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Büchi: ∞ accepting states
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The Parity hierarchy

Safety

coBüchi [0,1]

[0,2]

[0,3]

Reachability

ω-regular ω-regular

Büchi [1,2]

[1,3]

[1,4]

Deterministic

Safety

coBüchi [0,1]

Reachability

Büchi [1,2]

Non-deterministic
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History-Deterministic Automata

History-Deterministic
(a.k.a. Good-for-Games)

Context
▶ Introduced in [Henzinger, Piterman 2006] as “Good-for-Games”

and in [Colcombet 2009] as “History-determinism”.
▶ Solve Church Synthesis more efficiently
▶ Intermediate model between Det. and Nondet.
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Definition of HD via a game
A ND automaton on finite or infinite words.
Letter game of A:
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

a, b, c
a

b

a
b

a, b, c

c

Eve wins if: w ∈ L(A) ⇒ Run accepting.

A HD ⇔ Eve wins the Letter game on A
⇔ there is a strategy σHD : A∗ → Q accepting all words of L(A).
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First results

Definition (Determinizable By Pruning)
A DBP if it embeds an equivalent deterministic automaton.

Fact
DBP ⇒ HD.
Case where σHD does not need memory.

Theorem (PTime inclusion check)
If A ND and B HD, checking L(A) ⊆ L(B) is in PTime.

(PSpace-complete for B ND)
No need to know σHD !

Theorem (Deterministic expressivity)
Any HD automaton can be determinized with exponential blow-up,
while preserving its acceptance condition.
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Relationship to deterministic automata

Finite words:
HD = DBP [Löding]

Büchi (aka Parity [1,2]):
▶ HD ̸= DBP [Boker, K., Kupferman, Skrzypczak 2013]
▶ Determinization in O(n2) states [K., Skrzypczak 2015],

O(n) conjectured.
▶ Determinization in PTime [Acharya, Jurdziński, Prakash 2024]

coBüchi (aka Parity [0,1]):
▶ Exponential succinctness of HD vs Det. [K., Skrzypczak 2015]
▶ PTime minimization [Abu Radi, Kupferman 2020]
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Recognizing HD automata

Complexity of the HDness problem:
Input: A nondeterministic automaton A
Output: Is A HD?

▶ On finite words: PTime [Löding]
▶ On infinite words: Open problem !

▶ Upper bound: ExpTime [Henzinger, Piterman 2006]
▶ PTime algorithm for Büchi [Bagnol, K. 2018]

works also for coBüchi [Boker, K., Lehtinen, Skrzypczak 2020]
Conjectured correct for all conditions.

To attack this conjecture and better understand the power of
nondeterminism, let us generalize the notion of HD . . .
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Allowing more runs
Idea: Allow to build several runs, at least one accepting.

HD

[Hazard, K. 2023][K., Majumdar 2018]
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Explorable Automata
k-explorability game:
Adam plays letters, Eve moves k tokens

Eve wins if w ∈ L(A) ⇒ at least one token follows an accepting run.

A is k-explorable if Eve wins the k-explorability game.
A is explorable if it is k-explorable for some k.

q0

q1

q2

a
a

a

b

A -explorable safety NFA
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First results

Theorem [K., Majumdar ’18]:
Deciding |Q|/2-explorability is ExpTime-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently ?
If better than ExpTime: improve on general HDness !

How many tokens might be needed in explorable automata ?
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A related paper
Similar questions in [Betrand et al 2019: Controlling a population]

k-population game: Arena like k-explorability game on NFA,
Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): ∃k s.t. Eve wins ?

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:
▶ The PCP is ExpTime-complete
▶ Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but
▶ Game harder to solve: the input word has to be in L(A)
▶ Must deal with acceptance conditions on infinite words.
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Results
Theorems [Hazard, K. 2023]

Explorability is ExpTime-complete for NFA, Büchi.
Doubly exponentially many tokens might be needed.

q0

p1

r1

q1

p2

r2

q2 . . . qk−1

pk

rk

qk

Σ

Σ

a

b

Σ

Σ

a

b

Σ

Σ

a

b

NFA needing exponentially many tokens.

Theorems [Idir, K.]

Explorability is ExpTime for coBüchi, [0, 2]-Parity.
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ω-explorability
What happens if we allow a countable infinity of tokens ?

q0 q1 q2

a

a b

a, b

not explorable but
ω-explorable

q0

q1

q2

a
a

a

b

not ω-explorable

Intuition:
Non-ω-explorable: Adam can always kill any run
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Results on ω-explorability

Facts:
▶ any NFA is ω-explorable,
▶ any automaton A with L(A) countable is ω-explorable.
▶ any Reachability automaton is ω-explorable,

Theorem [Hazard, K. 2023]

ω-explorability is ExpTime-complete for safety, coBüchi.

Decidability open for Büchi.
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Expressivity of explorable automata

Safety

coBüchi [0,1]

[0,2]

[0,3]

Reachability

ω-regular ω-regular

Büchi [1,2]

[1,3]

[1,4]

Deterministic

Safety

coBüchi [0,1]

Reachability

Büchi [1,2]

Non-deterministic

Theorem (Idir, K.)
[1, 3]-explorability decidable ⇔ Parity explorability decidable
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Future work

▶ Open decidability: [1, 3]-expl., Büchi ω-expl.
▶ Complexity of k-expl. with k in binary?
▶ Studying HD and expl. models in other frameworks.
▶ Practical applications, experimental evaluations.
▶ PTime HDness for parity automata.
▶ . . .
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