K. 2023]
Explorability is ExpTime-complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

NFA needing exponentially many tokens.

Results

Theorems [Hazard, K. 2023]
Explorability is ExpTime-complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

NFA needing exponentially many tokens.

Theorems [Idir, K.]
Explorability is ExpTime for coBüchi, [0, 2]-Parity.

ω-explorability

What happens if we allow a countable infinity of tokens ?

ω-explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω-explorable

not ω-explorable

ω-explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω-explorable

not ω-explorable

Intuition:

Non- ω-explorable: Adam can always kill any run

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Theorem [Hazard, K. 2023]
ω-explorability is ExpTime-complete for safety, coBüchi.

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Theorem [Hazard, K. 2023]
ω-explorability is ExpTime-complete for safety, coBüchi.

Decidability open for Büchi.

Expressivity of explorable automata

Expressivity of explorable automata

Non-deterministic

Expressivity of explorable automata

Expressivity of explorable automata

Theorem (Idir, K.)
[1, 3]-explorability decidable \Leftrightarrow Parity explorability decidable
Büchi ω-explorability decidable \Leftrightarrow Parity ω-explorability decidable

Future work

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- PTime HDness for parity automata.

Future work

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- PTime HDness for parity automata.

Thanks for your attention!

